
Proceedings of Machine Learning Research 85:1–15, 2018 Machine Learning for Healthcare

Learning to Exploit Invariances in Clinical Time-Series Data
using Sequence Transformer Networks

Jeeheh Oh jeeheh@umich.edu Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI

Jiaxuan Wang jiaxuan@umich.edu Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI

Jenna Wiens wiensj@umich.edu Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI

Abstract

Recently, researchers have started applying convolutional neural networks (CNNs) with one-
dimensional convolutions to clinical tasks involving time-series data. This is due, in part,
to their computational efficiency, relative to recurrent neural networks and their ability to
efficiently exploit certain temporal invariances, (e.g., phase invariance). However, it is well-
established that clinical data may exhibit many other types of invariances (e.g., scaling).
While preprocessing techniques, (e.g., dynamic time warping) may successfully transform
and align inputs, their use often requires one to identify the types of invariances in advance.
In contrast, we propose the use of Sequence Transformer Networks, an end-to-end trainable
architecture that learns to identify and account for invariances in clinical time-series data.
Applied to the task of predicting in-hospital mortality, our proposed approach achieves
an improvement in the area under the receiver operating characteristic curve (AUROC)
relative to a baseline CNN (AUROC=0.851 vs. AUROC=0.838). Our results suggest that
a variety of valuable invariances can be learned directly from the data.

1. Introduction

Clinical time-series data consist of a wide variety of repeated measurements/observations,
from vitals (e.g., heart rate) and laboratory results to locations within a hospital (Che et al.,
2018; Lipton et al., 2016; Oh et al., 2018). These data vary not only in the information they
encode, but also in sampling rate and number of measurements. Analogous to how certain
tasks in computer vision exhibit spatial invariances, invariances frequently arise in clinical
tasks involving time-series data. These invariances describe a set of transformations that,
when applied to the data, magnify task-relevant similarities between examples. For example,
phase invariance relates to a transformation that shifts a signal, resulting in an alignment
in phase. Such transformations can be particularly useful when processing periodic signals
e.g., electrocardiogram waveforms (Wiens and Guttag, 2010).

Preprocessing techniques like dynamic time warping are commonly used to exploit warp-
ing invariances and align time-series data, facilitating relevant comparisons (Liu et al., 2014;
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Ortiz et al., 2016). However, their computational complexity (e.g., DTW involves solving
an optimization problem for each new example) may be a factor leading to their limited
use within more general settings. In addition, such approaches require a priori knowledge
of the types of invariances that are present in one’s data. Due to the varied nature of
clinical time-series data and their associated prediction tasks, we expect that many such
tasks involve multiple invariances that may not be known beforehand. This and the fact
that these invariances are likely task specific, are some of the main roadblocks in efficiently
exploiting these invariances.

To addresses these challenges, we propose Sequence Transformer Networks, an approach
for learning task-specific invariances related to amplitude, offset, and scale invariances di-
rectly from the data. Our approach consists of an end-to-end trainable framework designed
to capture temporal and magnitude invariances. Applied to clinical time-series data, Se-
quence Transformer Networks learn input- and task-dependent transformations. In contrast
to data augmentation approaches, our proposed approach makes limited assumptions about
the presence of invariances in the data. Learned transformations can be efficiently applied
to new input data, leading to an improvement in overall predictive performance. We demon-
strate the utility of the proposed approach in the context of predicting in-hospital mortality
given 48 hours of data collected in the intensive care unit (ICU). Relative to a baseline
that does not incorporate any transformations, Sequence Transformer Networks result in
significant improvements in predictive performance.

Technical Significance Our technical contributions are as follows: 1) we propose the
use of Sequence Transformer Networks, an end-to-end trainable framework designed to
capture temporal and magnitude invariances, 2) on a real data task, we evaluate the relative
contribution of each individual component of Sequence Transformer Networks towards the
overall performance of the network and 3) present visualizations of the types of learned
invariances and investigate the effects of Sequence Transformer Networks on intra-class
signal similarity. This work represents a step toward understanding and learning to exploit
invariances in clinical-time series data.

Clinical Relevance To investigate the capability of the proposed approach, we consider
the task of predicting in-hospital mortality given clinical time-series data from the first 48
hours of an ICU admission. We chose to focus on this task since it is widely investigated in
the machine learning for healthcare literature, facilitating comparisons with state-of-the-art.
Despite its widespread use as a benchmark task (Harutyunyan et al., 2017) and potential
clinical use as an estimate of severity of illness, we recognize that a model for predicting in-
hospital mortality may be of limited clinical utility. Though we consider the improvements
our proposed approach offers in the context of this benchmark task, we hypothesize that
our approach applies more broadly to other tasks involving clinical time-series data.

2. Background & Related Work

Tasks involving time-series data may exhibit a number of different invariances. We refer
the reader to the following paper for an in-depth discussion of types of invariances present
in time-series data (Batista et al., 2011), but for completeness include a summary of com-
mon invariances in Table 1. To exploit these invariances, researchers often turn to neural
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networks. In particular, one-dimensional (1D) convolutional neural networks (CNNs), by
design, efficiently exploit phase invariance. This property, in addition to their computa-
tional efficiency achieved by weight sharing, has led to their successful application to a
variety of tasks involving sequential data (Cui et al., 2016; Wang and Oates, 2015; Gehring
et al., 2017; Dauphin et al., 2017; Yin et al., 2017), and more specifically clinical time-series
data (Razavian and Sontag, 2015; Razavian et al., 2016; Suresh et al., 2017; Bashivan et al.,
2016). Recognizing that clinical time-series data exhibit other types of invariance, beyond
phase invariance, we propose augmenting CNNs to explicitly account for task-irrelevant
variation.

In other domains, to exploit invariances researchers either i) augment their training
data by applying a variety of transformations or ii) modify the neural network architec-
ture. The first approach is most popular in domains where it is straightforward to generate
realistic training examples (e.g., natural images). Common image invariances include ro-
tation, scale, translation and warping. Such transformations are easily applied to existing
images to create additional, realistic training examples. While less common in the health-
care domain, there have been successful examples of data augmentation for health data.
For example, Um et al. (2017) augmented multivariate time-series data collected from a
wearable sensor placed on a person’s wrist in order to improve monitoring of patients with
Parkinson’s disease. The authors applied transformations such as noise and rotations, se-
lected based on the task. However, in general it is not straightforward to apply such data
augmentation schemes to clinical data because of the large number of potential invariances.
Moreover, clinical time-series data extracted from electronic health records often consist
of high-dimensional data measuring many different aspects of a patient’s health. This in-
creases the complexity of identifying reasonable transformations and makes a brute-force
search over possible transformations computationally intractable.

Our work is more in-line with the second approach that does not rely on additional data.
Instead, the architectures are modified to exploit a particular invariance (Wang et al., 2012;
Razavian and Sontag, 2015; Razavian et al., 2016; Forestier et al., 2017; Wang and Oates,
2015; Cui et al., 2016). For example, in (Razavian and Sontag, 2015) and (Razavian et al.,
2016), the authors tackle warping by using multiple filter sizes. More specifically, three
different sized filters were used to capture a range of long- and short-term temporal patterns.
These different resolutions corresponded to separate convolutional layers, combined at the
final fully connected layer. Cui et al. (2016) propose an additional preprocessing step, in
which they resample and smooth their input in order to capture multiscale patterns and
remove noise. Transformed versions of the inputs were treated as additional channels to
the original image. Similar to (Razavian and Sontag, 2015; Razavian et al., 2016), this
method incorporates a local convolution stage that looks at each type of transformation
(none, smoothing, down-sampling) independently before combining. Both of these works
are geared toward specific invariances, in this case scale invariance, and require the user to
determine the different filter sizes or sampling rates.

Recognizing the difficulty in identifying potential invariances or transformation a pri-
ori, we focus on learning the invariances directly from the data. Our proposed approach
extends work by Jaderberg et al. (2015), in which a spatial transformer network is used to
learn spatial invariances directly from the data. In (Jaderberg et al., 2015), the parameters
of a spatial transformer network are learned jointly with the parameters of a CNN. The
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transformer network applies a learned set of transformations including affine transforma-
tions tailored to each input before passing it through a CNN. Since we focus on clinical
time-series, and not images, we adapt the set of possible transformations. Specifically, our
proposed method tackles amplitude and offset invariances (which we will refer to as magni-
tude invariance), phase invariance, and uniform scale invariance, and learns input-specific
transformation parameters directly from the data. We describe the details of our approach
in the next section.

Table 1: A list of possible invariances summarized from Batista et al. (2011). Any number
or combination of invariances may arise in clinical time-series data, or time-series data in
general.

Invariance Description

Amplitude

A transformation of the amplitude of the time series.
This can occur when the scale or unit of measurement
of two time series differs (e.g., temperature in Celsius
vs. Fahrenheit).

Offset
A transformation that uniformly increases/decreases
the value of a time series. For example, two patients
may have different resting heart rates.

Local Scaling (Warping)

A transformation that locally stretches or warps the
duration of the time series. Local warping is often
referenced in conjunction with Dynamic Time Warp-
ing (DTW), a good, established measure of similarity
between time series with local scaling invariance.

Uniform Scaling

A transformation that globally stretches the duration
of the time series. For example, when resting heart
rates differ between patients, the progression of the
same temporal pattern may be consistently slower in
one patient versus another.

Phase
A transformation that shifts the start time of a time
series. This occurs in periodic signals such as heart-
beat and blood pressure waveforms.

Occlusion
A transformation that randomly removes data. This
can arise when measurements are irregularly sampled
or missing.

Noise

A transformation that adds or removes noise. For ex-
ample, many single point sensors are susceptible to
noise that might not be indicative of the whole body’s
condition but indicative of that sensor’s particular lo-
cation.

2.1. Problem Setup & Notation

We consider the application of 1D CNNs to clinical time-series data for predicting a specific
outcome. Formally, given a set of n labeled examples consisting of d features measured at T
time steps (X ∈ Rn×d×T ) and the outcome labels y ∈ {0, 1}n, our goal is to learn a mapping
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Figure 1: Examples of the types of transformations/invariances that can be learned by a
Sequence Transformer Network applied to a sine wave. θ1: scaling invariance, θ0: phase
invariance, φ1: amplitude invariance, φ0: offset invariance. The dashed line represents the
original signal and the blue lines represent potential transformations of the signal. While
CNNs can efficiently exploit phase invariance, Sequence Transformers can augment other
types of architectures facilitating the capture of other types of invariances.

from {x(i)
t }Tt=1 to y(i), where x

(i)
t ∈ Rd and i ∈ {1 · · ·n} is an index into the ith sample.

The d features may consist of both time-varying and time-invariant data. We represent
each feature as a set of T measurements. For time-varying data for which we do not have a
measurement at time t, we carry forward the most recent value. For time-invariant data, we
copy the measurement across all T time-steps as in (Fiterau et al., 2017). Additional details
pertaining to the specific dataset used through our experiments can be found in Section 4.

3. Sequence Transformer

Applied to time-series data, 1D convolutions inherently capture some invariance in the data.
In particular, CNNs are capable of efficiently handling phase invariance (i.e., the use of a
filter slid along the temporal dimension allows for variability in the starting point of temporal
patterns.) CNNs also handle noise invariance, to a degree. Max pooling coupled with
multiple layers allows the model to smooth the inputs and learn higher-level abstractions.

However, there are other types of invariances that we would like to consider, in particular
temporal invariance such as scaling, in addition to magnitude invariance related to the
amplitude and offset of the signal. Figure 1 shows examples of these types of invariances
on a sine wave. Due to the inherent differences between these types of invariances, we
address them separately in the two subsections that follow. For simplicity, in this section,
methods are presented in terms of a univariate signal, but later our experiments focus on a
multivariate application.
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3.1. Temporal Transformations

To capture invariance related to warping and scaling, we begin by learning to transform
data along the temporal dimension. As in (Jaderberg et al., 2015), this stage consists of
two separate pieces i) learning the transformation parameters and ii) mapping those trans-
formations in terms of discrete data points. We discuss each, in turn, below.

Transformation Network. We begin by learning a transformation that takes points
from the original input (i.e., the source) and maps them to a new temporal location in the
target. Since we only consider linear transformations along the temporal axis, we respect
the ordering of values, but can stretch, compress, flip and/or shift the signal (across the
temporal axis).

t = θ(i)
(
t′

1

)
=
(
θ
(i)
1 θ

(i)
0

)(t′
1

)
(1)

Equation (3.1) gives a mapping between the transformed time point t′ and original time

point t. Given a univariate time-series {x(i)t }Tt=1, t represents the tth position along the
temporal axis of the time-series. We learn a linear temporal transformation θ(i) ∈ Rn×2
that applies to these indices. Specifically, we generate t′ for t′ = 1, ..., T ′. T ′ represents
the length of the transformed sequence and can be set to any positive integer. Here, for
convenience, we set T = T ′. The transformation parameters θ(i) are learned via a two-layer

CNN that is fed inputs {x(i)t }Tt=1. Network architecture details are outlined in Figure 2.
Given a particular position, t′, in the target time series, we compute the corresponding
position in the original time series and set xt′ to refer to xt=θ1t′+θ0 .

Discrete Mapping. Since θ1t
′+ θ0 for t′ = 1, ..., T ′ is not guaranteed to map to a positive

integer (i.e., an index), we require an additional step to apply the learned transformation.
We complete the mapping using linear sampling, in which we take an average over the two
nearest neighbors (one from left, one from the right)1 weighted by the distance from the
original transformed point.

3.2. Magnitude Transformations

In order to adapt to amplitude and offset invariance, we propose an additional learned
transformation, one that is applied to the values instead of the coordinates. Given the

temporally transformed inputs {x(i)
t′
}T

′

t′=1
, we apply the following linear transformation:

x
′(i)

t′
= φ(i) · x(i)

t′
=
(
φ
(i)
1 φ

(i)
0

)
·

(
x
(i)

t′

1

)
(2)

This allows us to shift, flip, stretch, and compress the signal along its magnitude. Since
this transformation applies directly to the values of the signal, we do not require a discrete

1. Signals are padded by the last known value so there is no edge case where a point has only one neighbor.
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Figure 2: The architecture of a Sequence Transformer. Inputs {xt}Tt=1 (shown as univariate
for illustration purpose) are fed into a Transformation Network that outputs transformation
parameters θ and φ. Convolutional and maxpool layers are annotated with the number
of outputted channels (omitted for maxpool), filter size and stride. Fully connected layers
(FC) are annotated with the number of neurons. The temporal transformation is applied
via discrete mapping and the magnitude transformation is applied via linear transformation.

The output {x′
t′}T

′

t′=1
represents the transformed inputs.

mapping component. It should be noted that the transformation, φ(i) ∈ Rn×2 is a function
of x, thus it can vary from example to example.

3.3. Sequence Transformer

We refer to the temporal transformation combined with the magnitude transformation as
a Sequence Transformer (Figure 2). The Sequence Transformer computes both the θ and
φ transformation parameters based on the input and applies them to the signal.

While we presented this approach in the context of a univariate signal, the technique
generalizes to multivariate signals. In a multivariate setting, the Transformation Network
outlined in Figure 2 takes as input {xt}Tt=1, where xt ∈ Rd. The Transformation Network
then estimates [θ,φ], based these data and the underlying model parameters. Although the
model parameters are consistent across all examples, the resulting transformation param-
eters (i.e., θ ∈ Rn×2 and φ ∈ Rn×2) are specific to each example. This transformation is
then applied to all signals in the input (note that temporal transformations have no effect
on time-invariant data, but these signals can still be transformed in a meaningful way).

4. Experimental Setup

In this section, we describe our dataset and prediction task, the baseline CNN architecture
and implementation details.

4.1. Dataset & Prediction Task

To measure the utility of the proposed approach on a real dataset, we consider a standard
sequence-level classification task: predicting in-hospital mortality based on the first 48 hours
of data collected during an intensive care unit visit. We use data from MIMIC III (Johnson

7



Sequence Transformer Networks

et al., 2016). As in (Harutyunyan et al., 2017), we consider adult admissions with a single,
unique ICU visit. This excludes patients with transfers between different ICUs. Patients
without labels or observations in the ICU were excluded, as were patients who died or were
discharged before 48 hours. After applying exclusion criteria, our final dataset included
21,139 patient admissions and 2,797 deaths.

We used the same feature extraction procedure as detailed in (Harutyunyan et al., 2017).
Code to generate these data are publicly available2. For completeness, we briefly describe
the feature extraction process here. For each admission, we extracted 17 features (e.g., heart
rate, respiratory rate, Glasgow coma scale) from the first 48 hours of their ICU visit. We
applied mean normalization and discretization, resulting in 59 features. Sampling rates were
set uniformly to once per hour using carry-forward imputation. Mask features, indicating
if a value had been imputed resulted in an additional 17 features. After preprocessing,
each example was represented by d = 76 time-series of length T = 48 and a binary label
indicating whether or not the patient died during the remainder of the hospital visit.

Given these data, the goal is to learn a mapping from the features to the probability of
in-hospital mortality, resulting in a single prediction per patient admission. We measured
performance by calculating the area under the receiver operating characteristic curve (AU-
ROC) and the area under the precision recall curve (AUPR). We randomly split the data
into training (70%), validation (15%), and testing (15%): 14,681 (1,987 deaths) in training,
3,222 (436 deaths) in validation and 3,236 (374 deaths) in test. We learned model parame-
ters and selected hyperparameters using training and validation data and evaluated model
performance using held-out test data. Specifics on hyperparameter search are presented in
Section 4.3. We generated empirical 95% confidence intervals by bootstrapping the test set.

4.2. Baseline CNN Architecture

As a baseline with which to compare, we considered a CNN without any additional Sequence
Transformer. We compared the discriminative performance of a CNN with original inputs
to a CNN with inputs transformed via the Sequence Transformer. We referred to the first
method as our Baseline CNN. The second is our proposed method: Sequence Transformer
Networks. The only difference between this baseline and our proposed approach is the
Sequence Transformer (Figure 3). Both models feed either the original or transformed
example into a standard 1D CNN. For this CNN, we used the two layer CNN described
in Figure 3. The CNN consists of two 1D convolutional and pooling layers followed by a
single, hidden, fully connected layer.

In addition to considering a baseline consisting of no transformations, we also considered
networks that used either i) temporal transformations only or ii) magnitude transformations
only. This allowed us to measure the marginal contribution of each transformation in the
Sequence Transformer.

4.3. Implementation Details

We optimized the following hyperparameters: network depth, number of neurons in the
final fully connected hidden layer, batch size, and dropout rate. We trained twenty models

2. https://github.com/YerevaNN/mimic3-benchmarks
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Figure 3: The architecture of the CNN. Baseline CNN inputs ({xt}Tt=1) or Sequence Trans-

former inputs ({x′}T
′

t′=1
) are fed into a standard CNN that outputs our in-hospital mortality

prediction. Here, the admission indexing i is omitted for simplicity. Convolutional and max-
pool layers are annotated with the number of outputted channels (omitted for maxpool),
1D filter size and stride. Fully connected layers (FC) are annotated with the number of
neurons.

with randomly selected hyperparameters, for at most 10 epochs. Hyperparameters were
randomly chosen from predefined sets of values. Batch size was randomly selected from: 8,
15, 30. The rate of dropout was randomly selected from: 0, .1, .2, , .9. We tested CNN
architectures of depth 2, 3 and 4. Finally, the number of neurons in the final fully connected
hidden layer was randomly chosen from: 50, 100, 250 and 500. The settings that led to the
best performance on the validation data are shown in Figure 3.

Since these hyperparameters were tuned for our Baseline CNN using the original input,
we also considered a model tuned to the transformed signal. The resulting optimal hyper-
parameters were largely unchanged, except that we found that a dropout rate of 0.2 (vs.
0.3) worked better for Sequence Transformer Networks. The optimal batch size for both
models was 15.

During model training, we included gradient clipping. This consisted of a reduced slope
from 1 to .01 outside of a reasonable range of transformation parameter values. In practice,
we set this range to [−2, 2]. We found this implementation detail to be important. Without
it, we witnessed quick increases in the value of the transformation parameters that led to
unrecoverable model states.

5. Results

We present the performance of the Baseline CNN, which takes as input untransformed sig-
nals as described in Section 4.2, vs. Sequence Transformer Networks. We further break down
the Sequence Transformer into its two parts: temporal and magnitude transformations and
evaluate their individual contributions. Finally, we investigate the learned transformations
through a series of visualizations and analyze the effect of Sequence Transformer Networks
on intra-class signal similarity.
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Table 2: Test performance for the task of predicting in-hospital mortality. Relative to
the baseline performance, transforming the input before feeding it into the CNN results in
consistent improvements in both the area under the receiver operating characteristics curve
(AUROC) and the area under the precision recall curve (AUPR).

Method AUROC (95% CI) AUPR (95% CI)

Baseline CNN 0.838 (0.820, 0.859) 0.445 (0.393, 0.495)
Sequence Transformer Networks 0.851 (0.833, 0.871) 0.476 (0.424, 0.527)

Temporal Transformations Only 0.846 (0.827, 0.867) 0.452 (0.393, 0.500)
Magnitude Transformations Only 0.846 (0.826, 0.867) 0.463 (0.408, 0.516)

5.1. CNN Baseline vs Sequence Transformer Networks

Our proposed method, Sequence Transformer Networks, outperforms the Baseline CNN, in
terms of both AUROC and AUPR, on the task of predicting in-hospital mortality using
data from the first 48 hours (Table 2).

(a) (b)

Figure 4: Sequence Transformer Networks: Temporal Transformations Only. (a) Visual-
ization of temporal transformation parameters applied to the test set. Note that θ1 ≥ 0
indicates signal compression, while θ0 ≤ 0 indicates shifting the signal forward in time. (b)
A random test patient’s normalized diastolic blood pressure before and after θ transforma-
tion (θ1 = 1.19, θ0 = −0.03). In addition to signal compression and shifting, the network
smooths the signal.

Compared to the Baseline CNN, Sequence Transformer Networks incorporates a sec-
ondary, transformation network. However, the improvement in performance is not due to
the additional complexity of the model. For both models, we tuned the depth of the CNN
architecture. In both cases, the best CNN, determined by validation performance and pre-
sented in the results, had a network depth of 2. Therefore a deeper network alone is not
sufficient for increasing performance.

Since the Sequence Transformer consists of two transformations, we further break down
the performance increase into: temporal transformations and magnitude transformations.
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(a) (b)

Figure 5: Sequence Transformer Networks: Magnitude Transformations Only. (a) Visual-
ization of magnitude transformation parameters applied to the test set. Note that φ1 ≤ 1
indicates signal value compression, while φ0 ≤ 0 indicates a downward shift. (b) A ran-
dom test patient’s normalized diastolic blood pressure before and after φ transformation
(φ1 = 0.78, φ0 = −0.04).

In Table 2, we see that both types of transformations lead to marginal improvements over the
baseline. Moreover, their combination appears to be complementary, though the difference
is small.

5.2. Learned Temporal and Magnitude Transformations

In this section, we qualitatively explore what the Sequence Transformer has learned. Fig-
ure 4 summarizes the transformation learned using a network that employs only temporal
transformations. Recall that the transformation depends on the input. Figure 4a shows the
empirical distribution of the two temporal transformation parameters (θ1, θ0). Each point
represents a temporal transformation learned for a specific patient admission in the test
set. In this case, most of the data occur around θ1 = 1.19 and θ0 = −0.03. Essentially, the
network learns to compress the original signal (θ1 ≥ 1) and shift the signal forward in time
(θ0 ≤ 0) by various degrees. In doing so, the network learns how to align the time-series
data from different patient admissions. Figure 4b shows the original and the temporally
transformed normalized diastolic blood pressure for a randomly selected patient in the test
set. In line with the results shown in the previous figure, the signal is compressed along
the x-axis and shifted forward in time. In Figure 4b, though the signal is moved forward
in time, it is not clipped, but rather compressed. This suggests that θ0 is helping to center
the signals. The sudden drop off at θ1 = 2 is most likely due to the gradient clipping, since
that is where it begins to take effect. In addition, we observe a smoothing effect that is
due, in part, to the the linear interpolation.

Figure 5, shows the same type of plots as Figure 4 but for a network that includes only
magnitude transformations. We observe that the signal is, on average, shifted down and
compressed. Similar to the temporal transformations, the magnitude transformations help
align signals. Amplitude and offset invariances have a clinical significance for many features
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(a) (b) (c)

Figure 6: Sequence Transformer Networks (a) Visualizations of temporal transformation
parameters applied to the test set. On average, network compresses and shifts signals
backwards in time. (b) Visualizations of magnitude transformation parameters applied to
the test set. On average signal values are compressed and shifted down. (c) The learned
network smooths and shifts the normalized diastolic blood pressure to the left bottom
direction of the frame for a randomly selected patient using the transformations: θ1 = 1.33,
θ0 = 0.14, φ1 = 0.86 and φ0 = −0.05.

in this dataset including blood pressure, heart rate, respiratory rate and temperature. We
hypothesize that these transformations help account for different physiological baselines.

Finally, we visualize the output of the Sequence Transformer, which learns temporal,
amplitude and offset invariances together (Figure 6). In Figures 6a and 6b, each point
represents a transformation learned for a specific patient in the test set. We see that
the network, on average, compresses the signal and shifts it slightly back in time. In
the temporal transformation only network (Figure 4), the network shifted signals forward
in time. This suggests that the direction of the shift is less important than the overall
alignment of the different patients. For magnitude transformations, the network on average
compresses the signal and shifts it down. These learned transformation trends align with the
magnitude transformation trends learned separately (Figure 5). In Figure 6c we illustrate
the transformations applied to a random test patient’s normalized diastolic blood pressure.

5.3. Increasing Intra-Class Similarity

Sequence Transformer Networks have the ability to learn transformations that reduce label
independent variations in the signal. By reducing irrelevant variance, transformed signals
from patients with similar outcomes then appear more similar. We investigate this property
by analyzing the intra-class Euclidean pairwise distance. On each dataset (original vs.
transformed), we calculated the Euclidean pairwise distance between admissions labeled
positive and the Euclidean pairwise distance between those labeled negative.

The transformed dataset had on average lower pairwise intra-class distances compared to
the original (untransformed) data (positive: 28.2 vs. 34.9 and negative: 26.3 vs. 31.8). We
hypothesize that this increase in intra-class similarity contributes to the overall improved
discriminative performance of the Sequential Transformer Network over the Baseline CNN.
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6. Conclusion

In this paper, we proposed the use of an end-to-end trainable method for exploiting in-
variances in clinical time-series data. Building off of ideas first presented in the context of
transforming images, we extended the capabilities of CNNs to capture temporal, amplitude,
and shift invariances. In general, such invariances may be task dependent (i.e., may depend
on the outcome of interest or the population studied). Given the large number of possible
clinical tasks, techniques that automatically learn to exploit invariances based on the data
have a clear advantage over preprocessing techniques.

We demonstrated that this method leads to improved discriminative performance over
the Baseline CNN, on the task of predicting in-hospital-morality from multivariate clinical
time-series data collected during the first 48 hours of an ICU admission. Though the
difference in performance is small, the improvement is evident across both AUROC and
AUPR.

The proposed approach is not without limitation. More specifically, in its current form
the Sequence Transformer applies the same transformation across all features within an
example, instead of learning feature-specific transformations. Despite this limitation, the
learned transformations still lead to an increase in intra-class similarity. In conclusion,
we are encouraged by these preliminary results. Overall, this work represents a starting
point on which others can build. In particular, we hypothesize that the ability to capture
local invariances and feature-specific invariances could lead to further improvements in
performance.
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