
Proceedings of Machine Learning Research 88:17–30, 2018 International Workshop on Cost-Sensitive Learning

Cost-sensitive classifier selection when there is additional
cost information

Ryan Meekins rmm6ey@virginia.edu

Stephen Adams sca2c@virginia.edu

Peter A. Beling pb3a@virginia.edu

Department of Systems and Information Engineering

University of Virginia, Charlottesville, VA

Kevin Farinholt farinholtk@lunainc.com

Nathan Hipwell hipwelln@lunainc.com

Ali Chaudhry chaudhrya@lunainc.com

Luna Innovations, Charlottesville, VA

Sherwood Polter
Qing Dong
Naval Surface Warfare Center Philadelphia Division, Philadelphia, PA
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Abstract

Machine learning models are increasing in popularity in many domains as they are shown to
be able to solve difficult problems. However, selecting a model to implement when there are
various alternatives is a difficult problem. Receiver operating characteristic (ROC) curves
are useful for selecting binary classification models for real world problems. However, ROC
curves only consider the misclassification cost of the classifier. The total cost of a classifi-
cation system includes various other types of cost including implementation, computation,
and feature costs. To extend the ROC analysis to include this additional cost information,
the ROC Convex Hull with Cost (ROCCHC) method is introduced. This method ex-
tends the ROC Convex Hull (ROCCH) method, which is used to select potentially optimal
classifiers in the ROC space using misclassification cost, by selecting potentially optimal
classifiers using this additional cost information. The ROCCHC method is tested using
three binary classification data sets, each of which include real feature costs as the addi-
tional cost information. Competing classifiers are created with the CART algorithm by
using each combination of features or sensors for each data set. The ROCCHC method
reduces the classifier decision space to 4%, 9%, and 0.02%. These results are compared
to the current ROCCH method, which misses 91%, 58%, and 6% of potentially optimal
classifiers because the method does not include the additional cost information.

Keywords: receiver-operating characteristics curves, cost-sensitive learning, cost-sensitive
classifier selection, cost-sensitive feature selection

1. Introduction

As cyber-physical systems (CPS) become more prevalent in society, where millions of sensors
will be used for managing smart systems such as smart cities, intelligent transportation
networks, smart grids, smart homes, etc., ensuring that all of these systems are cost-effective
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is paramount (Lee, 2008). CPS rely heavily on machine learning models to make decisions
based on their sensor readings. For example, a diagnostic CPS could use sensor information
and a classifier to estimate the current health of the system.

Current machine learning methods commonly assume that competing classification mod-
els are implemented at an equal cost, however, in real world applications, these systems can
have vastly different costs. In the following, “classifier” should be interpreted as a clas-
sification system that includes all hardware and software, such as the machine learning
algorithm, the feature set, and the feature set’s corresponding sensors and tests. Stakehold-
ers selecting a classifier would assess performance as well as operating costs, including the
hardware, software, personnel, electricity, etc., of competing classifiers. Current classifier
selection methods that include aspects of cost are in the field of cost-sensitive learning.

Cost-sensitive learning is a type of machine learning that takes the costs of misclassifica-
tions and other types of cost into account (Ling and Sheng, 2011). The goal of cost-sensitive
learning is to minimize the total cost, which consists of the misclassification cost, test or
feature cost, computation cost, and all other types of cost (Turney, 2000).

Cost-sensitive classifier selection attempts to select the classifier that solves this opti-
mization problem, the optimal classifier. Cost-sensitive feature selection is a type of cost-
sensitive classifier selection that aims to select a classifier that minimizes the feature set
cost while still maintaining a high performance. Generally, cost-sensitive classifier selec-
tion methods have focused on selecting classifiers that minimize the misclassification cost,
while cost-sensitive feature selection methods have focused on minimizing feature set cost
and maximizing accuracy. However, a method that incorporates these two ideas into one
method that selects classifiers that minimize total cost, including misclassification cost and
any additional cost information (i.e. feature set cost), has not been developed.

Our method to accomplish this for binary classification problems utilizes receiver oper-
ating characteristics (ROC) curves. ROC analysis is popular because it is robust to imbal-
anced data sets and unknown costs of misclassification, both of which characterize real world
problems (Provost and Fawcett, 1997). The ROC Convex Hull (ROCCH) method has been
favored for selecting classifiers in ROC space because it selects a set of potentially optimal
classifiers even with the real world costs of misclassification and class distribution unknown.
However, this method ignores types of cost other than misclassification cost. Some of these
ignored types of cost are often known or can be estimated for real world problems, such
as the expected implementation cost of each competing classifier. To extend the ROCCH
method to aid in selecting potentially optimal classifiers using this additional cost informa-
tion, the Receiver Operating Characteristics Convex Hull with Cost (ROCCHC) method is
proposed.

2. Background

This section includes current literature in cost-sensitive feature selection along with a review
of binary classification, ROC analysis, and the ROCCH method.

2.1. Cost-Sensitive Feature Selection

There are three main ways to perform cost-sensitive feature selection, all of which expand
on the traditional feature selection methods of a filter, wrapper, and embedded method.
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Filter methods use statistical merit metrics such as p-value to reduce or “filter” the
feature set before choosing a classification algorithm. Bolón-Canedo et al. (2014) expanded
filter methods to include feature costs using a general cost-sensitive feature selection frame-
work . In this simple framework, feature costs are subtracted from a statistical merit metric
to create a new evaluation metric that is cost-sensitive. This subtraction includes a weight
parameter placed on the feature cost, requiring stakeholders to determine a tradeoff be-
tween the statistical merit metric and the feature cost. Adams et al. (2017a) expanded this
framework to include more filtering techniques and machine learning algorithms .

Wrapper methods use an iterative search process of changing a model’s feature set
and then evaluating the new model’s performance. The traditional wrapper algorithms
of forward and backward selection sequentially add or remove features from the model by
acting greedily with respect to a performance metric, such as accuracy. Wrapper methods
have been recently expanded to include feature costs. Kong et al. (2016) added feature costs
to a backward selection wrapper by using two evaluation metrics, classification accuracy
and feature set cost. The algorithm searches for a minimal feature cost classifier that still
achieves a certain accuracy. Min et al. (2014) also used a backward selection wrapper to find
a high accuracy classifier that satisfies a maximum feature set cost constraint. Generally,
cost-sensitive wrapper methods use a heuristic approach of evaluating accuracy and feature
set cost at each iteration in order to decide how to alter the feature set.

Embedded methods select features while building the machine learning model. A com-
mon example is a decision tree algorithm, which selects a new splitting feature from the
full set using a greedy policy and evaluation metric such as information gain. Embedded
methods for cost-sensitive feature selection have been developed recently. Ling et al. (2004)
added feature costs and the costs of misclassification to the C4.5 decision tree algorithm by
splitting on features that minimize the summation of the feature cost and the misclassifi-
cation cost. This algorithm is highly efficient, however, the resulting solution may not be
globally optimal. Zhou et al. (2016) modified the random forest algorithm by setting the
probability that a given feature will be selected as a potential split to the inverse of its cost.
This performed cost-sensitive feature selection because high cost features were unlikely to be
selected. Adams et al. (2016) developed a cost-sensitive feature selection method for hidden
Markov models that simultaneously estimates model parameters and selects features.

The problem with previous work in cost-sensitive feature selection is that a method of
selecting potentially optimal classifiers using both misclassification cost and an additional
cost, such as the feature set cost, hasn’t been developed for real world problems, where
the costs of misclassification and class distribution are unknown. The proposed ROCCHC
method accomplishes this for binary classification problems.

2.2. Binary Classification

The goal of machine learning classification models is to assign new observations to their
actual class. For binary classification models, where new observations can be assigned to
either a “Positive” or “Negative” class, Table 1 shows the four possible outcomes. These are
a true positive (TP: a “Positive” is correctly classified), a true negative (TN: a “Negative”
is correctly classified), a false negative (FN: a “Positive” is incorrectly classified), and a
false positive (FP: a “Negative” is incorrectly classified).
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Table 1: Binary Classification Outcomes

Assign Positive Assign Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Binary classification models are often evaluated using false positive rate (FPR) and true
positive rate (TPR). These are calculated as FPR = #FP

#N and TPR = #TP
#P , where #N is

the number of “Negatives” and #P is the number of “Positives” in the test data set. The
other terms correspond to the number of a type of outcome. Machine learning classification
models assign new observations class membership probabilities based on what is learned
from the training observations. For binary classification, an observation’s class membership
probabilities can be represented in terms of only its “Positive” class membership probability,
denoted pp, (where its “Negative” class membership probability is 1− pp).

A cutoff threshold, pcut ∈ [0, 1], is used to assign new observations a class membership
hypothesis based on the observation’s pp. All observations with pp ≥ pcut are assigned to
the “Positive” class and the rest are assigned the “Negative” class. A perfect classifier has
a cutoff threshold that corresponds to a FPR = 0.0 and TPR = 1.0.

You can imagine that the value of pcut greatly influences the FPR and TPR of a given
model. Too low of a pcut would result in a high FPR and too high a pcut would result in a
low TPR. The special cases of pcut = 0 and pcut = 1 assign all new observations to either
the “Positive” or “Negative” class, respectively. The ROC graph is used to show all FPRs
and TPRs for a given classification model as you alter pcut from 0 to 1.

2.3. Receiver Operating Characteristics Curves

The ROC curves is a useful tool for visualizing, organizing, and selecting competing binary
classifiers based on their performance. ROC curves have been favored in the machine
learning community due to the realization that classification accuracy is an inadequate
metric for real world problems, where the costs of misclassification and class distribution
are unknown (Provost and Fawcett, 1997).

The ROC curves shows a classifier’s operation, in terms of its TPR and FPR, for all
pcut from 0 to 1. Figure 1 shows a ROC graph with classifiers, A and B, and a random
classifier. The random classifier demonstrates a special case where TPR = FPR for all pcut.

The ideal pcut for a classifier can be determined in ROC space using a line with slope,

S =
n · cFP
p · cFN

, (1)

where n is the expected number of “Negatives” in the real world, p is the expected number
of “Positives” in the real world, cFP is the real world cost of a FP, and cFN is the real world
cost of a FN. The ideal pcut for a classifier is found by moving a line with slope S, also
shown in Figure 1, from the upper left corner of the ROC graph down and to the right,
until it intersects the classifier’s ROC curve (Fawcett, 2006).

The point where this line intersects the classifier’s ROC curve corresponds to the pcut
that would minimize the classifier’s total misclassification cost, CM , which is calculated as
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Figure 1: Receiver operating characteristics (ROC) graph

CM = n · FPR · cFP + p · (1− TPR) · cFN. (2)

This analysis ensures that CM is minimized, however, the slope, S, can be hard to deter-
mine for real world problems because the costs of misclassification (cFP and cFN) and class
distribution (p and n) are often unknown (Note that p and n may be different than the
collected data’s set class distribution, which is usually a real world sample and not the entire
population). Provost and Fawcett (1997) have developed the ROC Convex Hull (ROCCH)
method to deal with problems where these real world variables are unknown.

The ROC graph has been expanded in other papers, including adding a third dimension
of an algorithms ability to detect difficult targets (Alsing et al., 1999) and diagnostic latency
for prognostic and health management applications (Simon, 2010). These methods were
useful for deciding on alternatives using a 3-D ROC, however, classifiers were not selected
using additional cost information.

2.4. ROC Convex Hull Method

The ROCCH method is used to identify a subset of classifiers that are potentially optimal
without requiring the real world costs of misclassification or class distribution. This is
accomplished using a convex hull in the ROC space, where potentially optimal classifiers
have operating points (FPR, TPR) on the convex hull.

The ROCCH analysis uses the concept of an “iso-performance” line, where all operating
points in ROC space along a line with slope S will have the same misclassification cost. The
“iso-performance” lines closer to the upper-left of the ROC space are more optimal because
they correspond to a lower FPR and a higher TPR, resulting in a lower CM . The ROCCH
method selects these classifiers that minimize CM by using a convex hull in ROC space.

Classifier selection using the ROCCH method is shown in Figure 2. This figure shows a
ROC graph consisting of four classifiers, A, B, C, and D. The convex hull of these classifiers
is shown using the checkered pattern. Notice that classifiers A and C have operating points
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on the convex hull and classifiers B and D do not. This means that only classifiers A and
C are potentially optimal. Classifiers B and D would not be chosen for any real world class
distribution and costs of misclassification. Further, all operating points of classifiers A and
C that are not on the ROC convex hull would never be chosen and could be removed from
consideration.

Figure 2: The ROC Convex Hull method shown for four classifiers in an ROC graph.
Classifiers A and B are potentially optimal because they have points on the convex hull,
which is shown as the checkered pattern.

The ROCCH method finds classifiers that are optimal by minimizing CM , however, this
method ignores other types of cost and, therefore, total cost. For example, classifier B could
minimize C if its test cost (or another cost) is lower than that of classifiers A and C. To
address this issue, the ROCCHC method is proposed, which adds a new dimension of a
known additional cost to the ROC graph.

3. ROC Convex Hull with Cost Method

The ROC Convex Hull with Cost (ROCCHC) method extends the ROC analysis and
ROCCH method to aid in real world classifier selection when additional cost information is
known. The ROCCHC method provides a solution to the problem that the ROCCH method
does not select classifiers that may have a lower total cost when additional cost information
is known. The ROCCHC method extends the ROCCH method by adding this additional
cost dimension to the ROC graph. This additional cost may be any type of cost other than
misclassification cost, such as the expected capital and operating expenses, including the
hardware, software, personnel, electricity, etc., for the competing classifiers.

In the following, this additional cost is denoted γ, where γi corresponds to this additional
cost for the ith classifier. This analysis assumes that γi is known for all competing classifiers,
where γ could be ordinal (i.e. 1st, 2nd, 3rd,...) or numerical. In the proposed method, γi is
composed of all types of cost other than the misclassification cost and includes but is not
limited to the cost of each sensor (which can vary wildly and will influence the cost of each
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feature extracted from the sensor), the cost of collecting data, and the cost associated with
the power consumed to run the system.

This method builds upon the ROCCH method by using the convex hull in ROC space,
however, this method requires computing a convex hull for each unique γ. The ROCCHC
method is shown visually in Figure 3. This figure shows classifiers A, B, C, and D again,
however, each now has γ shown in parenthesis. There are now two convex hulls, one for
each of the unique γ’s of $1 and $2.

The convex hull calculated at γ of $1 is shown using the shaded region. This convex hull
was computed while including classifiers B and D because their γ is less than or equal to
$1. This convex hull selects classifier B as potentially optimal. Classifier D is not selected
as potentially optimal because it’s total cost would be greater than classifier B’s for any
real world costs of misclassification and class distribution.

The convex hull calculated at γ of $2 is shown using the checkered pattern. This convex
hull was computed using all classifiers (A, B, C, and D) because their γ is less than or equal
to $2. This convex hull selects classifiers A and C as potentially optimal.

Figure 3: Additional cost information, γ, for each classifier is shown in the legend. The
ROCCHC method uses two convex hulls, each at a unique cost, as shown in gray. Classifiers
A, B, and C are potentially optimal.

It is important to note that the ROCCHC method will always select at least one classifier
at the minimum γ. Also, a classifier i can only be selected as potentially optimal when
computing the convex hull for γi, which will include all classifiers with a γ equal to or less
than γi.

The steps to obtain the ROCCHC optimal classifiers from a list of m classifiers is
provided in Algorithm 1. The inputs to the algorithm are γi and the ROC curve, ri, of each
competing classifier. The number of ROC curve points for each classifier is the number
of cutoff thresholds, k. The algorithm outputs the index, i, of each ROCCHC optimal
classifier. The algorithm goes to each unique γ and calculates a ROC convex hull of all
classifiers with γi less than or equal to the current unique γ. A classifier i is ROCCHC
optimal if its γi equals the current unique γ and its ri is on the convex hull.
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Algorithm 1: ROC Convex Hull with Cost

Input: additional costs: γ1, . . . , γm ∈ R, ROC curves with k cutoff thresholds: r1, . . . , rm,
where each ri ∈ R2×k consists of all FPRs ∈ R1×k and TPRs ∈ R1×k of the ith

classifier
Output: Opt, list of indices of optimal classifiers
Opt← empty list
U ← unique γ sorted in ascending order
for u = 1 to length(U) do

R← All ri corresponding to γi ≤ Uu

H ← Conv(R); where Conv(•) returns i for each classifier ri in the ROC convex hull
for i = 1 to m do

if γi = Uu and i ∈ H then
Append i to Opt

end

end

It is important to mention that the ROCCHC method is not returning all of the classifiers
on a 3-D ROC convex hull, where the 3rd dimension would be γ. The ROCCHC method
selects classifiers that outperform all lower cost classifiers (in at least a certain region of
ROC space), however, these classifiers are not guaranteed to be in the 3-D ROC convex
hull. This was decided so that misclassification cost and γ could have different units or even
different number types (cardinal, ordinal, or numeric). For many real world problems, the
costs of misclassification (cFP and cFP) may be a relative weighting or are unknown, while
γ may be ordinal (i.e. the training computation costs of a competing classification tree and
neural network are first and second, respectively). It is our belief that a 3-D convex hull
could be used to minimize C only if CM and γ have the same units (i.e. monetary units).

4. Experiments and Discussion

The ROCCHC method was used to analyze three binary classification data sets, a Pima
Native American diabetes data set, a hepatitis data set, and a hydraulic rotary actuator
fault detection data set. An ROC analysis is required because the real world costs of
misclassification and class distribution are unknown for each data set. These data sets
include real test costs for each feature, where the test cost of each feature can be different.
The total test cost of a classifier is assumed to be the sum of the classifier’s feature set test
costs.

The total test cost also includes feature group discounts. Group discounts are applied
when groups of features share a common cost. For example, the features from two separate
blood tests may have a common cost if the same sample of blood can be used for both
tests, resulting in a savings or discount in supplies (i.e. the needle and vial) and personnel
(i.e. the nurse). The total test cost of a classifier that includes these two features would be
discounted by the common cost.

Table 2 shows the three data sets including the number of features and observations.
The test costs for each feature, the feature groups, and feature group common costs are
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Table 2: Binary Datasets with Actual Feature Costs

Data set # of features # of observations

actuator 56 (8 sensors) 2,340

Pima 8 768

hepatitis 19 155

Algorithm 2: Generation of competing classifiers

for each combination of features or sensors do
Get the classifier’s test cost based on the combination of features or sensors and
feature group discounts

Build classification tree models using the corresponding feature subset with the CART
algorithm and 10-fold cross-validation

Save the classifier’s resulting ROC curve and test cost
end

specified for the Pima Native American diabetes and hepatitis data sets on the UCI Machine
Learning Repository (Lichman, 2013). The test costs for the features in the fault detection
data set are the actual purchase price of the sensor from which the feature is derived. The
feature groups correspond to each feature’s required sensor and the common costs are each
sensor’s actual purchase price. For example, the total test cost of a classifier that includes
two features from one sensor will be the purchase price of the sensor and not twice this
amount.

For each dataset, competing classifiers were built using each combination of features for
the Pima and hepatitis data sets and each combination of sensors for the fault detection data
set. The resulting number of classifiers can be determined using 2b−1, where b is the number
of features or sensors. Each classifier was created using the CART algorithm (Breiman
et al., 1984) in MATLAB with default hyperparameters and validated using 10-fold cross
validation. This process is shown in Algorithm 2. The ROCCHC optimal classifiers were
then obtained from this list of classifiers using Algorithm 1. These optimal classifiers were
compared to ROCCH optimal classifiers for each data set.

4.1. Hydraulic Rotary Actuator Fault Detection Data Set

The proposed framework is demonstrated on a fault detection data set. The objective is to
detect faults in a hydraulic rotary actuator given sensor data streams. Each sensor has an
associated purchase price as shown in Table 3. More information about this data set can
be found in Adams et al. (2017b).

The experimental setup for this data set consists of a hydraulic rotary actuator mounted
to another load actuator. The health state of the test actuator can be physically manipu-
lated by artificially inducing several types of faults, such as external leaks, internal leaks,
and excessive loadings. There were 2,340 actuation cycles or observations used in this data
set, each with a binary fault label.

The 8 sensors include an angular position sensor, 2 flow rate sensors, 2 pressure sensors,
and 3 accelerometers. The were 7 features calculated per sensor during each actuation cycle,
including mean, variance, standard deviation, skewness, kurtosis, minimum, and maximum.
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Table 3: Sensor purchase price for the hydraulic rotary actuator data set

Accelerometer Angular Position Flow Rate Pressure
(Accel#) (Angle) (FlowOut#) (PG#)

$35 $40 $3,245 $429

This resulted in 56 (7 feature functions × 8 sensors) features per observation. For this data
set, instead of building classifiers for every combination of features resulting in 7.2 × 1016

(256 − 1) classifiers, classification models were built using every combination of 8 sensors,
amounting to 255 (28 − 1) classifiers. The test cost of each classifier is the total purchase
price of the classifier’s sensor set, where sensor purchase prices are shown in Table 3.

The resulting 255 competing classifiers from this data set are shown in Figure 4. This
figure shows a 3-D ROC graph, with a third axis of γ as the sensor set cost of each classifier,
along with a corresponding ROC graph. The ROCCHC optimal classifiers have solid ROC
curves and the sub-optimal classifiers have dotted line ROC curves. This figure shows that
increasing γ doesn’t necessarily lead to classifiers with better ROC performance. The 3-D
ROC graph shows three sensor cost groups, where all 11 ROCCHC optimal classifiers are
in the cheapest group.

These 11 ROCCHC optimal classifiers are shown alone in Figure 5, including a legend
with each classifier’s sensor set cost and sensor set. As expected, the ROCCHC optimal
classifiers with a higher γ outperform the others. These 11 classifiers are potential optimal
and could be presented to stakeholders, resulting in a 96% ((1 − 11/255) reduction in
classifiers.

Comparing to the ROCCH method, the ROCCH optimal classifiers were also computed.
The only ROCCH optimal classifier is the “$868: PG1, PG2” classifier, which is the ROC-
CHC optimal classifier with the highest γ. Therefore, ignoring other types of cost (sensor set
cost in this case) by using the ROCCH method would miss 10 potentially optimal classifiers,
or 91% (10/11).

4.2. Diabetes of Pima Native Americans Data Set

The Pima Native Americans data set consists of 8 features so there are 255 (28−1) competing
classifiers. The ROCCHC method results in 24 potentially optimal classifiers, which are
shown in Figure 6. This figure shows a 3-D ROC graph, with a third axis of γ as the feature
set cost of each classifier, along with a corresponding ROC graph. These 24 potentially
optimal classifiers could be presented to stakeholders, resulting in a 91% (1 − 24/255)
reduction in classifiers.

The ROCCH method results in 10 potentially optimal classifiers. Therefore, ignoring
test cost by using the ROCCH method would miss 14 potentially optimal classifiers, which
is 58% (14/24) of the potentially optimal classifiers.

4.3. Hepatitis Dataset

The hepatitis data set consists of 19 features so there are 524,287 (219 − 1) competing
classifiers. The ROCCHC method results in 84 potentially optimal classifiers, which are
shown in Figure 7. This figure shows a 3-D ROC graph, with a third axis of γ as the
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Figure 4: All competing classifiers for the actuator data set (left: 3-D ROC graph with γ as
sensor set cost, right: corresponding ROC graph). ROCCHC potentially optimal classifiers
have solid line ROC curves, sub-optimal classifiers have dotted line ROC curves.

Figure 5: ROCCHC potentially optimal classifiers for the actuator data set (left: 3-D ROC
graph with γ as sensor set cost, right: corresponding ROC graph).
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Figure 6: ROCCHC potentially optimal classifiers for the Pima data set (left: 3-D ROC
graph with γ as feature set cost, right: corresponding ROC graph).

feature set cost of each classifier, along with a corresponding ROC graph. The 84 ROCHC
potentially optimal classifiers results in a 99.98% (1− 84/524, 287) reduction in classifiers.

The ROCCH method results in 79 potentially optimal classifiers, therefore, five poten-
tially optimal classifiers are missed, amounting to 6% (5/84) of the potentially optimal
classifiers.

Figure 7: ROCCHC potentially optimal classifiers for the hepatitis data set (left: 3-D ROC
graph with γ as feature set cost, right: corresponding ROC graph).
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5. Conclusions and Future Work

In conclusion, this study demonstrates the effectiveness of the ROCCHC method at in-
corporating an additional cost into binary classifier evaluation. This method adds a third
dimension to the ROC graph that represents the additional cost. An algorithm for deter-
mining ROCCHC potentially optimal classifiers is presented. The numerical experiments
demonstrate that the ROCCHC method successfully reduces the number of competing clas-
sifiers and allows a stakeholder to evaluate classifiers in terms of the additional cost and
ROC performance in a compact visualization. The experiments also compare the presented
ROCCHC method to the ROCCH method, which misses 91%, 58%, and 6% of the po-
tentially optimal classifiers. This is because the ROCCH method doesn’t incorporate the
additional cost information.

There are numerous avenues for possible future work and extensions of the ROCCHC
framework. Fawcett (2006) mentions that ROC curves can only be compared if there
is a measure of variance, therefore, future methods could use repeated trials of building
classifiers, which could be used to determine a confidence interval representing variance. The
ROCCHC algorithm would need be updated to account for this ROC confidence interval.

The ROCCHC method could also be used in combination with a search algorithm,
such as a forward or backward sequential search, particle swarm optimization algorithm, or
genetic algorithm, to find potentially optimal classifiers. This would eliminate the need for
the exhaustive feature set search in Algorithm 2. The next steps for this method could also
include multi-class problems, where the convex hull would need to include multiple ROC
graphs.
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