
Data-dependent compression of random features
for large-scale kernel approximation

Raj Agrawal Trevor Campbell Jonathan Huggins Tamara Broderick
MIT UBC Harvard MIT

Abstract

Kernel methods offer the flexibility to learn
complex relationships in modern, large data
sets while enjoying strong theoretical guaran-
tees on quality. Unfortunately, these methods
typically require cubic running time in the
data set size, a prohibitive cost in the large-
data setting. Random feature maps (RFMs)
and the Nyström method both consider low-
rank approximations to the kernel matrix as a
potential solution. But, in order to achieve de-
sirable theoretical guarantees, the former may
require a prohibitively large number of fea-
tures J+, and the latter may be prohibitively
expensive for high-dimensional problems. We
propose to combine the simplicity and gener-
ality of RFMs with a data-dependent feature
selection scheme to achieve desirable theo-
retical approximation properties of Nyström
with just O(log J+) features. Our key insight
is to begin with a large set of random fea-
tures, then reduce them to a small number of
weighted features in a data-dependent, com-
putationally efficient way, while preserving
the statistical guarantees of using the orig-
inal large set of features. We demonstrate
the efficacy of our method with theory and
experiments—including on a data set with
over 50 million observations. In particular,
we show that our method achieves small ker-
nel matrix approximation error and better
test set accuracy with provably fewer random
features than state-of-the-art methods.

Proceedings of the 22
nd

International Conference on Ar-

tificial Intelligence and Statistics (AISTATS) 2019, Naha,

Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by

the author(s).

1 Introduction

Kernel methods are essential to the machine learn-
ing and statistics toolkit because of their modeling
flexibility, ease-of-use, and widespread applicability to
problems including regression, classification, clustering,
dimensionality reduction, and one and two-sample test-
ing (Hofmann et al., 2008; Schölkopf and Smola, 2001;
Chwialkowski et al., 2016; Gretton et al., 2012). In
addition to good empirical performance, kernel-based
methods come equipped with strong statistical and
learning-theoretic guarantees (Vapnik, 1998; Mendel-
son, 2003; Balcan et al., 2008; Boser et al., 1992; Vapnik
et al., 1997; Sriperumbudur et al., 2010). Because ker-
nel methods are nonparametric, they are particularly
attractive for large-scale problems, where they make it
possible to learn complex, highly non-linear structure
from data. Unfortunately, their time and memory costs
scale poorly with data size. Given N observations, stor-
ing the kernel matrix K requires O(N

2
) space. Using

K for learning typically requires O(N
3
) time, as this of-

ten entails inverting K or computing its singular value
decomposition.

To overcome poor scaling in N , researchers have de-
vised various approximations to exact kernel methods.
A widely-applicable and commonly used tactic is to
replace K with a rank-J approximation, which reduces
storage requirements to O(NJ) and computational
complexity of inversion or singular value decomposi-
tion to O(NJ

2
) (Halko et al., 2011). Thus, if J can be

chosen to be constant or slowly increasing in N , only
(near-)linear time and space is required in the dataset
size. Two popular approaches to constructing low-rank
approximations are random feature maps (RFMs) (Kar
and Karnick, 2012; Pennington et al., 2015; Daniely
et al., 2017; Samo and Roberts, 2015)—particularly
random Fourier features (RFFs) (Rahimi and Recht,
2007)—and Nyström-type approximations (Drineas
and Mahoney, 2005). The Nyström method is based
on using J randomly sampled columns from K, and
thus is data-dependent. The data-dependent nature
of Nyström methods can provide statistical guarantees
even when J ⌧ N , but these results either apply only

Data-dependent compression of random features

to kernel ridge regression (El Alaoui and Mahoney,
2015; Yang et al., 2017; Rudi et al., 2015) or require
burdensome recursive sampling schemes (Musco and
Musco, 2017; Lim et al., 2018). Random features, on
the other hand, are simple to implement and use J ran-
dom features that are data-independent. For problems
with both large N and number of covariates p, an ex-
tension of random features called Fast Food RFM has
been successfully applied at a fraction of the computa-
tional time required by Nyström-type approximations,
which are exponentially more costly in terms of p (Le
et al., 2013). The price for this simplicity and data-
independence is that a large number of random features
is often needed to approximate the kernel matrix well
(Honorio and Li, 2017; Kar and Karnick, 2012; Rahimi
and Recht, 2007; Yang et al., 2012; Huang et al., 2014).

The question naturally arises, then, as to whether we
can combine the simplicity of random features and the
ability to scale to large-p problems with the appealing
approximation and statistical properties of Nyström-
type approaches. We provide one possible solution by
making random features data-dependent, and we show
promising theoretical and empirical results. Our key
insight is to begin with a large set of random features,
then reduce them to a small set of weighted features in
a data-dependent, computationally efficient way, while
preserving the statistical guarantees of using the origi-
nal large set. We frame the task of finding this small
set of features as an optimization problem, which we
solve using ideas from the coreset literature (Campbell
and Broderick, 2019, 2018). Using greedy optimiza-
tion schemes such as the Frank–Wolfe algorithm, we
show that a large set of J+ random features can be com-
pressed to an exponentially smaller set of just O(log J+)

features while still achieving the same statistical guar-
antees as using all J+ features. We demonstrate that
our method achieves superior performance to existing
approaches on a range of real datasets—including one
with over 50 million observations—in terms of kernel
matrix approximation and classification accuracy.

2 Preliminaries and related work

Suppose we observe data {(xn, yn)}Nn=1 with predic-
tors xn 2 Rp and responses yn 2 R. In a supervised
learning task, we aim to find a model f : Rp ! R
among a set of candidates F that predicts the response
well for new predictors. Modern data sets of interest
often reach N in the tens of millions or higher, allow-
ing analysts to learn particularly complex relationships
in data. Nonparametric kernel methods (Schölkopf
and Smola, 2001) offer a flexible option in this setting;
by taking F to be a reproducing kernel Hilbert space
with positive-definite kernel k : Rp ⇥ Rp ! R, they
enable learning more nuanced details of the model f as

more data are obtained. As a result, kernel methods
are widespread not just in regression and classification
but also in dimensionality reduction, conditional in-
dependence testing, one and two-sample testing, and
more (Schölkopf et al., 1997; Zhang et al., 2011; Gretton
et al., 2008, 2012; Chwialkowski et al., 2016).

The problem, however, is that kernel methods become
computationally intractable for large N . We consider
kernel ridge regression as a prototypical example (Saun-
ders et al., 1998). Let K 2 RN⇥N be the kernel matrix
consisting of entries Knm := k(xn, xm). Collect the
responses into the vector y 2 RN . Then kernel ridge
regression requires solving

min
↵2RN

�1

2
↵
T
(K + �I)↵+ ↵

T
y,

where � > 0 is a regularization parameter. Computing
and storing K alone has O(N

2
) complexity, while com-

puting the solution ↵?
= (K + �I)

�1
y further requires

solving a linear system, with cost O(N
3
). Many other

kernel methods have O(N
3
) dependence; see Table 1.

To make kernel methods tractable on large datasets,
a common practice is to replace the kernel matrix
K with an approximate low-rank factorization K̂ :=

ZZ
T ⇡ K, where Z 2 RN⇥J and J ⌧ N . This

factorization can be viewed as replacing the kernel
function k with a finite-dimensional inner product
k(xn, xm) ⇡ z(xn)

T
z(xm) between features generated

by a feature map z : Rp ! RJ . Using this type of
approximation significantly reduces downstream train-
ing time, as shown in the second column of Table 1.
Previous results show that as long as ZZ

T is close to
K in the Frobenius norm, the optimal model f using
K̂ is uniformly close to the one using K (Cortes et al.,
2010); see the rightmost column of Table 1.

However, finding a good feature map is a nontrivial
task. One popular method, known as random Fourier
features (RFF) (Rahimi and Recht, 2007), is based on
Bochner’s Theorem:
Theorem 2.1 ((Rudin, 1994, p. 19)). A continuous,
stationary kernel k(x, y) = �(x � y) for x, y 2 Rp is
positive definite with �(0) = 1 if and only if there exists
a probability measure Q such that

�(x� y) =

Z

Rp

e
i!

T (x�y)
dQ(!)

= EQ[!(x) !(y)
⇤
], !(x) := e

i!
T
x
.

(1)

Theorem 2.1 implies that zcomplex(x) :=

(1/
p
J)[!1(x), · · · , !J (x)]

T , where !i

i.i.d.⇠ Q,
provides a Monte-Carlo approximation of the
true kernel function. As noted by Rahimi
and Recht (2008), the real-valued feature map

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Table 1: A comparison of training time for PCA, SVM, and ridge regression using the exact kernel matrix K

versus a low-rank approximation K̂ = ZZ
T , where Z has J columns. Exact training requires either inverting or

computing the SVD of the true kernel matrix K at a cost of O(N
3
) time, as shown in the first column. The

second column refers to training the methods using a low-rank factorization Z. For ridge regression and PCA,
the low-rank training cost reflects the time to compute and invert the feature covariance matrix Z

T
Z. For SVM,

the time refers to fitting a linear SVM on Z using dual-coordinate descent with optimization tolerance ⇢ (Hsieh
et al., 2008). The third column quantifies the uniform error between the function fit using K and the function fit
using Z. For specific details of how the bounds were derived, see Appendix D.

Method Exact Training Cost Low-Rank Training Cost Approximation Error

PCA O(N
3
) ⇥(NJ

2
) O

⇣
(1� `

N
)kK̂ �KkF

⌘

SVM O(N
3
) ⇥(NJ log

1
⇢
) O

⇣
kK̂ �Kk

1
2
F

⌘

Ridge Regression O(N
3
) ⇥(NJ

2
) O

⇣
1
N
kK̂ �KkF

⌘

z(x) := (1/
p
J)[cos(!

T

1 x + b1), · · · , cos(!T

J
x + bJ)]

T ,
bj

unif.⇠ [0, 2⇡] also yields an unbiased estimator of
the kernel function; we use this feature map in what
follows unless otherwise stated. The resulting N ⇥ J

feature matrix Z yields estimates of the true kernel
function with standard Monte-Carlo error rates of
O (1/

p
J) uniformly on compact sets (Rahimi and

Recht, 2007; Sutherland and Schneider, 2015). The
RFF methodology also applies quite broadly. There
are well-known techniques for obtaining samples from
Q for a variety of popular kernels such as the squared
exponential, Laplace, and Cauchy (Rahimi and Recht,
2007), as well as extensions to more general random
feature maps (RFMs), which apply to many types
of non-stationary kernels (Kar and Karnick, 2012;
Pennington et al., 2015; Daniely et al., 2017).

The major drawback of RFMs is the O(NJp) time
and O(NJ) memory costs associated with generating
the feature matrix Z.1 Although these are linear in
N as desired, recent empirical evidence (Huang et al.,
2014) suggests that J needs to be quite large to pro-
vide competitive performance with other data analysis
techniques. Recent work addressing this drawback has
broadly involved two approaches: variance reduction
and feature compression. Variance reduction techniques
involve modifying the standard Monte-Carlo estimate
of k, e.g. with control variates, quasi-Monte-Carlo tech-
niques, or importance sampling (Avron et al., 2016;
Chang et al., 2017; Shen et al., 2017; Yu et al., 2016;
Avron et al., 2017). These approaches either depend
poorly on the data dimension p (in terms of statistical
generalization error), or, for a fixed approximation er-
ror, reduce the number of features J compared to RFM

1Fast Food RFM can reduce the computational cost of

generating the feature matrix to O(NJ log p) by exploiting

techniques from sparse linear algebra. For simplicity, we

focus on RFM here, but we note that our method can also

be used on top of Fast Food RFM in cases when p is large.

only by a constant. Feature compression techniques, on
the other hand, involve two steps: (1) “up-projection,”
in which the basic RFM methodology generates a large
number J+ of features—followed by (2) “compression,”
in which those features are used to find a smaller num-
ber J of features while ideally retaining the kernel ap-
proximation error of the original J+ features. Compact
random feature maps (Hamid et al., 2014) represent
an instance of this technique in which compression is
achieved using the Johnson–Lindenstrauss (JL) algo-
rithm (Johnson et al., 1986). However, not only is
the generation and storage of J+ features prohibitively
expensive for large datasets, JL compression is data-
independent and leads to only a constant reduction
in J+ as we show in Appendix C (see summary in
Table 2).

3 Random feature compression via
coresets

In this section, we present an algorithm for approxi-
mating a kernel matrix K 2 RN⇥N with a low-rank
approximation K ⇡ K̂ = ZZ

T obtained using a novel
feature compression technique. In the up-projection
step we generate J+ random features, but only compute
their values for a small, randomly-selected subset of
S ⌧ N

2 datapoint pairs. In the compression step, we
select a sparse, weighted subset of J of the original J+
features in a sequential greedy fashion. We use the fea-
ture values on the size-S subset of all possible data pairs
to decide, at each step, which feature to include and its
weight. Once this process is complete, we compute the
resulting weighted subset of J features on the whole
dataset. We use this low-rank approximation of the
kernel in our original learning problem. Since we use
a sparse weighted feature subset for compression—as
opposed to a general linear combination as in previous
work—we do not need to compute all J+ features for

Data-dependent compression of random features

the whole dataset. This circumvents the expensive
O(NJ+p) up-projection computation typical of past
feature compression methods. In addition, we show
that our greedy compression algorithm needs to output
only J = O(log J+) features—as opposed to past work,
where J = O(J+) was required—while maintaining the
same kernel approximation error provided by RFM
with J+ features. These results are summarized in
Table 2 and discussed in detail in Section 3.2.

3.1 Algorithm derivation

Let Z+ 2 RN⇥J+ , J+ > J , be a fixed up-projection
feature matrix generated by RFM. Our goal is to
use Z+ to find a compressed low-rank approximation
K̂ = ZZ

T ⇡ K, Z 2 RN⇥J . Our approach is mo-
tivated by the fact that spectral 2-norm bounds on
K � K̂ provide uniform bounds on the difference be-
tween learned models using K and K̂ (Cortes et al.,
2010), as well as the fact that the Frobenius norm
bounds the 2-norm. So we aim to find a Z that mini-
mizes the Frobenius norm error kK � ZZ

T kF . By the
triangle inequality,

kK � ZZ
T kF

 kK � Z+Z+
T kF + kZ+Z+

T � ZZ
T kF , (2)

so constructing a good feature compression down to
J features amounts to picking Z such that Z+Z+

T ⇡
ZZ

T in Frobenius norm. Let Z+j
2 RN denote the

jth column of Z+. Then we would ideally like to solve
the optimization problem

argmin

w2RJ+
+

1

N2
kZ+Z+

T � Z(w)Z(w)
T k2

F

s.t. Z(w) :=
⇥ p

w1Z+1 · · · pwJ+Z+J+

⇤

kwk0  J.

(3)

This problem is intractable to solve exactly for two
main reasons. First, computing the objective function
requires computing Z+, which itself takes ⌦(NJ+p)

time. But it is not uncommon for all three of N , J+,
and p to be large, making this computation expensive.
Second, the cardinality, or “0-norm,” constraint on w

yields a difficult combinatorial optimization. In order
to address these issues, first note that

1

N2
kZ+Z+

T � Z(w)Z(w)
T k2

F
=

E
i,j

i.i.d.⇠ ⇡

h
(z+

T

i
z+j
� zi(w)

T
zj(w))

2
i
,

where ⇡ is the uniform distribution on the integers
{1, . . . , N}, and z+i

, zi(w) 2 RJ+ are the ith rows of
Z+, Z(w), respectively. Therefore, we can generate a
Monte-Carlo estimate of the optimization objective by

sampling S pairs is, js
i.i.d.⇠ ⇡:

S

N2
kZ+Z+

T � Z(w)Z(w)
T k2

F

⇡
SX

s=1

(z+
T

is
z+js

� zis(w)
T
zjs(w))

2

= (1� w)
T
RR

T
(1� w) s.t.

(4)

R :=
⇥
z+i1

� z+j1
, · · · , z+iS

� z+jS

⇤
2 RJ+⇥S

,

where � indicates a component-wise product. Denoting
the jth row of R by Rj 2 RS and the sum of the
rows by r =

PJ+

j=1 Rj , we can rewrite the Monte Carlo
approximation of the original optimization problem in
Eq. (3) as

argmin

w2RJ+
+

kr � r(w)k22

s.t. kwk0  J,

(5)

where r(w) :=
PJ+

j=1 wjRj . Note that the s
th com-

ponent rs = z+
T

is
z+js

of r is the Monte-Carlo ap-
proximation of k(xis , xjs) using all J+ features, while
r(w)s = (

p
w � z+is

)
T
(
p
w � z+js

) is the sparse Monte-
Carlo approximation using weights w 2 RJ+

+ . In other
words, the difference between the full optimization in
Eq. (3) and the reformulated optimization in Eq. (5) is
that the former attempts to find a sparse, weighted set
of features that approximates the full J+-dimensional
feature inner products for all data pairs, while the lat-
ter attempts to do so only for the subset of pairs is, js,
s 2 {1, . . . , S}. Since a kernel matrix is symmetric and
k(xn, xn) = 1 for any datapoint xn, we only need to
sample (i, j) above the diagonal of the N ⇥N matrix
(see Algorithm 1).

The reformulated optimization problem in Eq. (5)—i.e.,
approximating the sum r of a collection (Rj)

J+

j=1 of vec-
tors in RS with a sparse weighted linear combination—
is precisely the Hilbert coreset construction problem
studied in previous work (Campbell and Broderick,
2019, 2018). There exist a number of efficient algo-
rithms to solve this problem approximately; in particu-
lar, the Frank–Wolfe-based method of Campbell and
Broderick (2019) and “greedy iterative geodesic ascent”
(GIGA) (Campbell and Broderick, 2018) both provide
an exponentially decreasing objective value as a func-
tion of the compressed number of features J . Note
that it is also possible to apply other more general-
purpose methods for cardinality-constrained convex
optimization (Chen et al., 1998; Candes and Tao, 2007;
Tibshirani, 1994), but these techniques are often too
computationally expensive in the large-dataset setting.
Our overall algorithm for feature compression is shown
in Algorithm 1.

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Algorithm 1 Random Feature Maps Compression
(RFM-FW / RFM-GIGA)

Input: Data (xn)
N

n=1 in Rp, RFM distribution
Q, number of starting random features J+, number of
compressed features J , number of data pairs S

Output: Weights w 2 RJ+ with at most J non-
zero entries
1: (is, js)

S

s=1
i.i.d.⇠ Unif ({(i, j) : i < j, 2  j  N}).

2: Sample (!j)
J+

j=1
i.i.d.⇠ Q

3: Sample bj
unif.⇠ [0, 2⇡], 1  j  J+

4: for s = 1 : S do
5: Compute z+is

 (1/
p

J+)[cos(!
T

1 xis +

b1), · · · , cos(!T

J+
xis + bJ+)]

T ; same for z+js

6: Compute R
h
z+i1

� z+j1
, · · · , z+iS

� z+jS

i

7: Rj row j of R; r
PJ+

j=1 Rj

8: w solution to Eq. (5) with FW (Campbell and
Broderick, 2019) or GIGA (Campbell and Broder-
ick, 2018)

9: Z(w) =
⇥ p

w1Z+1 · · · pwJ+Z+J+

⇤

10: return Z(w)

3.2 Theoretical results

In order to employ Algorithm 1, we must choose the
number S of data pairs, the up-projected feature dimen-
sion J+, and compressed feature dimension J . Selecting
these three quantities involves a tradeoff between the
computational cost of using Algorithm 1 and the re-
sulting low-rank kernel approximation Frobenius error,
but it is not immediately clear how to perform that
tradeoff. Theorem 3.2 and Corollary 3.3 provide a re-
markable resolution to this issue: roughly, if we fix J+

such that the basic random features method provides
kernel approximation error ✏ > 0 with high probability,
then choosing S = ⌦(J

2
+(log J+)

2
) and J = ⌦(log J+)

suffices to guarantee that the compressed feature kernel
approximation error is also O(✏) with high probabil-
ity. In contrast, previous feature compression methods
required J = ⌦(J+) to achieve the same result; see
Table 2. Note that Theorem 3.2 assumes that the com-
pression step in Algorithm 1 is completed using the
Frank–Wolfe-based method from Campbell and Brod-
erick (2019). However, this choice was made solely to
simplify the theory; as GIGA (Campbell and Broderick,
2018) provides stronger performance both theoretically
and empirically, we expect a stronger result than The-
orem 3.2 and Corollary 3.3 to hold when using GIGA.
The proof of Theorem 3.2 is given in Appendix B and
depends on the following assumptions.

Assumption 3.1. (a) The cardinality of the set of
vectors {xi � xj , xi + xj}1i<jN is N(N�1)

2 , i.e.,
all vectors xi � xj , xi + xj , 1  i < j  N are

distinct.

(b) Q(!) for ! 2 Rp has strictly positive density on
all of Rp, where Q is the measure induced by the
kernel k; see Theorem 2.1.

Assumption 3.1(a-b) are sufficient to guarantee that the
compression coefficient ⌫J+ provided in Theorem 3.2
does not go to 1. If ⌫J+ ! 1 as J+ !1, the amount
of compression could go to zero asymptotically. When
the xj ’s contain continuous (noisy) measurements, As-
sumption 3.1(a) is very mild since the difference or
sum between two datapoints is unlikely to equal the
difference or sum between two other datapoints. As-
sumption 3.1(b) is satisfied by most kernels used in
practice (e.g. radial basis function, Laplace kernel, etc.).

We obtain the exponential compression in Theorem 3.2
for the following reason: Frank-Wolfe and GIGA con-
verge linearly when the minimizer of Eq. (5) belongs
to the relative interior of the feasible set of solutions
(Marguerite and Philip, 1956), which turns out to occur
in our case. With linear convergence, we need to run
only a logarithmic number of iterations (which upper
bounds the sparsity of w) to approximate r by r(w)

for a given level of approximation error. For fixed J+,
Lemma A.5 from Campbell and Broderick (2019) im-
mediately implies that the minimizer belongs to the
relative interior. As J+ ! 1 (that is, as we repre-
sent the kernel function exactly), we show that the
minimizer asymptotically belongs to the relative inte-
rior, and we provide a lower bound on its distance to
the boundary of the feasible set. This distance lower
bound is key to the asymptotic worst-case bound on
the compression coefficient given in Theorem 3.2 and
Theorem 3.4.
Theorem 3.2. Fix ✏ > 0, � 2 (0, 1), and J+ 2 N.
Then there are constants ⌫J+ 2 (0, 1), which depends
only on J+, and 0  c

⇤
�
<1, which depends only on �,

such that if

J = ⌦

✓
� log J+

log ⌫J+

◆
and S = ⌦

c
⇤
�

✏2


log

1
✏

log ⌫J+

�4
log J+

!
,

then with probability at least 1 � �, the output Z of
Algorithm 1 satisfies

1

N2
kZ+Z+

T � ZZ
T k2

F
 ✏.

Furthermore, the compression coefficient is asymptoti-
cally bounded away from 1. That is,

0 < lim sup
J+!1

⌫J+ < 1. (6)

Corollary 3.3. In the setting of Theorem 3.2, if we
let J+ = ⌦(1/✏ log 1/✏), then

1

N2
kK � ZZ

T k2
F
= O(✏).

Data-dependent compression of random features

Table 2: A comparison of the computational cost of basic random feature maps (RFM), RFM with JL compression
(RFM-JL), and RFM with our proposed compression using FW (RFM-FW) for N datapoints and J+ = 1/✏ log 1/✏

up-projection features. The first column specifies the number of compressed features J needed to retain the
O(✏) high probability kernel approximation error guarantee of RFM. The second and third columns list the
complexity for computing the compressed features and using them for PCA or ridge regression, respectively.
Theoretically, the number of datapoint pairs S should be set to ⌦(J+

2
(log J+)

2
) in Algorithm 1 (see Theorem 3.2)

but empirically we find in Section 4 that S can be set much smaller. See Appendix C for derivations.
Method # Compressed Features J Cost of Computing Z PCA/Ridge Reg. Cost

RFM O (J+) O (NJ+) O
�
NJ

2
+

�

RFM-JL O (J+) O (NJ+ log J+) O
�
NJ

2
+

�

RFM-FW O (log J+) O (SJ+ log J+ +N log J+) O
�
N(log J+)

2
�

Proof. Claim 1 of Rahimi and Recht (2007) implies
that 1

N2 kK � Z+Z+
T k2

F
= O (✏) if we set J+ =

⌦(1/✏ log 1/✏). The result follows by combining The-
orem 3.2 and Eq. (2).

Table 2 builds on the results of Theorem 3.2 and Corol-
lary 3.3 to illustrate the benefit of our proposed fea-
ture compression technique in the settings of kernel
principal component analysis (PCA) and ridge regres-
sion. Since random features and random features with
JL compression both have J = ⌦(J+), the O(NJ

2
+)

cost of computing the feature covariance matrix Z
T
Z

dominates when training PCA or ridge regression. In
contrast, the dominant cost of random features with
our proposed algorithm is the compression step; each
iteration of Frank-Wolfe has cost O(J+S), and we run
it for O(log J+) iterations.

While Corollary 3.3 says how large S must be for a
given J+, it does not say how to pick J+, or equiva-
lently how to choose the level of precision ✏. As one
would expect, the amount of precision needed depends
on the downstream application. For example, recent
theoretical work suggests that both kernel PCA and
kernel ridge regression require J+ to scale only sublin-
early with the number of datapoints N to achieve the
same statistical guarantees as an exact kernel machine
trained on all N datapoints (Sriperumbudur and Sterge,
2017; Avron et al., 2017; Rudi and Rosasco, 2017). For
kernel support vector machines (SVMs), on the other
hand, Sutherland and Schneider (2015) suggest that J+
needs to be larger than N . Such a choice of J+ would
make random features slower than training an exact
kernel SVM. However, since Sutherland and Schneider
(2015) do not provide a lower bound, it is still an open
theoretical question how J+ must scale with N for
kernel SVMs.

For J+ even moderately large, setting S =

⌦(J
2
+(log J+)

2
)) to satisfy Theorem 3.2 will be pro-

hibitively expensive. Fortunately, in practice, we find
S ⌧ J

2
+ suffices to provide significant practical compu-

tational gains without adversely affecting approxima-
tion error; see the results in Section 4. We conjecture
that we see this behavior since we expect even a small
number of data pairs S to be enough to guide fea-
ture compression in a data-dependent manner. We
empirically verify this intuition in Fig. 4 of Section 4.

Finally, we provide an asymptotic upper bound for the
compression coefficient ⌫J+ . We achieve greater com-
pression when ⌫J+ # 0. Hence, the upper bound below
shows the asymptotic worst-case rate of compression.
Theorem 3.4. Suppose all {(i, j) : 1  i < j  N}
are sampled in Algorithm 1. Then,

0 < lim sup
J+!1

⌫J+ < 1�

⇣
1� kKkF

cQ

⌘2

2
< 1, (7)

where K is the exact kernel matrix and

cQ :=
1

N
E!⇠Q,b⇠Unif[0,2⇡]ku(!, b)k2,with

u(!, b) := (cos(!
T
xi + b) cos(!

T
xj + b))i,j2[N].

(8)

By Theorem 2.1, kKkF =
1
N
kE!,bu(!, b)k2, so

kKkF  cQ by Jensen’s inequality. In Appendix A,
we show this inequality holds strictly. Hence the term
squared in Eq. (7) lies in (0, 1]. Recall kKk2

F
=
P

N

i=1 �i,
for �i the eigenvalues of K. With these observations,
Theorem 3.4 says that the asymptotic worst-case rate of
compression improves if K’s eigenvalue sum is smaller.
As rough intuition: If the sum is small, then K may
be nearly low-rank and thus easier to approximate via
a low-rank approximation. Since we subsample only S

of all pairs in Theorem 3.2, the upper bound in Theo-
rem 3.4 does not necessarily apply. Nonetheless, for S

moderately large, this upper bound roughly character-
izes the worst-case compression rate for Algorithm 1.

4 Experiments

In this section we provide an empirical comparison of
basic random feature maps (RFM) (Rahimi and Recht,

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Table 3: All datasets are taken from LIBSVM.
Dataset # Samples Dimension # Classes

Adult 48,842 123 2
Human 10,299 561 6
MNIST 70,000 780 10
Sensorless 58,000 9 11
Criteo 51,882,752 1,000,000 2

Figure 1: Kernel matrix approximation error. Lower
is better. Points average 20 runs; error bar is one
standard deviation.

2007), RFM with Johnson-Lindenstrauss compression
(RFM-JL) (Hamid et al., 2014), and our proposed al-
gorithm with compression via greedy iterative geodesic
ascent (Campbell and Broderick, 2018) (RFM-GIGA).
We note that there are many other random feature
methods, such as Quasi-Monte-Carlo random features
(Avron et al., 2016), that one might consider besides
RFM-JL. A strength of our method is that it can be
used as an additional compression step with these meth-
ods and is thus complementary with them; we discuss
this idea and demonstrate the resulting improvements
in Appendix E. In this section, we focus on Johnson-
Lindenstrauss as the current state-of-the-art random
features compression method.

We compare performance on the task of kernel SVM
classification (Vapnik et al., 1997). We consider five
real, large-scale datasets, summarized in Table 3. We
assess performance via two quality metrics—Frobenius
error of the kernel approximation and test set clas-
sification error. We also measure overall computa-
tion time—including both random feature projection
and SVM training. We use the radial basis kernel
k(x, y) = e

��kx�yk2

; we pick both � and the SVM reg-
ularization strength for each dataset by randomly sam-
pling 10,000 datapoints, training an exact kernel SVM
on those datapoints, and using 5-fold cross-validation.

Figure 2: Classification accuracy. Higher is better.
Points average 20 runs; error bar is one standard devi-
ation.

Figure 3: Log clock time vs. kernel matrix approxima-
tion quality on the Criteo data. Lower is better.

For both RFM-JL and RFM-GIGA we set J+ = 5,000,
and for RFM-GIGA we set S = 20,000.

Figs. 1 and 2 show the relative kernel matrix approxima-
tion error kZZ

T �KkF /kKkF and test classification
accuracy, respectively, as a function of the number
of compressed features J . Note that, since we can-
not actually compute K, we approximate the relative
Frobenius norm error by randomly sampling 10

4 data-
points. We ran each experiment 20 times; the results
in Figs. 1 and 2 show the mean across these trials with
one standard deviation denoted with error bars. RFM-
GIGA outperforms RFM and RFM-JL across all the
datasets, on both metrics, for the full range of number
of compressed features that we tested. This empirical
result corroborates the theoretical results presented
earlier in Section 3.2; in practice, RFM-GIGA requires
approximately an order of magnitude fewer features
than either RFM or RFM-JL.

To demonstrate the computational scalability of RFM-
GIGA, we also plot the relative kernel matrix approxi-
mation error versus computation time for the Criteo

Data-dependent compression of random features

dataset, which consists of over 50 million data points.
Before random feature projection and training, we used
sparse random projections (Li et al., 2006) to reduce the
input dimensionality to 250 dimensions (due to mem-
ory constraints). We set J+ = 5000 and S = 2 ⇥ 10

4

as before, and let J vary between 10
2 and 10

3. The
results of this experiment in Fig. 3 suggest that RFM-
GIGA provides a significant improvement in perfor-
mance over both RFM and RFM-JL. Note that RFM-
JL is very expensive in this setting—the up-projection
step requires computing a 5⇥ 10

8 by 5⇥ 10
3 feature

matrix—explaining its large computation time relative
to RFM and RFM-GIGA. For test-set classification,
all the methods performed the same for all choices of
J (accuracy of 0.74± 0.001), so we do not provide the
runtime vs. classification accuracy plot. This result
is likely due to our compressing the 10

6-dimensional
feature space to 250 dimensions, making it hard for the
SVM classifier to properly learn.

Given the empirical advantage of our proposed method,
we next focus on understanding (1) if S can be set much
smaller than ⌦(J

2
+(log J+)

2
)) in practice and (2) if we

can get an exponential compression of J+ in practice
as Theorem 3.2 and Theorem 3.4 guarantee.

To test the impact of S on performance, we fixed J+ =
5,000, and we let S vary between 10

2 and 10
6. Figure 4

shows what the results in Fig. 1 would have looked like
had we chosen a different S. We clearly see that after
around only S = 10,000 there is a phase transition such
that increasing S does not further improve performance.

To better understand if we actually see an exponential
compression in J+ in practice, as our theory suggests,
we set J+ = 10

5 (i.e. very large) and fixed S = 20,000 as
before. We examined the HIGGS dataset consisting of
1.1⇥10

7 samples, and let J (the number of compressed
features) vary between 500 and 10

4. Since GIGA can
select the same random feature at different iterations
(i.e. give a feature higher weight), J reached 8,600 after
10

4 iterations in Fig. 5. Fig. 5 shows that for J ⇡ 2⇥
10

3, increasing J further has negligible impact on kernel
approximation performance—only 0.001 difference in
relative error. Fig. 5 shows that we are able to compress
J+ by around two orders of magnitude.

Finally, since our proofs of Theorem 3.2 and Theo-
rem 3.4 assume Step 8 of Algorithm 1 is run using
Frank-Wolfe instead of GIGA, we compare in Fig. 6
how the results in Fig. 1 change by using Frank-Wolfe
instead. Fig. 6 shows that for J small, GIGA has better
approximation quality than FW but for larger J , the
two perform nearly the same. This behavior agrees
with the theory and empirical results of Campbell and
Broderick (2018), where GIGA is motivated specifically
for the case of high compression.

Figure 4: We plot the relative Frobenius norm error
against S for J+ fixed at 5,000. The solid black line
corresponds to the results found in Fig. 1.

Figure 5: Let S = 20,000, J+ = 10
5. We plot the

relative Frobenius norm error vs. J from 500 to 10
4.

Figure 6: The performance of GIGA versus Frank-
Wolfe for the experiment described in Fig. 1. Solid lines
correspond to Frank-Wolfe and dashed with GIGA.

5 Conclusion

This work presents a new algorithm for scalable kernel
matrix approximation. We first generate a low-rank
approximation. We then find a sparse, weighted subset
of the columns of the low-rank factor that minimizes
the Frobenius norm error relative to the original low-
rank approximation. Theoretical and empirical results
suggest that our method provides a substantial improve-
ment in scalability and approximation quality over past
techniques. Directions for future work include investi-
gating the effects of variance reduction techniques for
the up-projection, using a similar compression tech-
nique on features generated by the Nyström method
(Williams and Seeger, 2001), and transfer learning of
feature weights for multiple related datasets.

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Acknowledgments

We thank Justin Solomon for valuable discussions. This
research was supported in part by an ARO YIP Award,
ONR (N00014-17-1-2072), an NSF CAREER Award,
the CSAIL-MIT Trustworthy AI Initiative, Amazon,
and the MIT-IBM Watson AI Lab.

References

H. Avron, V. Sindhwani, J. Yang, and M. W. Ma-
honey. Quasi-Monte Carlo feature maps for shift-
invariant kernels. Journal of Machine Learning Re-
search, pages 1–38, 2016.

H. Avron, M. Kapralov, C. Musco, C. Musco, A. Vel-
ingker, and A. Zandieh. Random Fourier features for
kernel ridge regression: Approximation bounds and
statistical guarantees. In International Conference
on Machine Learning, 2017.

M. Balcan, A. Blum, and S. Vempala. On kernels, mar-
gins, and low-dimensional mappings. In Algorithmic
Learning Theory, pages 1–12, 2008.

B. Boser, I. Guyon, and V. Vapnik. A training algo-
rithm for optimal margin classifiers. In Workshop
on Computational Learning Theory, pages 144–152,
1992.

T. Campbell and T. Broderick. Bayesian coreset con-
struction via greedy iterative geodesic ascent. In In-
ternational Conference on Machine Learning, 2018.

T. Campbell and T. Broderick. Automated scalable
Bayesian inference via Hilbert coresets. Journal of
Machine Learning Research, 2019.

E. Candes and T. Tao. The Dantzig selector: Statistical
estimation when p is much larger than n. The Annals
of Statistics, pages 2313–2351, 2007.

W. Chang, C. Li, Y. Yang, and B. Poczos. Data-driven
random Fourier features using Stein effect. In Inter-
national Joint Conference on Artificial Intelligence,
pages 1497–1503, 2017.

S. Chen, D. Donoho, and M. Saunders. Atomic decom-
position by basis pursuit. SIAM Journal on Scientific
Computing, pages 33–61, 1998.

K. Chwialkowski, H. Strathmann, and A. Gretton. A
kernel test of goodness of fit. In International Con-
ference on Machine Learning, 2016.

C. Cortes, M. Mohri, and A. Talwalkar. On the impact
of kernel approximation on learning accuracy. In
International Conference on Artificial Intelligence
and Statistics, 2010.

A. Daniely, R. Frostig, V. Gupta, and Y. Singer.
Random features for compositional kernels.
arXiv:1703.07872, 2017.

P. Drineas and M. Mahoney. On the Nyström method
for approximating a gram matrix for improved kernel-
based learning. Journal of Machine Learning Re-
search, pages 2153–2175, 2005.

A. El Alaoui and M. Mahoney. Fast randomized kernel
methods with statistical guarantees. In Advances in
Neural Information Processing Systems, 2015.

A. Gretton, K. Fukumizu, C. H., L. Song, B. Schölkopf,
and A. Smola. A kernel statistical test of indepen-
dence. In Advances in Neural Information Processing
Systems, pages 585–592, 2008.

A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf,
and A. Smola. A kernel two-sample test. Journal of
Machine Learning Research, pages 723–773, 2012.

N. Halko, P. Martinsson, and J. Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.
SIAM Review, pages 217–288, 2011.

R. Hamid, Y. Xiao, A. Gittens, and D. DeCoste. Com-
pact random feature maps. In International Confer-
ence on International Conference on Machine Learn-
ing, 2014.

T. Hofmann, B. Schölkopf, and A. Smola. Kernel meth-
ods in machine learning. The Annals of Statistics,
pages 1171–1220, 2008.

J. Honorio and Y.-J. Li. The error probability of ran-
dom Fourier features is dimensionality independent.
arXiv:1710.09953, 2017.

C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sun-
dararajan. A dual coordinate descent method for
large-scale linear SVM. In International Conference
on Machine Learning, pages 408–415, 2008.

P. Huang, H. Avron, T. Sainath, V. Sindhwani, and
B. Ramabhadran. Kernel methods match deep neural
networks on TIMIT. In International Conference
on Acoustics, Speech and Signal Processing, pages
205–209, May 2014.

W. Johnson, J. Lindenstrauss, and G. Schechtman.
Extensions of Lipschitz maps into Banach spaces.
Israel Journal of Mathematics, pages 129–138, 1986.

S. Kakade and G. Shakhnarovich. Lecture
notes in large scale learning, 2009. URL
http://ttic.uchicago.edu/~gregory/courses/
LargeScaleLearning/lectures/jl.pdf.

P. Kar and H. Karnick. Random feature maps for
dot product kernels. In International Conference on
Artificial Intelligence and Statistics, pages 583–591,
2012.

Q. Le, T. Sarlos, and A. Smola. Fastfood - approxi-
mating kernel expansions in loglinear time. In Inter-
national Conference on Machine Learning, 2013.

http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/lectures/jl.pdf
http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/lectures/jl.pdf

Data-dependent compression of random features

P. Li, T. Hastie, and K. Church. Very sparse random
projections. In International Conference on Knowl-
edge Discovery and Data Mining, pages 287–296,
2006.

W. Lim, R. Du, B. Dai, K. Jung, L. Song, and H. Park.
Multi-scale Nystrom method. In International Con-
ference on Artificial Intelligence and Statistics, 2018.

F. Marguerite and W. Philip. An algorithm for
quadratic programming. Naval Research Logistics
Quarterly, pages 95–110, 1956.

S. Mendelson. On the performance of kernel classes.
Journal of Machine Learning Research, pages 759–
771, 2003.

C. Musco and C. Musco. Recursive sampling for the
Nyström method. In Advances in Neural Information
Processing Systems, 2017.

J. Pennington, F. Yu, and S. Kumar. Spherical random
features for polynomial kernels. In Advances in Neu-
ral Information Processing Systems, pages 1846–1854,
2015.

A. Rahimi and B. Recht. Random features for large-
scale kernel machines. In Neural Information Pro-
cessing Systems, 2007.

A. Rahimi and B. Recht. Random features for large-
scale kernel machines. In Advances in Neural Infor-
mation Processing Systems, pages 1177–1184, 2008.

A. Rudi and L. Rosasco. Generalization properties
of learning with random features. In Advances in
Neural Information Processing Systems, 2017.

A. Rudi, R. Camoriano, and L. Rosasco. Less is more:
Nyström computational regularization. In Advances
in Neural Information Processing Systems, 2015.

W. Rudin. Fourier Analysis on Groups, chapter The
Basic Theorems of Fourier Analysis. Wiley, 1994.

Y. Samo and S. Roberts. Generalized spectral kernels.
arXiv:1506.02236, 2015.

C. Saunders, A. Gammerman, and V. Vovk. Ridge
regression learning algorithm in dual variables. In In-
ternational Conference on Machine Learning, pages
515–521, 1998.

B. Schölkopf and A. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, 2001.

B. Schölkopf, A. Smola, and K. Müller. Kernel principal
component analysis. In Artificial Neural Networks,
pages 583–588, 1997.

W. Shen, Z. Yang, and J. Wang. Random features for
shift-invariant kernels with moment matching. In
Association for the Advancement of Artificial Intelli-
gence Conference, 2017.

B. Sriperumbudur and N. Sterge. Approximate ker-
nel PCA using random features: Computational vs.
statistical trade-off. arXiv:1706.06296, 2017.

B. Sriperumbudur, A. Gretton, K. Fukumizu,
B. Schölkopf, and G. Lanckriet. Hilbert space em-
beddings and metrics on probability measures. Jour-
nal of Machine Learning Research, pages 1517–1561,
2010.

D. Sutherland and J. Schneider. On the error of random
Fourier features. In Conference on Uncertainty in
Artificial Intelligence, pages 862–871, 2015.

A. Talwalkar. Matrix Approximation for Large-scale
Learning. PhD thesis, New York University, 2010.

R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society,
Series B, pages 267–288, 1994.

V. Vapnik. Statistical Learning Theory. John Wiley &
Sons, New York, 1998.

V. Vapnik, S. Golowich, and A. Smola. Support vec-
tor method for function approximation, regression
estimation and signal processing. In Advances in
Neural Information Processing Systems, pages 281–
287, 1997.

C. Williams and M. Seeger. Using the Nyström method
to speed up kernel machines. In Advances in Neu-
ral Information Processing Systems, pages 682–688,
2001.

T. Yang, Y. Li, M. Mahdavi, R. Jin, and Z. Zhou.
Nyström method vs random Fourier features - a
theoretical and empirical comparison. In Advances
in Neural Information Processing Systems, 2012.

Y. Yang, M. Pilanci, and M. J. Wainwright. Random-
ized sketches for kernels: Fast and optimal nonpara-
metric regression. The Annals of Statistics, pages
991–1023, 2017.

F. Yu, A. Suresh, K. Choromanski, D. Holtmann-Rice,
and S. Kumar. Orthogonal random features. In
Advances in Neural Information Processing Systems,
pages 1975–1983, 2016.

K. Zhang, J. Peters, D. Janzing, and B. Schölkopf.
Kernel-based conditional independence test and ap-
plication in causal discovery. In Conference on Un-
certainty in Artificial Intelligence, pages 804–813,
2011.

	Introduction
	Preliminaries and related work
	Random feature compression via coresets
	Algorithm derivation
	Theoretical results

	Experiments
	Conclusion
	Proof of thm:asymcompcoef
	Proof of thm:approxnorm
	Runtime analysis of methods
	Impact of kernel approximation
	Kernel ridge regression
	Kernel SVM
	Kernel PCA

	Additional Experiments

