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Abstract

In this study, a deep convolutional neural network was trained to classify single lead ECG
waveforms as either Normal Sinus Rhythm, Atrial Fibrillation, or Other Rhythm. The
dataset consisted of 12,186 labeled waveforms donated by AliveCor R© for use in the 2017
Physionet Challenge. The study was run in two phases, the first to generate a classifier that
performed at a level comparable to the top submission of the 2017 Physionet Challenge, and
the second to extract class activation mappings to help better understand which areas of the
waveform the model was focusing on when making a classification. The convolutional neural
network had 13 layers, including dilated convolutions, max pooling, ReLU activation, batch
normalization, and dropout. Class activation maps were generated using a global average
pooling layer before the softmax layer. The model generated the following average scores,
across all rhythm classes, on the validation dataset: precision=0.84, recall=0.85, F1=0.84,
and accuracy=0.88. For the Normal Sinus Rhythm class activation maps, we observed
roughly constant attention, while for the Other Rhythm class, we observed attention spikes
associated with premature beats. The class activation maps would allow for some level
of interpretability by clinicians, which will likely be important for the adoption of these
techniques to augment diagnosis.

c© 2018 S.D. Goodfellow, A. Goodwin, R. Greer, P.C. Laussen, M. Mazwi & D. Eytan.
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1. Introduction

Many researchers have used various machine learning techniques for heart rhythm classi-
fication/detection from ECG waveforms using one of two machine learning strategies: (1)
Step-By-Step Machine Learning and (2) End-To-End Deep Learning. Step-By-Step Machine
Learning is the most common approach and involves signal processing, hand engineering
features, and classification whereas End-To-End Deep Learning uses Deep Neural Networks,
which take raw ECG waveforms as input and output a classification, thereby removing the
need to hand engineer features.

Table 1: Training dataset summary.
Duration (Seconds)

Label Count Mean Std Max Min

Normal Sinus Rhythm 5154 31.9 10 61 9
Atrial Fibrillation 771 31.6 12.5 60 10

Other Rhythm 2557 34.1 11.8 60.9 9.1
Noisy 46 27.1 9 60 10.2
Total 8528 32.5 10.9 61 9

When using the traditional Step-By-Step approach (Kara and Okandan (2007); Asl
et al. (2008); Asgari et al. (2015); Rodenas et al. (2015); Goodfellow et al. (2017); Datta
et al. (2017); Goodfellow et al. (2018)), a wide range of features are extracted from an
ECG waveform. These features include standard heart rate variability features (Goldberger
et al. (2000)), entropy features (Richman and Moorman (2000); Alcaraz et al. (2010); Zhou
et al. (2010); Lake and Moorman (2011); DeMazumder et al. (2013)), Poincaré plot features
(Park et al. (2009)), and heart rate fragmentation features (Costa et al. (2017)). They also
include features that describe the QRS-complex morphology and detect the presence of
P-waves and T-waves. Following feature extraction, a classifier is then trained to learn a
function that maps from the ECG features to a given rhythm class.

Figure 1: Left: AliveCor R© hand held ECG acquisition device. Right: Examples of ECG
recording for each rhythm class.
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When using End-To-End deep learning for ECG rhythm classification, researchers have
used convolutional neural networks (Pourbabaee et al. (2016); Rajpurkar et al. (2017);
Acharya et al. (2017); Kamaleswaran et al. (2018)) and recurrent neural networks (Limam
and Precioso (2017); Schwab et al. (2017)). A recent study by Rajpurkar et al. (2017) used
a 33 layer residual neural network, a convolutional neural network architecture, to classify
14 different heart rhythms including Normal Sinus Rhythm, Ventricular Bigeminy, Atrial
Fibrillation, Atrial Flutter, and others, and achieved an average F1 score of 0.78.

In this study, we seek an improved understanding of the inner workings of a convolutional
neural network ECG rhythm classifier. With a move towards understanding how a neural
network comes to a rhythm classification decision, we may be able to build interpretabil-
ity tools for clinicians and improve classification accuracy. Recent studies have focused on
extracting attention mappings (class activation maps) from convolutional neural networks
trained for image classification (Xu et al. (2015); Zagoruyko and Komodakis (2016); Zhou
et al. (2016); Zhang et al. (2017)). Zhou et al. (2016) showed that class activation maps
allow for predicted class scores to be visualized, demonstrating the implicit attention of a
convolutional neural network on an image. The networks showed impressive localization
ability despite having been trained for image classification. This study takes the formu-
lations derived for convolutional neural network attention mapping of images and applies
them to time series classification in order to visualize the region of an ECG waveform that
receives the most attention during rhythm classification.

Technical Significance The main technical contribution of this study is the extension
of Zhou et al. (2016)’s class activation maps from 2D image data to 1D time series data.

Clinical Relevance The clinical relevance of this study is that by using class activation
maps for ECG rhythm classification, some level of interpretability is possible which will be
important for the adoption of these techniques to augment decision making at the bedside.
The class activation maps will potentially allow for clinicians to interpret and understand
a model’s classification decision.

Figure 2: Dataset splitting strategy.
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2. Dataset

The dataset used for this study is from the 2017 Physionet challenge where the objective was
to build a model to classify a single lead ECG waveform as either Normal Sinus Rhythm,
Atrial Fibrillation, Other Rhythm, or Noisy. The database consisted of 12,186 ECG wave-
forms that were donated by AliveCor R©. Data were acquired by patients using AliveCor R©’s
single-channel ECG device and ranged in duration from 9 seconds to 61 seconds (Table 1).
A measurement was taken by placing two fingers on each of the silver electrodes visible on
the device in Figure 1. Data were stored as 300 Hz, 16-bit files with a ±5 mV dynamic
range (Clifford et al. (2017)).

Figure 3: Example of (a) picked R-peaks from a raw waveform, (b) a normalized waveform
and (c) extracted templates.
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Figure 4: Deep convolutional neural network architecture.
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The complete dataset consisting of 12,186 waveforms was first split into training (8,528)
and hidden test (3,658) datasets following a 70%/30% split (Figure 2). Whenever the
dataset was split, steps were taken to preserve the proportions of different rhythm classes to
ensure each sub-dataset was representative of the original. The training dataset, consisting
of 8,528 waveforms, was given to contestants for use in building a heart rhythm classifier.
Contestants had a total of five months to build their model after which their model was
uploaded to Physionet server where it was evaluated one time on the hidden test dataset.
The top ten finalists produced F1 scores between 0.81 and 0.83.

The dataset consisted of four rhythm classes; Normal Sinus Rhythm (NRS), Atrial
Fibrillation (AF), Other Rhythm (OR), and Noisy (N) (Figure 1). Normal Sinus Rhythm
is the default heart rhythm and Atrial fibrillation is the most common tachyarrhythmia
of the heart in adults and is associated with an increased risk of stroke and heart failure.
The Other Rhythm class consisted of many different heart arrhythmias all grouped into
one class. This class could include arrhythmias such as Ventricular Tachycardia, Atrial
Flutter, Ventricular Bigeminy, and Ventricular Trigeminy, however, this level of detail was
not available to competitors. Lastly, the Noisy class consisted of real ECG waveforms where
the labelers could not produce a confident heart rhythm classification. As presented in Table

Figure 5: Training and validation dataset metrics as a function of training epoch (cross-
entropy loss, accuracy, and F1)
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1, this dataset is imbalanced in order to reflect the true rates of occurrence in practice. For
the purpose of this study, the Noisy class was removed from the dataset. See Clifford et al.
(2017) for more information on how rhythm labels were generated.

3. Pre-Processing

Before being used for training and validation, each ECG waveform was pre-processed in
the following ways. Full waveforms were first filtered using a finite impulse response (FIR)
bandpass filter with a lower limit of 3 Hz and an upper limit of 45 Hz. With the ECG wave-
form filtered, the R-peaks were picked using the Hamilton–Tompkins algorithm (Hamilton
and Tompkins (1986)) which returned an array of picked R-peak times as presented in Fig-
ure 3 (a) as vertical grey lines. Lastly, each ECG waveform was normalized to the median
R-peak amplitude as shown in Figure 3 (b).

As shown in Table 1, the waveform durations ranged from 9 seconds to 61 seconds
and a convolutional neural network needs a static waveform length for input. A waveform
duration of 60 seconds (18,000 sample points) was chosen and any waveform with a duration
of less than 60 seconds was zero padded as seen in Figure 4.

Table 2: Summary of model scores from the validation dataset.
Label Precision Recall F1 Accuracy Size

Normal Sinus Rhythm 0.92 0.92 0.92 - 1523
Atrial Fibrillation 0.81 0.81 0.81 - 227

Other Rhythm 0.80 0.81 0.80 - 725
Average / Total 0.84 0.85 0.84 0.88 2475

4. Architecture

The objective of this study was to build an convolution neural network ECG rhythm clas-
sifier that performed at a level comparable to the top submission of the 2017 Physionet
Challenge (F1 = 0.81 - 0.83), and contained a global average pooling layer before the soft-
max classifier, allowing for class activation mappings to be extracted. The class activation
mappings allowed for visualization of areas of the waveform the model was focusing on
when making a classification decision. Our starting point was the 13 layer architecture of
Kamaleswaran et al. (2018) that generated an F1 score of 0.83 on the same dataset. Their
model had 13 identical layers comprised of a 1D convolution, batch normalization, ReLU
activation, max pooling, and dropout, which takes a (batch size, 18275, 1) tensor as input
and outputs a (batch size, 1, 64) tensor for classification by a softmax layer. The temporal
dimension of the waveform is reduced from 18275 to 1 by 13 max pooling operations with a
pool size of 2. This architecture worked well for classification but was not ideal for extracting
class activation mapping given the very low temporal resolution before the softmax layer.
In order to improve the temporal resolution of the output from the final layer, 10 of the 13
max-pooling layers were removed, resulting in an output shape of (batch size, 2250, 64) as
opposed to (batch size, 1, 64). As shown in Figure 4, each of the 13 layers contained a 1D
convolution (bias term included), batch normalization, ReLU activation and dropout, and
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Figure 6: Confusion matrix for the validation dataset.

layers 1, 6, and 11 contained a max pooling layer between the ReLU and Dropout. Figure
4 contains details about the stride, pool size, filter count, padding, kernel size, and dropout
rate for each layer. Dilation rates were increased from 1 to 8 for the 1D convolutions in
order to increase the networks receptive fields. Lastly, a global average pooling (GAP) layer
was used to compute the temporal average of the feature map of each unit from the last
convolutional layer (layer 13). The output from the GAP layer had the shape (batch size,
1, 64), which was then fed into a softmax classification layer, with the bias term excluded.

5. Training

For model training, the dataset given to contestant, consisting of 8,528 waveforms, was
further split into a training and validation dataset following a 70/30 split (Figure 2). The
splitting was stratified such to preserve the proportions of different rhythm classes and
ensure that the training and validation datasets were representatives of the original. The
model was trained for 100 epochs with a batch size of 10, resulting in 578 steps per epoch,
and a constant learning rate of 1E-3. Optimization was carried out using ADAM (Kingma
and Ba (2015)) and the cross-entropy loss function. The loss function was weighted by class
to account for the class imbalance in the dataset (Table 1).
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Figure 7: Class Activation Mappings (CAM) work flow.

6. Evaluation

Scoring for the 2017 Physionet Challenge used an F1 measure, which is an average of three
F1 values for Normal Rhythm, Atrial Fibrillation, and Other Rhythm labels (Equation 1).

F1 =
F1,NRS + F1,AF + F1,OR

3
(1)

The F1 score is the harmonic mean of precision and recall where precision is defined as the
number of true positives divided by the number of true positives plus the number of false
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positives and recall is defined as the number of true positives divided by the number of true
positives plus the number of false negatives.

The model was trained for 100 epoch (57,800 steps) and the cross-entropy loss, accuracy,
and F1 score, evaluated once per epoch on the training and validation datasets, can be seen
in Figure 5. The final model weights used for the following class activations mapping
analysis came from a checkpoint at epoch 48 where the validation F1 score peaked at 0.847.
Following epoch 48, the validation loss began to increase, suggesting the model may have
started overfitting to the training dataset.

Table 2 presents a detailed overview of the model’s performance (epoch 48 checkpoint)
broken down by class rhythm. The model performs best for the Normal Sinus Rhythm class
with an F1 score of 0.92 and equally well for Atrial Fibrillation and Other Rhythm with
F1 scores of 0.81 and 0.80 respectively. Precision and recall were roughly equal for each
rhythm class and the overall accuracy was 0.88.

Figure 6 displays a confusion matrix, for the validation dataset, which displays infor-
mation about actual and predicted labels from the model. For example, in the validation
dataset, there were 15,233 Normal Sinus Rhythm waveforms for which 92.12 % were cor-
rectly predicted as Normal Sinus Rhythm, 0.72 % were incorrectly predicted as Atrial Fib-
rillation, and 7.16 % were incorrectly predicted as Other Rhythm. The biggest errors made
by the model were mislabelling Atrial Fibrillation as Other Rhythm and Other Rhythm as
Normal Sinus Rhythm.

7. Class Activation Mappings

Zhou et al. (2016) demonstrate that convolutional neural networks trained for image classi-
fication appear to behave as object detectors despite information about the object’s location
not being part of the training labels (no bounding box annotations). Zhou et al. (2016)
showed that their model could perform accurate object localization without any signifi-
cant loss of classification accuracy. Object localization is enabled by class activation maps
(CAM) and a global average pooling (GAP) layer before the softmax classifier allowing for
the predicted class scores on any image to be visualized and for the discriminative object
parts detected by the convolutional neural network to be highlighted.

Zhou et al. (2016)’s formulation was designed for analysis of images whereas our ap-
plication is for time series. For our application, the class activation map for a particular
rhythm class was used to indicate the discriminative temporal regions, not image regions,
used by the convolutional neural network to identify that class rhythm. The following is a
direct adaptation of Zhou et al. (2016)’s formulation for time series data.

For a given ECG time series, fk(t) represents the activation of filter unit k in the last
convolutional layer (layer 13) at the temporal location t. From Figure 7, the activation map
output from layer 13 has the shape (batch size, 2250, 64), which corresponds to 64 filter
units (k) with a temporal dimension of 2250 units. For filter unit k, the global average
pooling, F k, was calculated following

∑2250
t=1 fk(t), resulting in a reduction in the temporal

dimension from 2250 to 1 (batch size, 1, 64). The softmax logits for rhythm class c, Sc, were
calculated following

∑64
k=1w

c
kF

k, where wc
k is the weights corresponding to class c for filter

unit k, and the associated softmax class score, Pc, was calculated following exp(Sc)∑3
c=1 exp(Sc)

. By

substituting for F k, we get equation 2.
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Sc =

64∑
k=1

wc
kF

k =

64∑
k=1

wc
k

2250∑
t=1

fk(t) =

2250∑
t=1

64∑
k=1

wc
kfk(t) (2)

The class activation map for class rhythm c, Mc, for a certain temporal unit, t, is given by

Mc(t) =
64∑
k=1

wc
kfk(t) (3)

and thus, the softmax logits for class c are given by Sc =
∑2250

t=1 Mc(t). This equations
demonstrates that that activation map Mc(t) represents the importance of activations for
filter units k = 1 - 64 at temporal unit t leading to classification of an ECG time series as
class c.

Figure 7 presents a visual representation of the prior formulation. The softmax layer
contains three sets of weights (wc

k), with dimension (batch size, 1, 64), each corresponding
to one rhythm class. In Figure 7, the high softmax score, Pc = 0.9, was associated with the
Other Rhythm class. The Other Rhythm class activation map is computed by a weighted
linear sum of the softmax wights (wc

k) and the feature map output from layer 13 (fk). The
resulting class activation map had dimensions (batch size, 2250, 1) and was later upsampled
to the input temporal dimension of 18,000 using linear interpolation.

As presented in the previous section, this model performs at a level comparable to the
top submission of the 2017 Physionet Challenge (F1 = 0.81 - 0.83), although it is important
to note that we did not evaluate the model on the hidden test dataset. This means that the
addition of a global average pooling layer allowed for class activation maps to be extracted
without sacrificing performance. However, the training time per epoch was roughly four
times longer than that of Kamaleswaran et al. (2018) as a result of removing 10 of the 13
max-pooling layers in order to retain a high temporal resolution feature map at the final
layer.

8. Results and Discussion

Class activation maps were extracted from each ECG waveform in the validation dataset
and studies to understand the attention patterns associated with each rhythm class.

For Normal Sinus Rhythm (Figure 8 (a)), across hundreds of observations, the general
class activation map pattern shows roughly constant attention (activation) for the duration
of the waveform. Normal Sinus Rhythm is described by regular beat timing, as expressed by
low variance entropy of interbeat interval times, as thus the observation of roughly constant
attention fits the regular heart rhythm of Normal Sinus Rhythm. Normal Sinus rhythm is
also characterized by the presence of a P-wave before every QRS-complex. To investigate
the high-frequency attention trends, the class activation map was mapped to the templates
as shown in Figure 8 (a). A template contains the P-wave, QRS-complex, and T-wave and
was defined as 250 ms before the R-peak to 400 ms after the R-peak and therefore, each
R-peak had an associated template (Figure 3 (c)). Figure 8 (a) shows that from template
to template, there is a repeated class activation map shape, however, the shape does not
intuitively map to a human understanding of Normal Sinus Rhythm template morphology.
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Figure 8: Examples of class activation maps for Normal Sinus Rhythm and Atrial Fibrilla-
tion.
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Figure 9: Examples of class activation maps for Other Rhythm.
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Figure 10: Examples of class activation maps for Other Rhythm.
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For example, the neural network does not appear to be focusing its attention on the P-wave
region of the template, as perhaps would have been expected.

For Atrial Fibrillation (Figure 8 (b)), the general class activation map pattern shows ran-
dom attention fluctuations for the duration of the waveform. Atrial Fibrillation is described
by an irregularly irregular beat rhythm and the lack of a P-wave before each QRS-complex.
In Figure 8 (b), it appears that the activations are greatest where the longest gap between
the T-wave and subsequent QRS-complex exists, which could be where the absence of a
P-wave is most evident. The random attention fluctuations are consistent with an irregu-
larly irregular beat rhythm, however, the class activation map may not intuitively map to
a human understanding of this arrhythmia.

For Other Rhythm (Figures 9 and 10), the general class activation map pattern shows at-
tention spikes associated with repeated patterns in the ECG waveform. The Other Rhythm
class contains an unknown number of other heart arrhythmias potentially including Ven-
tricular Tachycardia, Ventricular Bigeminy, Ventricular Trigeminy, Junctional Rhythm, and
others. From our observation of the dataset, Other Rhythm waveforms typically contain
premature beats that sometimes have different template morphologies from the rest. Fig-
ures 9 (a) and 10 (b) show regular premature beats with unique template morphologies.
The class activation map for these waveform shows attention spikes associated with the pre-
mature beats. Figures 9 (b) and 10 (a) show irregular premature beats and again, attention
spikes associated with them. The class activation maps for the Other Rhythm class are
the most interpretable given they very easily map onto our clinical understanding of these
arrhythmias.

Many researcher are working on the problem of automatic ECG rhythm classification
given the clear clinical utility of such technology (Kara and Okandan (2007); Asl et al.
(2008); Asgari et al. (2015); Rodenas et al. (2015); Pourbabaee et al. (2016); Rajpurkar
et al. (2017); Acharya et al. (2017); Rajpurkar et al. (2017); Goodfellow et al. (2017); Datta
et al. (2017); Kamaleswaran et al. (2018); Goodfellow et al. (2018)). The evaluation of ECG
rhythm classification models typically focuses on their accuracy compared to health care
professionals, however, one of their main advantages is that they can monitor continuously
24 hours per day. The problem with arrhythmias is that they can be hard to detect when
occurring in short bursts and therefore can be overlooked. This does not change their
significance, however, because short burst or sporadic arrhythmias may be a harbinger of
more serious problems about to unfold.

The motivation for this study came from a need to bridge the gap between machine
learning research and delivering direct care to patients at the bedside. The class activation
maps would allow for some level of interpretability by clinicians, which will likely be impor-
tant for the adoption of these techniques to augment diagnosis. In addition to displaying
a classification score on a bedside monitor (Atrial Fibrillation: 98%), the class activation
maps could provide an added visual means for clinicians to interpret the model output.

9. Conclusions

In conclusion, we trained a deep convolutional neural network to classify single lead ECG
waveforms as either Normal Sinus Rhythm, Atrial Fibrillation, or Other Rhythm. The
model generated the following average scores, across all rhythm classes, on the valida-
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tion dataset: precision=0.84, recall=0.85, F1=0.84, and accuracy=0.88. A global average
pooling layer was used to extract class activation maps without hurting the model’s classi-
fication performance. The class activation mappings allowed for visualization of regions of
the waveform the model was focusing on when making a classification decision. For Normal
Sinus Rhythm, we observed roughly constant attention, which fits the regular heart rhythm
of Normal Sinus Rhythm. The class activation maps for the Other Rhythm class, which
showed attention spikes associated with premature beats, were the most interpretable given
they fit our clinical understanding of these arrhythmias.
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Appendix A.

The Python scripts for this model can be downloaded from https://github.com/Seb-Good/

deep_ecg.

18

https://github.com/Seb-Good/deep_ecg
https://github.com/Seb-Good/deep_ecg

	Introduction
	Dataset
	Pre-Processing
	Architecture
	Training
	Evaluation
	Class Activation Mappings
	Results and Discussion
	Conclusions

