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Abstract

In this paper we introduce a semi-analytic
variational framework for approximating the
posterior of a Gaussian processes coupled
through non-linear emission models. While
the semi-analytic method can be applied to
a large class of models, the present paper is
devoted to the analysis of effective connectiv-
ity between biological spiking neurons. Es-
timating effective connectivity between spik-
ing neurons from measured spike sequences is
one of the main challenges of systems neuro-
science. This semi-analytic method exploits
the tractability of GP regression when the
membrane potential is observed. The result-
ing posterior is then marginalized analyti-
cally in order to obtain the posterior of the
response functions given the spike sequences
alone. We validate our methods on both sim-
ulated data and real neuronal recordings.

1 Introduction

Gaussian process (GP) regression is an elegant tech-
nique for performing inference on infinite-dimensional
functional spaces from a finite number of data points.
When the emission model is Gaussian and linear,
the posterior distribution of a GP regression can be
obtained in closed-form [Rasmussen, 2006]. This is
an enormous advantage since approximate inference
schemes are often unreliable when the dimensionality
of the latent space is large. In this paper we introduce
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a semi-analytic variational method that decouples the
emission model from the latent Gaussian process and,
consequently, leverages the analytic solution in the la-
tent space. Using this general framework, we derive
a method for the estimation of the response function
between biological spiking neurons. The method re-
lies on an important neurophysiological fact concern-
ing neuronal communication: the membrane potential
responds approximately linearly to weak synaptic in-
puts while spike initiation is a highly non-linear func-
tion of the membrane potential [Jagadeesh et al., 1993,
Spruston, 2008].

Action potentials (spikes) are the fundamental units
of neuronal communication [Rieke, 1999]. Spikes orig-
inate from the axon hillock and propagate through the
axon towards the synaptic terminal, where the release
of neurotransmitters affects the membrane potential
of the downstream neurons. While there is a great
deal of computation in the dynamics of a single neu-
ron [Koch, 2004], most of the computational capabil-
ities of biological neuronal networks depend on their
pattern of interconnections [Sporns, 2010]. Mapping
coupling between spiking neurons is therefore a major
goal in system neuroscience. However, inferring effec-
tive connectivity from spike sequences is a challenging
data analysis problem as networks of spiking neurons
are highly non-linear dynamical systems [Izhikevich,
2007].

We begin with a simpler but practically relevant in-
ference where both spikes and membrane potentials
are observed variables. In this case, the posterior dis-
tribution of the resulting connectivity model can be
obtained analytically and is related to the GP-CaKe
method for field-field effective connectivity [Ambro-
gioni et al., 2017]. The main methodological con-
tribution of the paper is to extend the framework
to the case when only the spike sequences are mea-
sured. In this situation, the Bayesian model cannot be
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solved in closed form since the spike initiation model
is non-Gaussian. Furthermore, approximate inference
is complicated by the intractability of the inhomo-
geneous Poisson likelihood [Kingman, 1964, Adams
et al., 2009]. To resolve these difficulties, we use
our new semi-analytic variational approximation that
combines the analytic solution of the response function
given the membrane potential with a likelihood-free
stochastic estimation of the membrane potential.

2 Semi-analytic variational Gaussian
process regression

We start by introducing the semi-analytic method with
a simpler class of problems where a latent function
f(x) generates observations y through a non-Gaussian
likelihood. The most common example of this class of
problems is GP classification, where the observations
are binary variables [Rasmussen, 2006]. Consider the
following observation model:

yj ∼ p(y | f(tj)) , (1)

where p is an arbitrary distribution conditional on
f(xj). We assume that the latent function f fol-
lows a GP distribution with zero mean and covariance
function k(t, t′). Given a set {t1, ..., tN} of observa-
tion time points, we collect the observations and the
latent values into the vectors y = (yt1 , ..., ytn) and
f = (f(t1), ..., f(tn)). We denote the covariance ma-
trix of f at the observation time points as K. Our
aim is to obtain the posterior distribution of the val-
ues of the latent functions on an arbitrary set of tar-
get time points {t∗1, ..., t∗m}. We collect these values
in the vector f∗ and we denote the cross-covariance
matrix between observation and target time points as
K∗. Furthermore, we denote the covariance matrix at
the target points as K∗∗. To find an approximate pos-
terior distribution, we adopt a joint-contrastive varia-
tional scheme [Ambrogioni et al., 2018, Huszár, 2017].
We begin by defining the factorized variational joint
distribution:

q(f ,f∗,y) = q(f∗ | f) q(f | y) p(y) (2)

We obtain the variational distributions q(f∗ | f) and
q(f | y) by minimizing the forward KL divergence be-
tween the variational joint and the model joint:

DKL(p‖q) = Ef ,f∗,y∼p

[
log

p(f ,f∗,y)

q(f ,f∗,y)

]
.
=q Ef ,f∗,y∼p

[
log

p(f∗ | f)

q(f∗ | f)

]
− Ef ,y∼p[log q(f | y)] ,

(3)

where
.
=q denotes equality up to additive terms that

are constant in the variational distributions q(f∗ | f)

and q(f | y). The first term of this expression is the
KL divergence between p(f∗ | f) and q(f∗ | f). Since
p(f∗ | f) is the posterior distribution of a noiseless GP
regression, the variational distribution q(f∗ | f) is a
multivariate Gaussian distribution and can be opti-
mized analytically:

q(f∗ | f) = N
(
f∗;K∗K

−1f ,Kpost

)
,

where Kpost = K∗∗ − K∗K−1KT
∗ is the posterior co-

variance matrix. The remaining term involves the vari-
ational distribution q(f | y) and cannot be optimized
in closed-form. We parameterize this term as a mix-
ture of Gaussians:

q(f | y) =

K∑
k

w(y)N (f ;µk(y),Σk(y)) , (4)

where the weights, means and covariances are given by
parameterized nonlinear functions of y. These trans-
formations can be trained by minimizing the remaining
part of the variational loss using stochastic gradient
descent:

L[q] = −Ef ,y∼p[log q(f | y)] . (5)

This loss has a simple interpretation. We sample both
f and synthetic observations y from the generative
model and we train a model to invert this operation by
maximizing the probability of the observations given
the latent. This is an example of amortized inference
since we train a whole family of posterior distribu-
tions at once. Finally, we can obtain the marginalized
variational posterior q(f∗ | y) by marginalizing out f
analytically:

q(f∗ | y) =

∫
p(f∗ | f) q(f | y) df

=

K∑
k

w(y)

∫
p(f∗ | f)N (f ;µk(y),Σk(y))

=

K∑
k

w(y)N
(
f∗;K∗K

−1µk(y), Ck

)
, (6)

where Ck = Kpost +K∗K
−1Σk(y)K−1KT

∗ .

3 Spike-membrane effective
connectivity analysis

We can now move to neuronal connectivity analysis.
We begin by introducing a nonparametric Bayesian
method for estimating the response function when
both spike sequences and membrane potentials are
observed variables. Besides its intrinsic relevance in
several experimental settings, this method is also an
important analytically tractable component of our
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Figure 1: A. The generative model as explained in the text. For simplicity of the notation, the relevant variables
are only shown for two neurons. Note that the membrane potentials m can be either observed or latent. In the
latter case we use the variational approach. B. A draw from the generative model for two neurons connected
through a single unidirectional excitatory connection as well as the variational recovery of the membrane and
action potentials. The shaded regions indicate one standard deviation.

method for spike-spike connectivity. We begin by
defining a linear dynamical model of the membrane
potential that captures the linear response of the mem-
brane potentials to weak synaptic inputs.

3.1 A linear dynamical model of the
membrane potential

Consider a network of N interconnected neurons. In
the following, we will denote the membrane potential
of the j-th neuron as mj(t) and its spike sequence as
the sum of delta functions sk(t) =

∑
k δ(t−tj,k) where

tj,k is the timestamp of the k-th spike of the j-th neu-
ron. The linear response of a neuronal membrane to
a synaptic input can be described using a differential
equation [Dayan and Abbott, 2001]:

τ
d

dt
mj(t) = −mj(t) + Ij(t) , (7)

where the time constant τ determines the time that
the membrane needs to return to baseline after a per-
turbation. The synaptic input from the other N − 1
neurons in the network is given by the following func-
tion:

Ij(t) =

N∑
k=1,k 6=j

ck→j(t) ? sk(t) + wj(t) , (8)

where the operator ? denotes convolution. The addi-
tional stochastic term wj(t) is Gaussian white noise
with variance σ2 and accounts for unmeasured per-
turbations. The causality of the neuronal network is

guaranteed as the response function ck→j(t) vanishes
for negative values of t.

3.2 Analytic GP regression for
spike-membrane effective connectivity

We use the dynamical model specified by Eq. 7 and
Eq. 8 as an implicit likelihood of a nonparametric
Bayesian model. The model is defined by assigning
a GP prior over the space of response functions ck→j .
The posterior distribution of ck→j is a GP and can
be obtained in closed-form because both the deriva-
tive and the convolution in Eq. 7 and Eq. 8 are linear
operators. In the frequency domain, Eq. 7 and Eq. 8
can be jointly written as

mj(ω) =

N∑
k=1

ck→j(ω)γk(ω) + w̃j(ω) , (9)

where

γk(ω) = (−iωτ+1)−1sk(ω) = (−iωτ+1)−1
∑
j

e−iωtk,j

and
w̃j(ω) = (−iωτ + 1)−1wj(ω) .

Eq. 7 defines a nonparametric regression problem
where mj(ω) is the observed data, γk(ω) are known
mixing functions and ck→j(ω) are the unknowns.
Problems of this form have an analytic solution when
the prior distributions over ck→j(ω) are GPs [Ras-
mussen, 2006]. To assure the causality of the response
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functions we adopt the causal covariance function that
was introduced in [Ambrogioni et al., 2017]. In the
frequency domain this covariance function can be ex-
pressed as

K(ω1, ω2) = (10)

f(ω1, ω2) (sSE(ω2 − ω1) + iHsSE(ω2 − ω1)) ,

where f(ω1, ω2) is a function that induces smoothness
by discounting the high frequency components, sSE(ω)
is the spectral density of a squared exponential covari-
ance function and H denotes the Hilbert transform
which enforces causality. The resulting GP prior in-
duces causality, smoothness and temporal localization
of the response function. See Appendix A for more
details on the construction of this covariance function.

Consider a set of M time points {t1, ..., tM} and a vec-
tor of measured membrane potentials mu = m(tu).
The posterior expected value of ck→j is given by

c̄k→j(t) =
∑
u,v

WuvmvK(t, tu) , (11)

where the GP weights Wuv depend on the covariance
function and can be obtained using standard GP re-
gression techniques in the frequency domain. The ma-
trix formula for the weights is given in Appendix B.
The time domain covariance function in Eq. 11 is the
inverse Fourier transform of Eq. 10 with respect to
both of its arguments.

4 Spike-spike effective connectivity
analysis

We can now use the results of the previous section in
order to derive a semi-analytic solution to the more
challenging problem of spike-spike connectivity.

4.1 A non-linear model of spike initiation

In biological neurons, spike initiation depends on the
non-linear dynamics of the membrane potential and
of several ionic channels [Izhikevich, 2007]. We ap-
proximate these dynamics using a stochastic model.
Specifically, the firing rate f(t) is obtained by passing
the rescaled membrane potential through a compres-
sive non-linearity:

f(t) = a σ(b mj(t) + φ) , (12)

where a is the maximum firing rate and σ(·) is the
logistic sigmoid with b and φ its gain and threshold
parameters respectively. The resulting spike sequence
follows a nonhomogeneous Poisson process with den-
sity function f(t) [Kingman, 1964]. This model is ad-
mittedly a simplification. For example, it does not

take into account the refractory period [Kandel et al.,
2000]. However, we adopt this model only for the sake
of simplicity and the variational Bayesian model that
is introduced in the next section can be used with any
other spike initiation model without substantial mod-
ifications.

4.2 Semi-analytic variational GP regression
for spike-spike effective connectivity

To simplify the notation we will explain the analy-
sis for the case of two neurons. All results general-
ize straightforwardly to arbitrary network structures.
Given a set of M sample time points {t1, ..., tM},
we organize the sampled time-series in the arrays
sj = (sj(t1), .., sj(tM )),mj = (mj(t1), ..,mj(tM )) and
c2→1 = (c2→1(−tM/2), .., c2→1(tM/2)). The graphical
model is shown in Fig. 1. This model is summarized
by the following factorized joint distribution:

p(s1,m1, c2→1 | s2) = (13)

p(s1 |m1) p(m1 | c2→1, s2) p(c2→1) ,

where we conditioned on the spike sequence s2. Our
aim is to obtain p(c2→1 | s1, s2), i.e., the posterior
distribution of the response function given the two
spike sequences. Most existing variational meth-
ods do not directly leverage the analytic solution of
p(c2→1 |m1, s2) and require the evaluation of the in-
tractable likelihood p(s1 |m1) [Hoffman et al., 2013,
Ranganath et al., 2014, Rezende et al., 2014]. There-
fore we developed a new semi-analytic variational ap-
proximation that fully exploits the analytic tractabil-
ity of the latent GP analysis. We begin by defining
the following structured joint variational distribution:

q(s1,m1, c2→1 | s2) = (14)

q(c2→1 |m1, s2) q(m1 | s1) p(s1) ,

where p(s1) is the real marginal distribution of s1.
In this variational factorization we assumed that the
distribution of the membrane potential m1 solely de-
pends on the spike sequence s1. We can find the distri-
butions q(c2→1 |m1, s2) and q(m1 | s1) by minimiz-
ing the following functional:

L[q] = Ep(s2)[DKL(p‖q)] . (15)

Note that this functional is a proper (joint-contrastive)
variational loss since it is always non-negative
and vanishes if and only if p(s1,m1, c2→1, s2) =
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q(s1,m1, c2→1, s2). We can rearrange the loss as:

Ep(s2)[DKL(p‖q)] =

Ep(s1,m1,c2→1,s2)

[
log

p(s1,m1, c2→1 | s2)

q(s1,m1, c2→1 | s2)

]
.
=q Ep(m1,c2→1,s2)

[
log

p(c2→1 |m1, s2)

q(c2→1 |m1, s2)

]
− Ep(m1,s1)[log q(m1|s1)]

= Ep(s2,m1)[DKL(p(c2→1|s2,m1)‖q(c2→1|s2,m1))]

− Ep(m1,s1)[log q(m1|s1)] , (16)

where
.
=q denotes that the expressions are equal up to

terms that are constant in q. The first term of this
expression is an expectation of a KL divergence and
therefore vanishes when q(c2→1|s2,m1) is equal to the
real posterior p(c2→1|s2,m1), which can be expressed
analytically (see Eq. 11). We can parameterize the
remaining term as a mixture of Gaussian distributions:

q(m1|s1) =
∑
h

αh(s1)N (m1;µh(s1), Qh(s1)) , (17)

where the scalar-valued functions αh(s1), the vector-
valued functions µh(s1) and the matrix-valued func-
tions Qh(s1) are determined by expressive regression
models such as deep convolutional networks [Goodfel-
low et al., 2016]. The parameters of these networks
can be trained by minimizing the remaining term of
the variational loss

L[p(c2→1 |m1, s2)
.
=q

q(m1 | s1) p(s1)]− Ep(m1,s1)[log q(m1|s1)] , (18)

whose gradient can be easily sampled without bias by
sampling from the model marginal p(m1, s1). Opti-
mizing Eq.18 requires to train the regression models
αh(s1), µh(s1) and Qh(s1) separately every time we
want to analyze a new network structure since the dis-
tribution p(m1, s1) includes the (marginalized) effects
of all neurons. In order to increase the efficiency of
the method we approximate p(m1, s1) with the joint
distribution of a single uncoupled neuron. This is a
weak coupling approximation since we are assuming
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the (cumulative) coupling strength between neurons to
be small compared to the stochastic input. We analyze
the consequences of this approximation in our experi-
ments below. We can now obtain the variational pos-
terior q(c2→1 | s1, s2) by marginalizing the variational
distribution analytically:

q(c2→1 | s1, s2) =

∫
p(c2→1 |m1, s2) q(m1 | s1) dm1

=
∑
h

αh(s1)N
(
c2→1;Wµh(s1),Kp +WQh(s1)WT

)
,

(19)

where W are the GP weights (see Eq. 11) and Kp is the
covariance matrix of the posterior p(c2→1 |m1, s2).
We refer to our method of spike-spike connectivity es-
timation as SpikeCaKe (Spike GP Causal Kernels).

5 Related work

Several techniques have been used to identify spike-
spike connectivity. Simple nonparametric methods
such as histograms have a long history and are still
widely applied [Perkel et al., 1967]. Parametric meth-
ods based on the generalized linear model (GLM) often
offer a better signal-to-noise ratio [Brown et al., 2004].
The models introduced in this paper are strictly re-
lated to GP classification and can therefore be con-
sidered as the nonparametric generalization of GLM
based methods [Rasmussen, 2006]. Other modern ap-
proaches are based on dynamic Bayesian networks [El-
dawlatly et al., 2010] and Cox processes [Berry et al.,
2012]. We will now devote special attention to meth-
ods based on Hawkes processes, given their theoretical
similarity to our approach.

5.1 Spike-spike connectivity with Hawkes
Processes

The multivariate stochastic process defined in this pa-
per has some similarity with a Hawkes process [Liniger,
2009]. While most of the existing literature based on
Hawkes processes assumes a simple parametrization
for the response functions, several new studies intro-
duced the use of nonparametric methods [Zhou et al.,
2013, Rousseau et al., 2018, Yang et al., 2017]. Hawkes
processes have been successfully used in neuroscience
settings in order to infer spike-spike effective connec-
tivity [Reynaud-Bouret et al., 2013, Lambert et al.,
2017]. In a Hawkes process the spike density of the
j-th unit is a linear functional of the spike sequences
of the other units:

fj(t)− µj =
∑
k

ck→j(t) ? sk(t) , (20)

where µj is the baseline spike density. Note that Eq. 20
is strikingly similar to our Eq. 7. The difference is

that in a Hawkes Process the spike density is a lin-
ear functional of the input spike sequences while in
our model the linear response is defined at the level
of the latent membrane potential. From a biophysical
point of view, linearity of the spike density response
is not a realistic assumption since spike initiations in
biological neurons are determined by highly non-linear
‘threshold’ events [Izhikevich, 2007]. Another obvious
problem of Eq. 20 is that the spike density could be-
come negative in the presence of inhibitory responses.
Conversely, in our model a highly negative membrane
potential simply corresponds to a very low but positive
spike density. The similarity between Eq. 7 and Eq. 20
implies that both the analytic and the semi-analytic
methods introduced in this paper can be applied to
Hawkes processes as well. The analytic method can-
not be applied on real data since the spike density is
not directly measurable. Nevertheless we will use it
as an idealized baseline comparison in our simulation
studies where we know the ground truth.

6 Simulated effective connectivity

Here we validate the reconstructions by SpikeCaKe.
The details of the deep neural networks used for the
estimation of the membrane are given in appendix E.
The performance of spike-spike connectivity methods
and non-linear regression in general is strongly affected
by the form of regularization used. In order to have a
balanced comparison we compare the performance of
our method with its equivalent Hawkes process model
where the prior covariance function and the approxi-
mative inference methods are exactly the same. We
also include a comparison with a simpler nonpara-
metric method based on spike-spike histograms [Perkel
et al., 1967].

First we define five different network structures, as
shown in Fig. 4A. For each of these structures, which
may contain both excitatory and inhibitory inter-
actions, we generate 200 trials of observable mem-
brane potentials and spikes according to the generative
model of Section 4.2. The true connection strength w
is varied to investigate its effect on the recovery of
the response function. More details of the simulation
procedure can be found in Appendix C. The first two
networks simply demonstrate the recovery of either ex-
citatory, inhibitory or absent coupling. An example of
a single trial of simulated data is shown in Fig. 1B. The
leftmost subfigures show the recovery of the membrane
potential using the variational procedure. Note that
as expected the spike density of neuron 2 is tempo-
rally concentrated near the spikes of the input neuron.
Importantly, the transformation from membrane po-
tentials to firing probabilities is non-linear, which is
one of the main differences between SpikeCaKe and
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the Hawkes process. Similarly, the rightmost figures
show how the firing rates may be reconstructed using
the variational method.

Figure 3 shows the variational approximation of the
membrane potential for the first network, this time for
different coupling strengths w. As the figure shows,
the membrane potentials recovered well for the neu-
rons that received no input (i.e. the top row of the fig-
ure). For the neurons that did receive input the mem-
brane potential approximation deteriorates in its esti-
mation of the magnitude when the coupling strength
is increased. This is due to the violation of the as-
sumption that neurons are only weakly coupled and
have their activity predominantly driven by internal
dynamics. Despite this, the correlation between the
true and the estimated membrane potential remains
high and, as we will show below, sufficient to recover
the coupling structure.

6.1 Recovery of effective connectivity

As an example, Fig. 2 shows the recovered response
functions for the two-neuron network with a single in-
hibitory connection. Both variants of SpikeCaKe suc-
cessfully distinguish present and absent coupling and
correctly identify that the present connection is in-
hibitory. In addition, we show the cross-correlation
estimation of this connection. While this more tradi-
tional approach also identifies the inhibitory coupling,
it fails to classify the other connection as absent, as can
be seen from the estimated effect sizes (see Appendix

C) for the two connections.

To further quantify these results we use the estimated
response functions to recover the coupling structures
from Fig. 4A. The presence of a connection is esti-
mated via a z-test at the peak of the true response
function while its directionality is given by the sign of
the corresponding z-score (more details are provided
in Appendix C). The performance is scored using the
root-mean-squared-error between the true adjacency
matrix describing the coupling structure and the esti-
mated structure. The results of this analysis are shown
in Fig. 4B. From these results it is apparent that both
SpikeCaKe variants consistently provide the best es-
timates of the coupling structure. In many cases the
recovery is (near) perfect.

When the coupling strength w is increased the assump-
tion of weak coupling is again violated. We see that
this is particularly detrimental for the networks with
common causes and transitive effects. However, when
the true membrane potential is observed, SpikeCaKe
still estimates the coupling structure nearly perfectly.
Also, even for these more complex cases, the varia-
tional SpikeCaKe approach outperforms both variants
of the Hawkes process, even the idealized case where
the true firing rates are known. Interestingly, for some
networks the Hawkes process in fact performs better
with the estimated firing rates than with the true ones.
Presumably this is due to the smoothing induced by
the variational approach, which causes the estimated
firing rates to be more similar to membrane potentials.
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Figure 5: Estimated effective connectivity between three neuronal clusters in entorhinal cortex for four conditions
(see Appendix D. The insets show the (average) correlation between the response functions for the four different
conditions.

7 Analysis of real spike trains:
connectivity in rat entorhinal cortex

To illustrate a more realistic application of our pro-
posed methods we applied both the SpikeCaKe and
the Hawkes process to multi-unit recordings of rat en-
torhinal cortex [Mizuseki et al., 2014, 2013]. Details of
the data acquisition and preprocessing can be found
in Appendix D. For these data sets only the spikes
were observed so we estimated the membrane poten-
tials and firing rates for SpikeCaKe and the Hawkes
process respectively using the semi-analytic variational
approach. As the ground truth is obviously unavail-
able, we estimated coupling in two different condi-
tions (condition one consists of the rat moving freely
in an open square; condition two consists of the rat
navigating through a linear maze) and looked at the
between-session reproducibility for validation of the
procedures. The estimated response functions between
three electrodes are shown in Fig. 5. Overall, Spike-
CaKe and the Hawkes process resulted in similar re-
sponse functions, although slight differences may be
observed in the estimated coupling structure. Clearly
there is strong correspondence in the response func-
tions within conditions, while at the same time the
response functions between the conditions are fairly
different, showing the sensitivity of the methods. The
reproducibility is further quantified in the correlations
between the response functions for each pair of condi-
tions (see inset in Fig. 5).

8 Conclusion

We introduced two new nonparametric Bayesian mod-
els for spike-membrane and spike-spike connectivity

analysis. We obtain an approximate semi-analytic
posterior for the spike-spike problem by minimizing a
new likelihood-free variational loss. This semi-analytic
method has wide applicability outside our current
model since it can be used every time a latent GP
regression is coupled to a non-linear emission model.
For example, our semi-analytic variational method can
be directly used in a calcium imaging setting where
the spikes are observed through a non-linear calcium
response [Packer et al., 2015].
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