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Abstract

The paper introduces a non-linear version of
the process convolution formalism for building
covariance functions for multi-output Gaus-
sian processes. The non-linearity is intro-
duced via Volterra series, one series per each
output. We provide closed-form expressions
for the mean function and the covariance func-
tion of the approximated Gaussian process at
the output of the Volterra series. The mean
function and covariance function for the joint
Gaussian process are derived using formulae
for the product moments of Gaussian vari-
ables. We compare the performance of the
non-linear model against the classical process
convolution approach in one synthetic dataset
and two real datasets.

1 INTRODUCTION

A multi-output Gaussian process (MOGP) is a Gaus-
sian process (GP) with a covariance function that ac-
counts for dependencies between multiple and related
outputs [Bonilla et al., 2008]. Having models that ex-
ploit such dependencies is particularly important when
some of the outputs are expensive to measure and the
other more inexpensive outputs can be used as surro-
gates of the expensive output to improve its prediction.
A typical example comes from geostatistics, where the
accuracy of predicting the concentration of toxic heavy
metals like lead or copper, which can be expensive
to measure, can be improved by including measure-
ments of pH as secondary variables, something that
is significantly less expensive to measure [Goovaerts,
1997].
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One of the challenges in multi-output GPs is defining
a cross-covariance function between outputs that leads
to a valid covariance function for the joint GP. There
is extensive literature looking at ways to build such
types of cross-covariance functions [Álvarez et al., 2012].
One such approach is known as process convolution,
for which each output is the convolution integral be-
tween a smoothing kernel and a latent random process.
The approach was introduced by Barry and Ver Hoef
[1996] to build covariance functions for single-output
GPs, and later for multi-outputs in Ver Hoef and Barry
[1998] and Higdon [2002]. The convolution integral lin-
early transforms the underlying latent process, which is
usually assumed to be a Gaussian process. The output
process is then a GP with a covariance equal to the
convolution operators acting to modify the covariance
function of the latent GP.

The main contribution in this paper is the introduc-
tion of a non-linear version of the process convolution
construction suitable both for single-output and multi-
output GPs. The non-linear model is constructed using
a Volterra series where the input function is a latent
random process. The Volterra series has been widely
studied in the literature of non-linear dynamical sys-
tems [Haber and Keviczky, 1999]. They generalise the
Taylor expansion for the case of non-instantaneous in-
put functions. We treat the latent process as a Gaussian
process and, using formulae for the product moments
of Gaussian variables, we provide closed-form expres-
sions for the mean function and covariance function
of the output process. We approximate the output as
a Gaussian process using these mean and covariance
functions.

Most attempts to generate non-linear models that in-
volve Gaussian processes come from an alternative
representation of the convolution integral based on
state space approaches [Hartikainen and Särkkä, 2011,
Särkkä et al., 2013]. Exceptions include the works by
Lawrence et al. [2007] and Titsias et al. [2009] where
the non-linearity is a static transformation of the under-
lying latent GP. We review these and other approaches
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in the Section 4.

We compare the performance of the non-linear model
against the classical process convolution approach in
one synthetic dataset and two real datasets and show
that the non-linear version provides better performance
than the traditional approach.

2 BACKGROUND

In this section, we briefly review the MOGP with pro-
cess convolutions. We will refer to this particular con-
struction as the convolved MOGP (CMOGP). We also
briefly review the Volterra series and the formulae for
the product moments of Gaussian variables that we
use to construct our non-linear model.

2.1 Process convolutions for multi-output
Gaussian processes

We want to jointly model the set of processes [fd(t)]Dd=1
using a joint Gaussian process. In the process convo-
lution approach to building such a Gaussian process,
dependencies between different ouputs are introduced
by assuming that each output fd(t) is the convolution
integral between a smoothing kernel Gd(t) and some
latent function u(t),

fd(t) =
∫
τ

Gd(t− τ)u(τ)dτ, (1)

where the smoothing kernel Gd(t−τ) should have finite
energy. Assuming that the latent process u(t) is a GP
with zero mean function and covariance function k(t, t′),
the set of processes f1(t), f2(t), · · · , fD(t) are jointly
Gaussian with zero mean function and cross-covariance
function between fd(t) and fd′(t′) given by

kd,d′(t, t′) = cov[fd(t), fd′(t′)] =∫ ∫
Gd(t− τi)Gd′(t′ − τi)k(τi, τj)dτidτj .

(2)

In Álvarez et al. [2012], the authors have shown that the
covariance function above generalises the well-known
linear model of coregionalization, a form of covariance
function for multiple outputs commonly used in ma-
chine learning and geostatistics.

The expression for fd(t) in the form of the convolution
integral in (1) is also the representation of a linear
dynamical system with impulse response Gd(t). In the
context of latent force models, such convolution expres-
sions have been used to compute covariance functions
informed by physical systems where the smoothing
kernel is related to the so-called Green’s function repre-
sentation of an ordinary differential operator [Álvarez
et al., 2013].

2.2 Representing non-linear dynamics with
Volterra series

We borrow ideas from the representation of non-linear
systems to extend the CMOGP to the non-linear case.
One such representation is the Taylor series, which is
the expansion of a time-invariant non-linear system as
a polynomial about a fixed working point:

f(t) =
∞∑
c=0

giu
c(t) = g0 + g1u(t) + g2u

2(t) + . . .

While the Taylor series is widely used in the approxi-
mation of non-linear systems, it can only approximate
systems for which the input has an instantaneous effect
over the output [Haber and Keviczky, 1999].

By the Stone-Weierstraß theorem, a given continuous
non-linear system with finite-dimensional vector input
can be uniformly appoximated by a finite polynomial
series [Gallman and Narendra, 1976]. The Volterra
series is such a polynomial expansion, describing a
series of nested convolution operators:

f(t) =
∞∑
c=0

∫
. . .

∫
G(c)(t− τ1, . . . , t− τu)

c∏
j=1

u(τj)dτj

= G(0) +
∫
G(1)(t− τ1)u(τ1)dτ1

+
∫∫

G(2)(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2

+ . . .

The leading term G(0) is a constant term, which in
practise is assumed to be zero-valued and the series is
incremented from c = 1. Because of the convolutions
involved, the series is no longer modelling an instanta-
neous input at t, giving the series a so-called memory
effect [Haber and Keviczky, 1999]. As with the Taylor
series, the approximant needs a cut-off for the infinite
sum, denoted C; a Volterra series with C sum terms is
called C-order.

The representation of a cth degree kernel, i.e. G(c)(t−
τ1, . . . , t− τc), can be expressed in different forms, such
as in symmetric or triangular form [Haber and Ke-
viczky, 1999]. A common assumption is that the ker-
nels are homogeneous and seperable, such that G(c)

is the product of c first degree kernels. The assump-
tion of separability is stronger but reduces the number
of unique parameters, which can be very large for a
full Volterra series [Schetzen, 1980]. It should also be
noted that a truncated Volterra series with seperable
homogeneous kernels is equivalent to a Wiener model
[Cheng et al., 2017].
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2.3 Product moments for multivariate
Gaussian random variables

Several of the results that we will present in the fol-
lowing section involve the computation of the expected
value of the product of several multivariate Gaussian
random variables. For this, we will use results derived
in Song and Lee [2015]. We are interested in those
results for which the Gaussian random variables have
zero mean. In particular, let [Xi]ci=1 be multivariate
Gaussian random variables with zero mean values and
covariance between Xi and Xj given as φij . According
to Corollary 1 in Song and Lee [2015], the expression
for E [

∏c
i=1 X

ai
i ], follows as

E
[ c∏
i=1

Xai
i

]
=
∑

L∈Ta

∏c
k=1 ak!

2tr[L]∏c
i=1
∏c
j=1 lij !

c∏
i=1

c∏
j=i

(φij)lij ,

(3)

where a = [ai]ci=1 is a vector consisting of the random
variable exponents and Ta is the set of c× c symmetric
matrices1 that meet the condition La,k = 0 for k =
1, . . . , c, as defined by

Ta =
{

[lpq]c×c
∣∣∣∣ ak − lkk − c∑

j=1

ljk︸ ︷︷ ︸
La,k

= 0, ∀k ∈ {1, . . . , c}
}
.

(4)

If the sum of exponents,
∑c

k=1 ak, is an odd number, then
E[
∏c

i=1 X
ai
i ] = 0 for the zero mean value case, as described

in Corollary 2 in Song and Lee [2015].

An additional result used later is that if ak = 1, ∀ak then
(3), by Remark 5 in Song and Lee [2015], reduces to

E

[
c∏
i=1

Xi

]
=
∑

L∈Ta

c∏
i=1

c∏
j=i

φ
lij

ij . (5)

3 A NON-LINEAR CMOGP BASED
ON VOLTERRA SERIES

We represent a vector-valued non-linear dynamic system
with a system of Volterra series of order C. For a given
output dimension, d, we approximate the function with a
truncated Volterra series as follows

f
(C)
d (t) =

C∑
c=1

∫
· · ·
∫
G

(c)
d (t− τ1, . . . , t− τc)

c∏
j=1

u(τj)dτj ,

(6)

where G(c)
d are cth degree Volterra kernels.

Our approach is to assume that u(t), the latent driving
function, follows a GP prior. For C = 1, we recover the

1In Song and Lee [2015], the authors denote Ta as a
collection of sets-of-sets, but we interpret the elements as
symmetric matrices for notational clarity.

the expression for the process convolution construction of
a multi-output GP as defined in (1). In contrast to the
linear case, the output f (C)

d is no longer a GP. However,
we approximate f (C)

d with a GP f̃
(C)
d (t) with a mean and

covariance function computed from the moments of the
output process f (C)

d :

f̃
(C)
d (t) ∼ GP(µ(C)

d (t), k(C)
d,d′(t, t

′)), (7)

where µ
(C)
d (t) = E[f (C)

d (t)] and k
(C)
fdfd′

(t, t′) =
cov[f (C)

d (t), f (C)
d′ (t′)]. Approximating a non-Gaussian distri-

bution with a Gaussian, particularly for non-linear systems,
is common in state space modelling, for example in the
unscented Kalman filter [Särkkä, 2013]; or as a choice of
variational distribution in variational inference [Blei et al.,
2017]. We refer to the joint process [f̃ (C)

d (t)]Dd=1 as the
non-linear convolved multi-output GP (NCMOGP).

Furthermore, we will assume that the cth degree Volterra
kernels are separable, such that

G
(c)
d (t− τ1, . . . , t− τc) =

c∏
i=1

G
(c,i)
d (t− τi), (8)

where G(c,i)
d are first degree Volterra kernels.

Using this separable form, we express the output f (C)
d (t) as

C∑
c=1

c∏
i=1

∫
τi

G
(c,i)
d (t− τi)u(τi)dτi =

C∑
c=1

c∏
i=1

f
(c,i)
d (t),

where we define

f
(c,i)
d (t) =

∫
τi

G
(c,i)
d (t− τi)u(τi)dτi.

Assuming u(t) has a GP prior with zero mean and covari-
ance k(t, t′), and due to the linearity of the expression above,
we can compute the corresponding mean and covariance
functions for the joint Gaussian process [f (c,i)

d (t)]Dd=1. We
compute the cross-covariance function between f (c,i)

d (t) and
f

(c′,j)
d′ (t′) using

k
(c,i),(c′,j)
d,d′ (t, t′) = cov[f (c,i)

d (t), f (c,j)
d′ (t′)] =∫∫

G
(c,i)
d (t− τi)G(c′,j)

d′ (t′ − τi)k(τi, τj)dτidτj .
(9)

This is a similar expression to the one in (2) for the CMOGP.
For some particular forms of the Volterra kernels G(c,i)

d and
covariance k(t, t′) of the latent process u(t), the covariance
k

(c,i),(c′,j)
d,d′ (t, t′) can be computed analytically.

3.1 NCMOGP with separable Volterra
kernels

In this section, we derive expressions for µ
(C)
d (t) and

k
(C)
d,d′(t, t

′) with the assumption of separability of the
Volterra kernels in (8).
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3.1.1 Mean function

Let us first compute the mean function, µ(C)
d (t) = E[f (C)

d (t)].
Using the definition for the expected value, we get

E[f (C)
d (t)] =

C∑
c=1

E

[
c∏
i=1

f
(c,i)
d (t)

]
. (10)

The expected value of the product of the Gaussian processes,
E[
∏c

i=1 f
(c,i)
d (t)], can be computed using results obtained

for the expected value of the product of multivariate Gaus-
sian random variables as introduced in Section 2.3.

Applying the result in (5) to the expression of the expected
value in (10), we get

E

[
c∏
i=1

f
(c,i)
d (t)

]
=
∑

L∈Ta

c∏
i=1

c∏
j=i

(
k

(c,i),(c,j)
d,d (t, t)

)lij

, (11)

where

k
(c,i),(c,j)
d,d (t, t) = cov[f (c,i)

d (t), f (c,j)
d (t)].

Note that only the terms for which c is even are non-zero.

Example 1 To see an example of the kind of expressions
that the expected value takes, let us assume that c = 4. We
then have

E

[
4∏
i=1

f
(4,i)
d (t)

]
=
∑

L∈Ta

4∏
i=1

4∏
j=i

(
k

(4,i),(4,j)
d,d (t, t)

)lij

,

where

k
(4,i),(4,j)
d,d (t, t) = cov[f (4,i)

d (t), f (4,j)
d (t)].

We now need to find the set Ta containing all c× c symmet-
ric matrices L, the elements of which meet the conditon
described in (4), where a = [1 1 1 1]. This leads to the
following system of equations

2l11 + l12 + l13 + l14 = 1
l12 + 2l22 + l23 + l24 = 1
l13 + l23 + 2l33 + l34 = 1
l14 + l24 + l34 + 2l44 = 1,

where we have used the symmetry of L, so lij = lji. It can
be seen from the above system that the set Ta contains
three unique symmetric matrices:

Ta =


0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0

 ,
0 0 1 0

0 0 0 1
1 0 0 0
0 1 0 0

 ,
0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0


 .

We now have an expression for the expected value, by (11):

E

[
4∏
i=1

f
(4,i)
d (t)

]
= k

(4,1),(4,2)
d,d (t, t)k(4,3),(4,4)

d,d (t, t)

+ k
(4,1),(4,3)
d,d (t, t)k(4,2),(4,4)

d,d (t, t)

+ k
(4,1),(4,4)
d,d (t, t)k(4,2),(4,3)

d,d (t, t).

3.1.2 Cross-covariance function

For computing the covariance function, k
(C)
d,d′(t, t

′) =
E[f (C)

d (t)f (C)
d′ (t′)] − E[f (C)

d (t)]E[f (C)
d′ (t′)], we first need to

compute the second moment between f (C)
d (t) and f (C)

d′ (t′).
The second moment is given as

E
[
f

(C)
d (t)f (C)

d′ (t′)
]

= E
[ C∑
c=1

c∏
i=1

f
(c,i)
d (t)

C∑
c′=1

c′∏
j=1

f
(c′,j)
d′ (t′)

]

=
C∑
c=1

C∑
c′=1

E
[ c∏
i=1

c′∏
j=1

f
(c,i)
d (t)f (c′,j)

d′ (t′)
]

=
C∑
c=1

C∑
c′=1

E

[
c+c′∏
i=1

f̄
(i)
d,d′(t)

]
,

(12)

where f̄ (i)
d,d′ is the ith output of a vector-valued function

consisting of all functions in the product

f̄d,d′(t) =
[
f

(c,1)
d (t) . . . f (c,c)

d (t) f (c′,1)
d′ (t′) . . . f (c′,c′)

d′ (t′)
]>

.

We have assumed that both f (C)
d (t) and f (C)

d′ (t′) share the
same value of C, although a more general expression can
be obtained where each output can have its own C value.
We can apply the expressions in Song and Lee [2015] to the
above moment of the product of Gaussian random variables
as we did for computing the mean function in Section 3.1.1.
Using the expression for the expected value of the product
of Gaussian variables, we get

E
[ c+c′∏
i=1

f̄
(i)
d,d′(t)

]
=
∑

L∈Ta

c+c′∏
i=1

c+c′∏
j=i

(
cov
[
f̄

(i)
d,d′(t), f̄

(j)
d,d′(t)

])lij

,

where the covariance element is defined in (9) as the cross-
covariance of two latent functions.

Example 2 For illustration purposes, let us assume that
c = 3 and c′ = 1. In this case, we would have

E
[ 3∏
i=1

f
(3,i)
d (t)f (1,1)

d′ (t′)
]

=
∑

L∈Ta

4∏
i=1

4∏
j=i

(
cov
[
f̄

(i)
d,d′(t), f̄

(j)
d,d′(t)

])lij

,

where we have defined f̄d,d′ as

f̄d,d′ =
[
f

(3,1)
d (t) f

(3,2)
d (t) f

(3,3)
d (t) f

(1,1)
d′ (t′)

]>
.

The set Ta contains the same matrices as we found in
Example 1 in Section 3.1.1 leading to

E
[ 3∏
i=1

f
(c,i)
d (t)f (1,1)

d′ (t′)
]

= k
(3,1),(3,2)
d,d (t, t)k(3,3),(1,1)

d,d′ (t, t′)

+ k
(3,1),(3,3)
d,d (t, t)k(3,2),(1,1)

d,d′ (t, t′)

+ k
(3,1),(1,1)
d,d′ (t, t′)k(3,2),(3,3)

d,d (t, t).
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The cross-covariance function between f (C)
d (t) and f (C)

d′ (t′)
is then computed using

cov[f (C)
d (t), f (C)

d′ (t′)]

= E[f (C)
d (t)f (C)

d′ (t′)]− E[f (C)
d (t)]E[f (C)

d′ (t′)].

We have expressions for both E[f (C)
d (t)f (C)

d′ (t′)] and
E[f (C)

d (t)] by (10) and (12) respectively.

3.2 NCMOGP with separable and
homogeneous Volterra kernels

In the section above, we introduced a model that allows for
different first-order Volterra kernels G(c,i)

d (x), when building
the general Volterra kernel of order c. A further assumption
we can make is that all first-order Volterra kernels are the
same, i.e., G(c,i)

d (t − τi) = Gd(t − τ), ∀c, ∀i, meaning
that f (c,i)

d (t) = fd(t), for all c and for all i. We will refer
to this as the separable and homogeneous version of the
NCMOGP.

We then get

f
(C)
d (t) =

C∑
c=1

c∏
i=1

f
(c,i)
d (t) =

C∑
c=1

c∏
i=1

fd(t) =
C∑
c=1

fcd(t),

where fd(t) =
∫
Gd(t−τ)u(τ)dτ , and u(t) ∼ GP(0, k(t, t′)).

The cross-covariance function between fd(t) and fd′(t′) is
again kd,d′(t, t′) as in (2).

As we did in Section 3.1, we can compute the mean function
for f (C)

d (t) and cross-covariance functions between f (C)
d (t)

and f (C)
d′ (t′).

3.2.1 Mean function

Using Eq. (3), the mean function E[f (C)
d (t)] follows as

E[f (C)
d (t)] = E

[ C∑
c=1

fcd(t)
]

=
C∑
c=1

E
[
fcd(t)

]
=

C∑
c=1

c!
2l11 l11! (kd,d(t, t))

l11 ,

where l11 is such that satisfies 2l11 = c. This means that
the above expression only has solutions for even-valued c,
and l11 = c/2. Then,

E[f (C)
d (t)] =

C∑
c=1

c!
2c/2

(
c
2

)
!
(kd,d(t, t))c/2,

for even c and C ≥ 2.

3.2.2 Cross-covariance function

We can compute the second moment E[f (C)
d (t)f (C)

d′ (t′)] using

E[f (C)
d (t)f (C)

d′ (t′)] = E
[ C∑
c=1

fcd(t)
C∑
c′=1

fc
′

d′ (t′)
]

=
C∑
c=1

C∑
c′=1

E
[
fcd(t)fc

′

d′ (t′)
]
.

Once again we use expression (3) to compute
E
[
fcd(t)fc

′

d′ (t′)
]
, leading to

E
[
fcd(t)fc

′

d′ (t′)
]

=∑
L∈Ta

Ac,c′,L(kd,d(t, t))l11 (kd,d′(t, t′))l12 (kd′,d′(t′, t′))l22 ,

where Ac,c′,L is defined as

Ac,c′,L = c!c′!
2l11+l22 l11!l12!l22! ,

and kd,d′(t, t′) is defined in (2). To avoid computer overflow
due to the factorial operators when computing Ac,c′,L, we
compute exp(log(Ac,c′,L)) instead. As stated previously,
the expected value will be 0 if c+ c′ is not even.

Example 3 Let as assume that c = 3 and c′ = 3. The
expected value E

[
f3
d (t)f3

d′(t′)
]
follows as∑

L∈Ta

A3,3,L(kd,d(t, t))l11 (kd,d′(t, t′))l12 (kd′,d′(t′, t′))l22 ,

where A3,3,L = (3!3!)/2l11+l22 l11!l12!l22!. To find the ele-
ments in L ∈ Ta, we need to solve similar equations to the
ones in Example 1. We would have

2l11 + l12 = c = 3
l12 + 2l22 = c′ = 3.

We can see that there are two valid solutions for L:

Ta =
{[

0 3
3 0

]
,

[
1 1
1 1

]}
.

The expression for E
[
f3
d (t)f3

d′(t′)
]
is thus

6k3
d,d′(t, t′) + 9kd,d(t, t)kd,d′(t, t′)kd′,d′(t′, t′).

We compute the covariance cov[f (C)
d (t), f (C)

d′ (t′)] now that
we have expressions to compute the mean for f (C)

d (t) and
the expected value for the product between f

(C)
d (t) and

f
(C)
d′ (t′).

4 RELATED WORK

In the work by Lawrence et al. [2007], non-linear dynam-
ics are introduced with a GP prior within a non-linear
function, which are inferred using the Laplace approxima-
tion, with the convolution operator itself approximated as
a discrete sum. Similarly, Titsias et al. [2009] approximate
the posterior to the non-linear system over a GP using an
MCMC sampling approach. Approaches to non-linear like-
lihoods with GP priors, not limited to MOGPs, include the
warped GP model [Lázaro-Gredilla, 2012] and chained GPs
[Saul et al., 2016] which make use of variational approxi-
mations. Techniques from state space modelling, including
Taylor series linearisation and sigma points used to approx-
imate Gaussians in the extended and unscented Kalman
filters respectively have been applied to non-linear Gaussian
processes, both for single output and multitask learning
[Steinberg and Bonilla, 2014, Bonilla et al., 2016].
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An alternative perspective to the linear convolution pro-
cess, in particular latent force models, is to construct it as
a continuous-discrete state space model (SSM) driven by
white noise [Hartikainen and Särkkä, 2011, Särkkä et al.,
2013]. Hartikainen et al. [2012] use this approach for the
general case of non-linear Wiener systems, approximating
the posterior with an unscented versions of the Kalman
filter and Rauch-Tung-Streibel smoother. The SSM ap-
proach benefits from inference being performed in linear
time, but relies on certain constraints on the nature of
the underlying covariance functions. In particular, a ker-
nel must have a rational power spectrum to be used in
exact form, which precludes the use of, for example, the
exponentiated quadratic kernel for exact Gaussian process
regression without introducing an additional approximation
error [Särkkä et al., 2013]. Wills et al. [2013] also use a
state space representation to approximate Hammerstein-
Wiener models, albeit with sequential Monte Carlo and a
maximum-likelihood approach.

5 IMPLEMENTATION

Multi-output regression with NCMOGP In this
paper, we are interested in the multi-output regression
case. Therefore, we restrict the likelihood models for each
output to be Gaussian. In particular, we assume that each
observed output yd(t) follows yd(t) = f̃

(C)
d (t)+wd(t), where

wd(t) is a white Gaussian noise process with covariance
function σ2

dδt,t′ . Other types of likelihoods are possible as
for example in Moreno-Muñoz et al. [2018].

Kernel functions In all the experiments, we use an
exponentiated quadratic (EQ) form for the smoothing ker-
nels Gd(t− τ) and an EQ form for the kernel of the latent
functions u(t). With these forms, the kernel kd,d′(t, t′) also
follows an EQ form. We use the expressions for kd,d′(t, t′)
obtained by Álvarez and Lawrence [2011].

High-dimensional inputs The resulting mean func-
tion E[f (C)

d (t)] and covariance function cov[f (C)
d (t), f (C)

d′ (t′)]
assume that the input space is one-dimensional. We can
extend the approach to high-dimensional inputs, x ∈ Rp
by assuming that both the mean function and covariance
function factorise across the input dimension, and using
the same expressions for the kernels for each factorised
dimension.

Hyperparameter learning We optimise the log-
marginal likelihood for finding point estimates of the hy-
perparameters θ of the NCMOGP. Hyperparameters in-
clude the parameters for the smoothing kernels Gd(·), the
kernel function k(t, t′) and the variances for the white
noise processes wd(t), σ2

d. For simplicity in the nota-
tion, we assume that all the outputs are evaluated at the
same set of inputs t = {tn}Nn=1. Let y = [y>1 , · · · ,y>D]>,
with yd = [yd(t1), ·, yD(tN )]>. The log-marginal likelihood
log p(y|t) is then given as

−ND2 log(2π)− 1
2(y− µ(C))>(K(C)

f ,f + Σ)−1

× (y− µ(C))− 1
2 log

∣∣∣K(C)
f ,f + Σ

∣∣∣ ,
where µ(C) ∈ RND×1 has entries given by µ(C)

d (t), K(C)
f ,f ∈

RND×ND has entries computed using k(C)
d,d′(t, t

′) and Σ is

a diagonal matrix containing the variances of the noise
processes per output. We use a gradient-based optimization
procedure to estimate the hyperparameters that maximize
the log-marginal likelihood. Computational complexity for
this model grows as O(D3N3), related to the inversion of
the matrix K(C)

f ,f + Σ. This is the typical complexity in
a full multi-output Gaussian process model [Álvarez and
Lawrence, 2011].

Predictive distribution The predictive distribution
is the same one used for the single-output case. Let
t∗ = [tn,∗]N∗n=1 be the input test set. The predictive dis-
tribution follows as p(y∗|y) = N (y∗|µy∗|y,Ky∗|y), with
µy∗|y = µ

(C)
∗ + K(C)

f∗,f (K̃(C)
f ,f )−1µ(C) and Ky∗|y = K(C)

f∗,f∗ −
K(C)

f∗,f (K̃(C)
f ,f )−1K(C)>

f∗,f + Σ∗, where K̃(C)
f ,f = K(C)

f ,f + Σ. In
these expressions, µ(C)

∗ has entries given by µ(C)(tn,∗);
K(C)

f∗,f∗ has entries given by k(C)
d,d′(tn,∗, tm,∗); and K(C)

f∗,f has
entries given by k(C)

d,d′(tn,∗, tm).

6 EXPERIMENTAL RESULTS

Experimental results are provided for the NCMOGP with
homogeneous and separable kernels. In all the experi-
ments that follow, hyperparameter estimation is performed
through maximization of the log-marginal likelihood as
explained in section 5. We use the normalised mean
squared-error (NMSE) and the negative log-predictive den-
sity (NLPD) to assess the performance.

6.1 Toy example

We set a problem of D = 3 outputs where the smooth-
ing kernels are given as Gd(t − τ) = Sd exp(−Pd(t − τ)2),
with parameters S1 = 5, S2 = 1, S3 = 2, and P1 =
200, P2 = 0.1 and P3 = 100. The latent function fol-
lows as u(t) =

∑4
k=1

(
1
k2

)
cos(2kπt). We then numerically

solve the convolution integral fd(t) =
∫ t

0 Gd(t− τ)u(τ)dτ
for 200 datapoints in the input range [0, 1]. We com-
pute f

(C=3)
d (t) =

∑3
c=1 f

c
d(t) and the observed data is

obtained by adding Gaussian noise with a variance of
σ2
d = 0.005×var

[
f

(C=3)
d (t)

]
. We randomly split the dataset

into a train set of N = 50 per output and the rest of the
datapoints are used for assessing the performance.

Figure 1 shows qualitative results for predictions made by
the CMOGP and a NCMOGP with C = 3. Although the
outputs exhibit a smooth behavior, there are subtle non-
linear characteristics that are not captured by the linear
model. By zooming in on the interval t ∈ [0.4, 0.6] for
output y1(t) (first column in the Figure), we observe that
the predictive mean of the linear model (C = 1) does not
completely follow the data compared to the true non-linear
model (C = 3). For output y3(t) (third column in the
Figure), we observe a similar behavior in the predictive
mean of the linear model in the intervals t ∈ [0.4, 0.8] and
t > 0.9 compared to the predictive mean of the non-linear
model.

Table 1 shows the NMSE and the NLPD for different values
of C for twenty different partitions of the original dataset
into training and testing. We show the average of the metric
plus-or-minus a standard deviation. The performance is
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Figure 1: Comparison of the predictive performance of CMOGP (top row) and NCMOGP with C = 3 (bottom
row) for the dataset synthetically generated. Each column is a different output. Training data is represented
using red dots and Test data using blue dots. The black line in the mean over the predictive GP function, and
the shaded region denotes two times the standard deviation.

similar for the non-linear models with C ≥ 3, although the
model for C = 3 shows the lowest standard deviation.

Table 1: Results for the Toy example.
C NMSE NLPD
1 0.0142 ± 0.0022 −2.6868 ± 0.0794
2 0.0075 ± 0.0012 −2.9641 ± 0.0665
3 0.0071 ± 0.0009 −2.9780 ± 0.0513
4 0.0072 ± 0.0010 −2.9546 ± 0.0960
5 0.0071 ± 0.0011 −2.9428 ± 0.0956

6.2 Weather data

We use the air temperature dataset considered previously by
Nguyen and Bonilla [2014] and used in other multi-output
GP papers. The dataset contains air temperature mea-
surements at four spatial locations on the south coast of
England: Bramble Bank, Southhampton Dockhead, Chich-
ester Harbour and Chichester Bar, usually refer to by the
names Bramblemet, Sotonmet, Cambermet and Chimet,
respectively. The measurements correspond to July 10 to
July 15, 2013. The prediction problem as introduced in
Nguyen and Bonilla [2014] corresponds to predicting consec-
utive missing data in the outputs Cambermet and Chimet,
173 and 201 observations, respectively, using observed data
from all the stations: 1425 observations for Bramblemet,
1268 observations for Cambermet, 1235 for Chimet and

1097 for Sotonmet.

The missing data was artificially removed and we have ac-
cess to the ground-truth measurements. We compare the
non-linear convolution approach to the Intrinsic Coregion-
alization Model (ICM) [Goovaerts, 1997] and Dependent
Gaussian processes (DGP) [Boyle and Frean, 2005]. Both
models can be seen as particular cases of the non-linear
model in Eq. (6). The ICM can be recovered from Eq.
(6) by making C = 1 and Gd,1(·) = ad,1δ(·), where ad is
a scalar that needs to be estimated and δ(·) is the Dirac
delta function.2 DGP is also recovered from (6) assuming
C = 1 and a white-Gaussian process noise model for u(·).

Table 2 reports the mean predictive performance for the
missing observations for five random initialisations of the
models. CMOGP refers to the NCMOGP with C = 1.
The number at the end of NCMOGP indicates the order
C of the non-linear model. Results are shown per output
with missing data. Notice the reduction in the NMSE for
Cambermet for all the non-linear models compared to the
linear models (CMOGP and DGP). Here ICM performs
better than any of the convolution approaches. For Chimet,
there is also a reduction in the NMSE, but only for C = 3
(NCMOGP3) and C = 5 (NCMOGP5). In terms of the
NLPD, the non-linear model with C = 5 (NCMOGP5) has
a competitive performance when compared to the linear

2Notice that we use a rank one ICM since, similarly to
the non-linear model, it only involves one latent function
u(·) [Álvarez et al., 2012]
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model (CMOGP). The averaged NSMEs for the two outputs
are: 0.6989 (C = 1), 0.5717 (C = 2), 0.4309 (C = 3), 0.5456
(C = 4), 0.4753 (C = 5), 0.4425 (ICM) and 0.6431 (DGP).
The averaged NLPDs for the two ouputs are: 2.0613 (C =
1), 3.2479 (C = 2), 2.2550 (C = 3), 2.5460 (C = 4), 1.9600
(C = 5), 2.6848 (ICM) and 1.9925 (DGP). NCMOGP5
offers the best competitive performance both in terms of
the NMSE and the NLPD compared to CMOGP, ICM and
DGP.

Table 2: Results for the Weather dataset.

Model Cambermet Chimet
NMSE NLPD NMSE NLPD

CMOGP 0.6004 1.9830 0.7974 2.1397
NCMOGP2 0.3080 2.1604 0.8354 4.3355
NCMOGP3 0.4366 2.3333 0.4252 2.1766
NCMOGP4 0.2676 2.1075 0.8235 2.9846
NCMOGP5 0.4499 2.0919 0.5007 1.8280

ICM 0.1048 3.2211 0.7801 2.1485
DGP 0.5513 1.9463 0.7349 2.0388

6.3 A high-dimensional input example

The NCMOGP can also be applied for datasets with an
input dimension greater than one. We use a subset of the
SARCOS dataset3 for illustration purposes. The predic-
tion problem corresponds to map from positions, velocities
and accelerations to the joint torques in seven degrees-
of-freedom SARCOS anthropomorphic robot arm. The
datasets contains D = 7 outputs and the dimension of the
input space is p = 21, corresponding to seven positions,
seven velocities, and seven accelerations. The kernels that
we use follow the idea described in Section 5 for higher-
dimensional inputs.

Our setup is as follows: from the file sarcos_inv.mat we
randomly select N = 500 observations for each output
for training and from the file sarcos_inv_test.mat, we
randomly select another 500 observations for testing. We
repeat the experiment ten times for different training and
testing sets taken from the same two files.

Table 3: Results for a subset of the SARCOS dataset.

Model NMSE NLPD
CMOGP 0.0497 ± 0.0252 1.4292 ± 1.1080

NCMOGP2 0.0478 ± 0.0238 1.4067 ± 1.1032
NCMOGP3 0.0571 ± 0.0377 1.4164 ± 1.1401
NCMOGP4 0.0720 ± 0.0855 1.4294 ± 1.0787
NCMOGP5 0.0830 ± 0.0809 1.4674 ± 1.1449

ICM 0.0513 ± 0.0246 1.4208 ± 1.1286
DGP 0.0477 ± 0.0237 1.4221 ± 1.1088

Table 3 shows the averaged NMSE and averaged NLPD
for the ten repetitions plus-or-minus a standard deviation.

3Available at http://www.gaussianprocess.org/gpml/
data/

The non-linear model NCMOGP2 yields better averaged
performance than CMOGP and ICM, in terms of NMSE
and a very similar performance to DGP. In terms of NLPD,
NCMOGP2 outperforms all the other models, indicating
a better performance in terms of the predicted variance.
Something to point out is that when looking at the predic-
tive performance for the different NCMOGP, we noticed
that each output is usually better predicted by different
values of C. For example, in terms of NLPD, the best order
to predict outputs d = 1, 2, 3, 7 would be a non-linear model
with C = 4. The best model for predicting outputs d = 4, 6
would be C = 3, and the best model for predicting output
d = 5 would be C = 5.

7 CONCLUSIONS AND FUTURE
WORK

We have introduced a non-linear extension of the process
convolution formalism to build multi-output Gaussian pro-
cesses. We derived a novel mean function and covariance
function from the non-linear operations introduced by the
transformations in a Volterra series and showed experimen-
tal results that corroborate that these non-linear models
have indeed an added benefit in real-world datasets.

We envision several paths for future work. The most press-
ing one is extending the framework to make it suitable
for larger datasets. We can use similar ideas to the ones
presented in Moreno-Muñoz et al. [2018] to establish a
stochastic variational lower bound for the model introduced
in this paper. Exploring the non-linear models for the case
of latent force models is also an interesting venue. In this
paper we use an smoothing kernel with an EQ form, but it
is also possible to use smoothing kernels that correspond
to Green’s function of dynamical systems. Automatically
learning the smoothing kernel from data is also an alterna-
tive as for example in Guarnizo and Álvarez [2017].

An observation from both the Weather and SARCOS ex-
periments, one that could have been expected, is that the
predictive performances for the outputs are not all equally
good for the same value of C. A potential extension of
our model would be to allow the automatic learning of
the order C per output dimension, say Cd. Additionally,
the kernels we considered were derived assuming that the
Volterra kernels were separable and homogeneous. Relaxing
both assumptions is yet another path for future research.
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