
Optimizing over a Restricted Policy Class in MDPs

Ershad Banijamali Yasin Abbasi-Yadkori Mohammad Ghavamzadeh Nikos Vlassis

University of Waterloo Adobe FAIR Netflix

Abstract

We address the problem of finding an optimal
policy in a Markov decision process (MDP)
under a restricted policy class defined by the
convex hull of a set of base policies. This
problem is of great interest in applications
in which a number of reasonably good (or
safe) policies are already known and we are
interested in optimizing in their convex hull.
We first prove that solving this problem is
NP-hard. We then propose an e�cient algo-
rithm that finds a policy whose performance
is almost as good as that of the best con-
vex combination of the base policies, under
the assumption that the occupancy measures
of the base policies have a large overlap. The
running time of the proposed algorithm is lin-
ear in the number of states and polynomial
in the number of base policies. A distinct
advantage of the proposed algorithm is that,
apart from the computation of the occupancy
measures of the base policies, it does not need
to interact with the environment during the
optimization process. This is especially im-
portant (i) in problems that due to concerns
such as safety, we are restricted in interact-
ing with the environment only through the
(safe) base policies, and (ii) in complex sys-
tems where estimating the value of a policy
can be a time consuming process.

1 Introduction

In many control and reinforcement learning problems,
a number of reasonable (safe) base policies are known.
For example, these policies might be provided by an
expert. A natural question is whether a combination

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

of these base policies can provide an improvement over
a default policy. This problem is especially important
when the number of states is large and the exact com-
putation of the optimal policy is not feasible. One way
to formulate the problem is to define a policy space
that includes all mixtures of the base policies. A pol-
icy in this class samples a base policy at each state and
acts according to that, as opposed to sampling a base
policy at the initial state and running it until the end.

A popular method to optimize a parameterized policy
is policy gradient, which typically employs a variant of
the gradient descent/ascent method (Williams, 1992;
Sutton et al., 2000; Baxter and Bartlett, 2001; Peters
et al., 2005; Bhatnagar et al., 2009). Although in some
applications the quality of the solution is high, the
policy gradient methods often converge to some local
minima as the problem is highly non-convex. Further,
computing a gradient estimate can be an expensive
operation. For example, the finite di↵erence method
requires running a number of policies in each iteration
and estimating the value of a policy in a complicated
system might require a long running time.

In this paper, we show a number of results on the
problem of policy optimization in a restricted class of
mixture policies. First, we show that both solving and
approximating the optimization problem is NP-hard.
The hardness result is obtained by a reduction from
the independent-set problem for graphs and an ap-
plication of the Motzkin-Straus theorem for optimizing
quadratic forms over the simplex (Motzkin and Straus,
1965). This result is somewhat surprising, since the
same problem is known to be easy (in the complexity
class P), if the space of base policies includes all MDP
policies (an exponentially large space!) (Papadimitriou
and Tsitsiklis, 1987). The critical di↵erence is that
in the unconstrained case an optimal MDP policy is
known to be deterministic, in which case linear pro-
gramming or policy iteration are known to run in poly-
nomial time (Ye, 2005), whereas in the restricted case
an optimal policy may need to randomize.

Although this hardness result is somewhat disappoint-
ing, we show that an approximately optimal solution
can be found in a reasonable time when the occu-

Optimizing over a Restricted Policy Class in MDPs

pancy measures of the base policies have large over-
lap. We obtain this result by formulating the problem
in the dual space. More specifically, instead of search-
ing in the space of mixture policies, we construct a
new search space that consists of linear combinations
of the occupancy measures of the base policies. Each
such linear combination is not an occupancy measure
itself, but it defines a policy through a standard nor-
malization. Importantly, this new policy space also
contains the base policies and so finding a near optimal
policy in this class also provides a policy improvement
w.r.t. the initial base policies. The objective function
in the dual space is still highly non-convex, but we
can exploit the convex relaxation proposed by Abbasi-
Yadkori et al. (2014) to have an e�cient algorithm
with performance guarantees. Abbasi-Yadkori et al.
(2014) study the linear programming approach to dy-
namic programming in the dual space (space of occu-
pancy measures) and propose a penalty method that
minimizes the sum of the linear objective and a num-
ber of constraint violations.

To demonstrate the idea, consider the problem of con-
trolling the service rate of a queue where jobs arrive
at a certain rate and the cost is the sum of the queue
length and the chosen service rate. Consider two poli-
cies, one that selects low and one that selects high
service rates. The space of the mixture of these two
policies is rich and is likely to contain a policy with
low total cost. We can generate a wide range of ser-
vice rates as a convex combination of these two base
policies. Now let us consider the dual space. The oc-
cupancy measures of the first and second policies are
concentrated at large and small queue lengths, respec-
tively. It can be shown that the linear combination of
occupancy measures can generate a limited set of poli-
cies that are either similar to the first policy or the
second one. In short, although the space of mixture
policies is a rich space (and hence the optimization is
NP-hard in that space), the space of dual policies can
be more limited. More crucially, if the base policies
have some similarities so that their occupancy mea-
sures overlap, then we can generate non-trivial policies
in the dual space that can be competitive with the mix-
ture policies in the primal space. We show that this is
indeed the case in our experiments in Section 5.

Let us compare our algorithm with the traditional pol-
icy gradient in the space of mixture of policies. Al-
though the space of the mixture of the base policies
is rich and is likely to contain a policy with lower to-
tal cost than any policy that is a mixture of the oc-
cupancy measures of the base policies, our approach
has several advantages. First, policy gradient is more
computationally demanding. Gradient descent needs
to perform several rollouts in each round to estimate

the gradient direction. In a complicated system, the
mixing times can be large, and thus, we might need to
run a policy for a very long time before we can reli-
ably estimate its gradient. In contrast, and as we will
show, apart from the initial rollouts to estimate the
occupancy measures of the base policies, the proposed
method does not need to interact with the environ-
ment when optimizing in the dual space. Second, our
approach is safe; during the optimization phase, we
only need to execute the base policies that are assumed
to be safe. In contrast, policy gradient in the primal
space evaluates many policies in the intermediate steps
that some of them may not be safe to be executed.
Furthermore, our method enjoys stronger theoretical
guarantees than the policy gradient method.

1.1 Notation

Let M
i,: and M:,j denote ith row and jth column of

matrix M , respectively. We denote by I an identity
matrix, and by 1

n

and 0
n

, n-dimensional all one and
all zero vectors, respectively. We use 0

mm

to denote
the all-zero m ⇥ m matrix and e

i

to denote the unit
m-vector (1 at position i and 0 elsewhere). We also
use 1 {.} to denote the indicator function, and ^ and
_ to denote the minimum and maximum. We define
[v]+ = v _ 0 and [v]� = v ^ 0. For vectors v and w,
v w means element-wise inequality, i.e., v

i

 w
i

, for
all i. We use �S to denote the space of probability
distributions defined on the set S. For positive integer
m, we use [m] to denote the set {1, 2, . . . ,m}.

2 Preliminaries

In this paper, we study reinforcement learning
(RL) problems in which the interaction between the
agent and environment has been modeled as a dis-
crete1 discounted MDP. A discrete MDP is a tuple
hX ,A, c, P,↵, �i, where X and A are the sets of S
states and A actions, respectively; c : X ! [0, 1] is
the cost function; P : X ⇥ A ! �X is the transition
probability distribution that maps each state-action
pair to a distribution over states �X ; ↵ 2 �X is the
initial state distribution; and � 2 (0, 1) is the discount
factor. We are primarily interested in the case where
the number of states is large. We assume that the cost
does not depend on the action, although a number of
our results can be extended to action-dependent costs.
With an abuse of notation, we also use c to denote a
(SA)-dimensional vector such that c(x, a) = c(x) for
any x 2 X and a 2 A. The restriction that costs are
bounded in [0, 1] interval is to simplify the notation
and can be relaxed to other bounded ranges. Since we

1In a remark at the end of Section 4, we will discuss
extension to continuous-state problems.

Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis

consider discrete MDPs, all the MDP-related quanti-
ties can be written in vector and matrix forms.

We also need to specify the rule according to which
the agent selects actions at each state. We assume
that this rule does not depend explicitly on time. A
stationary policy ⇡ : X ! �A is a probability distri-
bution over actions, conditioned on the current state.
The MDP controlled by a policy ⇡ induces a Markov
chain with the transition probability P

⇡

and cost func-
tion c

⇡

= c. We denote by J
⇡

the value function of
policy ⇡, i.e., the expected sum of discounted costs of
following policy ⇡, and by ⌫

⇡

2 �X and µ
⇡

2 �X⇥A
the state and state-action occupancy measures under
policy ⇡ and w.r.t. the starting distribution ↵, i.e.,

⌫
⇡

(x) = (1� �)
X

x

02X
↵(x0)

1X

t=0

�tP(X
t

= x|X0 = x0),

and µ
⇡

(x, a) = ⌫
⇡

(x)⇡(a|x). Note that when x0 ⇠
↵, we may write P(X

t

|X0) = ↵>P t

⇡

, and thus, ⌫>
⇡

=
(1� �)↵>(I � �P

⇡

)�1, where I is the identity matrix.
Given a policy class ⇧, the goal is to find a policy
⇡ 2 ⇧ that minimizes J(⇡) = ↵>J

⇡

. It is easy to
show that J(⇡) = ⌫>

⇡

c
⇡

= µ>
⇡

c.

In this work, we are interested in the policy opti-
mization problem where the policy class ⇧ is defined
as a mixture of m base policies {⇡1, . . . ,⇡m

}, i.e.,
⇧ =

�
⇡
w

: ⇡
w

=
P

m

i=1 wi

⇡
i

, w 2 �[m]

. We assume

that the transition dynamics of the base policies are
known. This assumption is only used for estimating
the stationary distributions and average costs of the
base policies. The extension to the unknown dynamics
and costs (the RL problem), and the extension to the
continuous state problems are discussed in a remark
at the end of Section 4. We call the policy space ⇧
the primal space. Executing a policy ⇡

w

2 ⇧ amounts
to sampling one of the m base policies from the dis-
tribution w 2 �[m] at each time step, and then acting
according to this policy. Finding the best policy in ⇧
requires solving the following optimization problem

min
w2�[m]

J(⇡
w

) = min
w2�[m]

↵>J
⇡w . (1)

We denote by w⇤ the solution to (1) and use ⇡⇤ = ⇡
w

⇤ .
For a positive constant R, we define the dual space of ⇧
as the space of linear combinations of the state-action
occupancies of the base policies, i.e.,

⌅ =
�
⇠
✓

: ⇠
✓

=
mX

i=1

✓
i

µ
⇡i , ✓ 2 ⇥

, (2)

where ⇥ =
�
✓ 2 Rm :

P
m

i=1 ✓i = 1, k✓k2 R

. Here,

R is the radius of the parameter space and restricts the
size of the policy class. Note that given the definition

of ⇥, each ⇠
✓

2 ⌅ is not necessarily a state-action oc-
cupancy measure. However, each ⇠

✓

2 ⌅ corresponds
to a policy ⇡

✓

, defined as

⇡
✓

(a|x) = [⇠
✓

(x, a)]+P
a

02A[⇠✓(x, a
0)]+

. (3)

If ⇠
✓

(x, a) 0 for all a 2 A, we let ⇡
✓

(.|x) be the
uniform distribution. If ⇠

✓

is the state-action occu-
pancy measure of a policy ⇡, it can be shown that
⇡
✓

= ⇡. This implies that the base policies are in the
dual space. We denote by µ

⇡✓ the state-action occu-
pancy of policy ⇡

✓

. The policy optimization problem
in the dual space is defined as

min
✓2⇥

J(⇡
✓

) = min
✓2⇥

↵>J
⇡✓ = min

✓2⇥
µ>
⇡✓
c , (4)

where ⇡
✓

is computed from ✓ using Equation 3.

3 Hardness Result

In this section, we show that the policy optimization
problem in the primal space (Eq. 1) is NP-hard. At a
high level, the proof involves designing a special MDP
and m base policies such that solving Eq. 1 in polyno-
mial time would imply P=NP.

Theorem 3.1. Given a discounted MDP, a set of poli-

cies, and a target cost r, it is NP-hard to decide if there

exists a mixture of these policies that has expected cost

at most r.

Proof. We reduce from the independent-set prob-
lem. This problem asks, for a given (undirected and
with no self-loops) graph G with vertex set V , and a
positive integer j |V |, whether G contains an inde-
pendent set V 0 ✓ V having |V 0| � j. This problem is
NP-complete (Garey and Johnson, 1979).

Let G be the m ⇥m (symmetric, 0-1) adjacency ma-
trix of an input graph G, and let A = I + G, where
I is the identity matrix. The reduction constructs a
deterministic MDP with m + 3 states and m + 3 ac-
tions, and m deterministic policies ⇡

i

that induce cor-
responding chains P

⇡i , for i = 1, . . . ,m, where each
(m+ 3)⇥ (m+ 3) matrix P

⇡i reads

P
⇡i =

2

664

0 e>
i

0 0
0
m

0
mm

A:,i 1
m

�A:,i

0 0>
m

0 1
0 0>

m

0 1

3

775 . (5)

A mixture ⇡
w

of the base policies, with weights w,
induces the chain

P
⇡w =

mX

i=1

w
i

P
⇡i =

2

664

0 w> 0 0
0
m

0
mm

Aw 1
m

�Aw
0 0>

m

0 1
0 0>

m

0 1

3

775 . (6)

Optimizing over a Restricted Policy Class in MDPs

It is easy to see that, for each k � 3, the kth power of
P
⇡w is equal to P k

⇡w
= [0(m+3)(m+2), 1m+3] (all zeros

except for the last column that is all ones), while its
square P 2

⇡w
reveals the quadratic form w>Aw in po-

sition (1,m + 2). Hence, for initial state distribution
↵ = [1, 0, . . . , 0]> (all mass on the first state), state-
only-dependent cost vector c = [0, . . . , 0, 1, 0]> (all ze-
ros except for 1 in the (m+ 2)’th state), and discount
factor � < 1, the expected discounted cost of ⇡

w

is

J(⇡
w

) = (1� �)↵>(I � �P
⇡w)

�1c

= (1� �)↵>(I + �P
⇡w + �2P 2

⇡w
+ . . .)c

= (1� �)�2 w>Aw . (7)

For any graph G with m vertices and adjacency matrix
G, the following holds (Motzkin and Straus, 1965):

1

!(G) = min
y2�[m]

y>(I +G)y , (8)

where !(G) is the size of the maximum independent

set of G. Let the target cost be r = (1��)�2

j

, where j is
the target integer of the independent-set instance.
Then the decision question J(⇡

w

) r is equivalent
to w>(G + I)w 1

j

, where we used (7). Hence, it

follows from (8) that the existence of a vector w that
satisfies J(⇡

w

) r would imply !(G) � j, and thus,
|V 0| � j for some independent set V 0 ✓ V . This
establishes that, deciding the MDP policy optimiza-
tion problem in polynomial time would also decide the
independent-set problem in polynomial time, im-
plying P=NP.

Remark 1: The same technique can be used to
show NP-hardness of the problem under an average
cost criterion. This only requires changing the last
two rows of the matrices P

⇡i , by having the 1’s in
the first column instead of the last column. In that
case, if ⌫

⇡w = [x, v>, y, z]> is the stationary dis-
tribution of P

⇡w , where v is an m-vector and x, y, z
scalars, we can algebraically solve the eigensystem
⌫>
⇡w

= ⌫>
⇡w

P
⇡w (by elementary manipulations), to get

v = w and y = w>Aw. Hence, for a cost vector
c = [0, . . . , 0, 1, 0]>, the average cost of the MDP un-
der w is w>Aw, and by choosing target cost r = 1

j

the
Motzkin-Straus argument applies as above.

Remark 2: Optimizing over a restricted policy class
essentially converts the MDP to a POMDP, for which
related complexity results are known (Papadimitriou
and Tsitsiklis, 1987; Mundhenk et al., 2000; Vlassis
et al., 2012; Kumar and Zilberstein, 2015).

4 Reduction to Convex Optimization

Input: base policies {⇡
i

}m
i=1,; dual parame-

ter space ⇥; number of rounds T , learning rates
{�

t

}T
t=1, penalty parameter H

Compute occupancy measures of the base policies,
i.e., {µ

⇡i}m
i=1

Initialize ✓1 = 0
for t := 1, 2, . . . , T do

Sample i 2 [m] and sample (x
t

, a
t

) ⇠ µ
⇡i

Compute subgradient estimate g
t

(✓
t

) (Eq. 10)
Update ✓

t+1 = ⇧⇥(✓t � �
t

g
t

) (⇧⇥ is the Eu-
clidean projection onto ⇥)

end for

Compute b✓ = 1
T

P
T

t=1 ✓t
Return policy ⇡b

✓

(Eq. 3)

Figure 1: Stochastic Subgradient Method for MDPs.

In this section, we first propose an algorithm to solve
the policy optimization problem in the dual space
(Eq. 4) and then prove a bound on the performance
of the policy returned by this algorithm compared to
the solution of the policy optimization problem in the
primal space (Eq. 1).

Figure 1 contains the pseudocode of our proposed algo-
rithm. The algorithm takes them base policies {⇡

i

}m
i=1

and the dual parameter space ⇥ as input. It first com-
putes the state-action occupancy measures of the base
policies, i.e., {µ

⇡i}m
i=1. This is done using the recent

results by Cohen et al. (2017) that show it is possi-
ble to compute the stationary distribution (occupancy
measure) of a Markov chain in time linear to the size
of the state space.2 This guarantees that we can com-
pute the state-action occupancy measures of the base
policies e�ciently. Alternatively, when the size of the
state space is very large, these occupancy measures
can be estimated by roll-outs.

Motivated by the approach of Abbasi-Yadkori et al.
(2014), we propose minimizing a convex surrogate
function

L(✓) = c>⇠
✓

+H
X

(x,a)2X⇥A

|[⇠
✓

(x, a)]�| , (9)

where ⇠
✓

is a linear combination of the occupancy mea-
sures andH is a positive parameter that penalizes neg-
ative values in ⇠

✓

. At each time step t, our algorithm
first computes an estimate of the sub-gradient rL(✓

t

)
and then feeds it to the projected sub-gradient method
to update the policy parameter ✓

t

. In order to compute
an estimate of the sub-gradient rL(✓

t

), we first sam-
ple a state-action pair (x

t

, a
t

) from (1/m)
P

m

i=1 µ⇡i ,

2These results can also be applied to the discounted
case.

Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis

and then compute the function

g
t

(✓
t

) = c>M �H
M(x

t

, a
t

)1 {⇠
✓t(xt

, a
t

) < 0}
(1/m)

P
m

i=1 µ⇡i(xt

, a
t

)
, (10)

where M is a SA ⇥ m matrix, whose j’th column is
µ
⇡j , and M(x, a) is the row of M corresponding to the

state-action pair (x, a). Notice that elements of c>M
are simply average costs of the base policies. To sample
(x

t

, a
t

) from (1/m)
P

m

i=1 µ⇡i , we first select a number
i 2 [m] uniformly at random and then sample a state-
action pair (x

t

, a
t

) from the state-action occupancy
measure of the i’th base policy, i.e., (x

t

, a
t

) ⇠ µ
⇡i .

If µ
⇡i is approximated by the historical data gener-

ated under policy ⇡
i

, then this last sampling amounts
to sampling one datapoint uniformly at random from
historical observations under policy ⇡

i

.

We now show that g
t

(✓) in (10) is an unbiased estimate
of rL(✓):

E

M(x

t

, a
t

)1 {⇠
✓

(x
t

, a
t

) < 0}
(1/m)

P
m

i=1 µ⇡i(xt

, a
t

)

�

=
X

(x,a)2X⇥A

M(x, a)P (x
t

= x, a
t

= a)

(1/m)
P

m

i=1 µ⇡i(x, a)
1 {⇠

✓

(x, a) < 0}

=
X

(x,a)2X⇥A

M(x, a)1 {⇠
✓

(x, a) < 0} .

After T rounds, the algorithm returns the average
of the computed policy parameters {✓

t

}T
t=1, i.e., b✓ =

(1/T)
P

T

t=1 ✓t. The parameter b✓ defines an element ⇠b
✓

of the dual space ⌅ (Eq. 2), which in turn defines a pol-
icy ⇡b

✓

using Eq. 3. We denote by µ
⇡b✓

the state-action
occupancy measure of this policy.

The approach of Abbasi-Yadkori et al. (2014) involves
minimizing an objective function with an additional
term that measures the distance of ⇠

✓

from the space
of occupancy measures. The transition matrix appears
in this extra term. In our case, ⇠

✓

is a linear combina-
tion of occupancy measures and hence this extra term
is zero, and the transition dynamics does not appear
in the objective (9). This results in a simpler opti-
mization problem and improved performance bounds.
More importantly, we can use the resulting algorithm
in the reinforcement learning setting as no backward

simulator is needed.

Our main result shows that the policy returned by our
algorithm, ⇡b

✓

, is near-optimal as long as the occupancy
measures of the base policies have large overlap.

Theorem 4.1. Let � > 0 be the probability of er-

ror, H = 1/⌘ be the constraints multiplier in the sub-

gradient estimate (10), and T = O
�
R

2

⌘

2 log(1/�)
�
be the

number of rounds. Let

b✓ be the output of the stochas-

tic sub-gradient method after T rounds, the learning

rate be �
t

= S/(G0pT), where G0 =
p
m + Hm, and

U(✓) =
P

(x,a)2X⇥A |[⇠
✓

(x, a)]�|. Then with probabil-

ity at least 1 � �, we have the following bound on the

performance of the policy ⇡b
✓

returned by the algorithm

in Figure 1:

J(⇡b✓)z }| {
↵>J

⇡b✓
 min

w2�[m]

J(⇡w)
z }| {
↵>J

⇡w +O(⌘)

+ min
✓2⇥

X

i

✓
i

(⌫
⇡i � ⌫

⇡⇤)
>c+

✓
1

⌘
+

9

1� �

◆
U(✓)

!
.

Moreover, the computational complexity of the algo-

rithm is O
�
poly(m)A

�
and the constants hidden in

O(⌘) are polynomials in R, m, and 1/(1� �).

Before proving Theorem 4.1, we show the improvement
using a simple example.

Example Let � be such that for any i, j 2 [m] and
any (x, a) 2 X ⇥A,

�

1 + �
µ
⇡j (x, a) µ

⇡i(x, a)
1 + �

�
µ
⇡j (x, a) . (11)

A large value of � indicates large overlap of occupancy
measures. Let " = kµ

⇡1 � µ
⇡⇤k1. Parameters � and

" provide `1 and `1 error bounds. We can obtain an
easy but non-trivial bound under the condition (11)
as follows. Let ⇡1 and ⇡

m

be the policies with the
smallest and largest values. Choose ✓1 = 1 + �, ✓

m

=
��, and all other elements are zero. Then

U(✓) =
X

(x,a)

|[⇠
✓

(x, a)]�|

=
X

(x,a)

|[(1 + �)µ
⇡1(x, a)� �µ

⇡m .(x, a)]�| .

For each term to be negative, we must have µ
⇡1(x, a)

�

1+�

µ
⇡m(x, a), which contradicts our assumption, thus

U(✓) = 0. Let E =
P

i

✓
i

(⌫
⇡i � ⌫

⇡⇤)
>c. We get that

E = (1 + �)(µ
⇡1 � µ

⇡⇤)
>c� �(µ

⇡m � µ
⇡⇤)

>c

= (µ
⇡1 � µ

⇡⇤)
>c� �(↵>J

⇡m � ↵>J
⇡1) .

Thus,

↵>J
⇡b✓

 ↵>J
⇡⇤ +O(⌘) + "� �↵>(J

⇡m � J
⇡1) . (12)

Let’s compare the above result to the simple bound

↵>J
⇡1 ↵>J

⇡⇤ + " . (13)

The term O(⌘) is due to the error of gradient descent
in a convex problem and can be made arbitrarily small
by increasing the number of iterations. Thus, the term
�↵>(J

⇡m �J
⇡1) in (12) shows the amount of improve-

ment compared to the bound in (13). This term is
positive since ⇡

m

has a larger value than ⇡1.

Optimizing over a Restricted Policy Class in MDPs

Next, we state a number of results that will be used
to prove Theorem 4.1. Theorem. 1 of Abbasi-Yadkori
et al. (2014) adapted to the dual space ⌅ implies that
⇡b
✓

is near-optimal in the dual space ⌅.

Theorem 4.2 (Abbasi-Yadkori et al. 2014). Let �, T ,

H, and

b✓ be defined as in Theorem 4.1. Then with

probability at least 1� �, we have

J(b✓) = ↵>J
⇡b✓

 min
✓2⇥

↵>J

⇡✓ +
6
p
mCR⌘

1� �

+O(⌘) +

✓
1

⌘
+

6

1� �

◆X

(x,a)

|[⇠
✓

(x, a)]�|
!
,

where the constants hidden in O(⌘) are polynomials in

R, m, and C.

Our main technical tool is the following lemma.

Lemma 4.3. Let " = max
i,j2[m]

��⌫
⇡i � ⌫

⇡j

��
1
. Then,

for any i 2 [m] and any policy ⇡
w

in the primal space

⇧, we have k⌫
⇡i � ⌫

⇡wk1 "(1+�)
1��

.

Proof. For any i, j 2 [m], there exists a vector v
i,j

with
kv

i,j

k1 ", such that ⌫
⇡i �⌫

⇡j = v
i,j

. We may rewrite
this equation as ↵>(I � �P

⇡i)
�1 = ↵>(I � �P

⇡j)
�1 +

v>
i,j

, and further as

↵>(I��P
⇡i)

�1(I��P
⇡j) = ↵>+v>

i,j

(I��P
⇡j) . (14)

Now for a policy ⇡
w

2 ⇧ corresponding to the weight
vector w 2 �[m], we may write

↵>(I � �P
⇡i)

�1
⇣
I � �

mX

k=1

w
k

P
⇡k

⌘

=
mX

k=1

w
k

↵>(I � �P
⇡i)

�1(I � �P
⇡k)

(a)
= ↵>

mX

k=1

w
k

+
mX

k=1

w
k

v>
i,k

(I � �P
⇡k)

(b)
= ↵> +

mX

k=1

w
k

v>
i,k

(I � �P
⇡k) , (15)

where (a) is from Eq. 14 and (b) is because w 2 �[m],
and thus,

P
m

k=1 wk

= 1. From Eq. 15, we have

↵>(I � �P
⇡i)

�1 = ↵>
⇣
I � �

mX

k=1

w
k

P
⇡k

⌘�1

+
mX

k=1

w
k

v>
i,k

(I � �P
⇡k)
⇣
I � �

mX

l=1

w
l

P
⇡l

⌘�1
. (16)

Since P
⇡w =

P
m

k=1 wk

P
⇡k , we may rewrite Eq. 16 as

⌫
⇡i � ⌫

⇡w = ↵>(I � �P
⇡i)

�1 � ↵>(I � �P
⇡w)

�1

=
mX

k=1

w
k

v>
i,k

(I � �P
⇡k)
⇣
I � �

mX

l=1

w
l

P
⇡l

⌘�1
.

Let

"0 = max
i2[m]

�����

mX

k=1

w
k

v>
i,k

(I � �P
⇡k)
⇣
I � �

mX

l=1

w
l

P
⇡l

⌘�1
�����
1

,

z
k

= (I � �P
⇡k)

>v
i,k

, Q =
P

m

l=1 wl

P
⇡l , and M�1 =

I � �Q. We may now write

k⌫
⇡i � ⌫

⇡wk1 "0

�����M
>

mX

k=1

w
k

z
k

�����
1

��M>��

1

�����

mX

k=1

w
k

z
k

�����
1

��I + �Q> + �2Q2> + . . .

��
1| {z }

1/(1��)

⇥
mX

k=1

w
k

(1+�)
z }| {��(I � �P

⇡k)
>��

1

"z }| {
kv

i,k

k1

 "(1 + �)

1� �
.

This concludes the proof.

Theorem 4.1 follows immediately from the above two
results.

Proof of Theorem 4.1. From Lemma 2 of Abbasi-
Yadkori et al. (2014), for any ✓ 2 ⇥, we have

k⇠
✓

� µ
⇡✓k1 3U(✓)

1��

. From Lemma 4.3, we have

k⌫
⇡i � ⌫

⇡⇤k1 = O("), for any i 2 [m] and ⇡⇤ = ⇡
w

⇤ .
Thus, for any ✓ 2 ⇥, we may write

↵>J
⇡✓ = ↵>J

⇡⇤ + µ>
⇡✓
c� µ>

⇡⇤c

= ↵>J
⇡⇤ + ⇠>

✓

c� µ>
⇡⇤c+ µ>

⇡✓
c� ⇠>

✓

c

 ↵>J
⇡⇤ + (⇠

✓

� µ
⇡⇤)

>c+
3U(✓)

1� �

= ↵>J
⇡⇤ +

X

i

✓
i

(µ
⇡i � µ

⇡⇤)
>c+

3U(✓)

1� �

= ↵>J
⇡⇤ +

X

i

✓
i

(⌫
⇡i � ⌫

⇡⇤)
>c+

3U(✓)

1� �
.

We used the fact that c(x, a) = c(x) in the 5th step.
This last inequality together with Theorem 4.2 gives
us the desired result.

The main theoretical contribution of this section is
Lemma 4.3, which allows us to relate the primal and
dual spaces. Although Theorem 4.2 is taken from
Abbasi-Yadkori et al. (2014), this particular presenta-
tion using stationary distributions as features is new

Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis

and provides an interesting application of the previous
result.

Remark: When the reward function and transition
probabilities are unknown (the RL problem), we can
run the base policies to estimate their occupancy mea-
sures and average costs. These rollouts introduce an
estimation error that will also appear in our perfor-
mance bounds. Nevertheless, as we will show in our
experiments, the rollouts provide an e↵ective way to
approximate the occupancy measures. Alternatively,
we might have access to historical data from base poli-
cies that can be used for this estimation.

To simplify the presentation, we assumed that the
state and action spaces are finite. However, the pro-
posed algorithm can be easily extended to continuous
problems; the occupancy measures can still be approx-
imated using rollouts along with state aggregation or
other function approximation techniques.

5 Experiments

We compare the results of combining policies in the
policy space (w) and occupancy measure space (✓),
where the base policies have overlapping occupancy
measures. We consider three di↵erent queuing prob-
lems: 1-Queue, 4-Queue, and 8-Queue systems. These
problems have been studied before by de Farias and
Van Roy (2003) with slightly di↵erent parameters.
The results for 1-Queue and 8-Queue systems are
shown next, and the results for 4-Queue are shown
in Appendix A.

In all the experiments, the proposed policy gradient in
the dual space produces policies whose average costs
are comparable with solutions of the policy gradient
in the primal space. The notable di↵erence is that the
proposed policy gradient is significantly more resource
e�cient. In both the 4-queue and 8-queue problems,
the time complexity of the proposed method is less
than 0.001 of the time complexity of policy gradient in
the primal space. In a RL setting, the proposed policy
gradient would be similarly more sample e�cient.

5.1 Queuing Problem: 1-Queue

Consider a queue of length L. We denote the state of
the system at time t by x

t

that shows the number of
jobs in the queue. Jobs arrive at the queue with rate
p. Action at each time, a

t

, is chosen from the finite set
{0.1625, 0.325, 0.4875, 0.65} that represents the service
rate or departure probability. The transition function
of the system is then defined as: x

t+1 = x
t

�1 w.p. a
t

;
x
t+1 = x

t

+ 1 w.p. p; and x
t+1 = x

t

, otherwise. The
system goes from state 0 to 1 w.p. p and stays in 0
w.p. 1� p. Also, transition from state L to L� 1 has

probability a(L) and the system stays in L w.p. 1 �
a(L). The cost incurred by being in state x and taking
action a is given by c(x, a) = x2 + 2500a2.

Consider a queue with L = 99 and two base poli-
cies that are independent of the states and have the
following distributions over the set of actions: ⇡1 =
[0, 0, 0.50, 0.50] and ⇡2 = [0, 0.1, 0.45, 0.45]. Consider
two scenarios: 1) Mixing the original policies in the
space of w, and 2) Building a policy based on combin-
ing the corresponding occupancy measures (optimiza-
tion in the space of ✓).

Figure 2 shows the results of optimization in the
two spaces. The costs associated with ⇡1 and ⇡2

are J(⇡1) = 831.91 and J(⇡2) = 777.36. Suppose
⇡
w

= w⇡1 + (1 � w)⇡2 is our mixture policy. Then
for 0 w 1, J(⇡

w

) is a monotonically increasing
function of w. In other words, there is no gain in mix-
ing the policies when w is between 0 and 1. For this
experiment, we let w to take values outside this in-
terval to examine the lowest possible cost. The best
mixing weight is w = �5.49 and the associated cost
is J(⇡

w

) = 533.60. However, in the space of occu-
pancy measures, we can build a better policy. Sup-
pose ⇠

✓

= ✓µ1 + (1 � ✓)µ2. Then the cost associated
with the policy that is built based on ⇠

✓

decreases
monotonically as we decrease ✓ and saturates at al-
most J(⇡

✓

) = 447, which is much lower than the cost
of the optimal policy mixing in the space of w.

5.2 Queuing Problem: 8-Queues

Consider a system with three servers and eight queues.
Similar to 4-queue problem, each server is responsible
of serving multiple queues (see Appendix A). There
are two pipelines. Jobs in the first pipeline enter the
system from the first queue by rate �1 and exit the sys-
tem from the third queue. Jobs in the second pipeline
enter the system from the forth queue by rate �2 and
exit the system from the eighth queue. Fig. 3 demon-
strates the system. The service rate is denoted by
r
i

, i 2 {1, 2, ..., 8}. There is no limit on the length
of queues. State of the system is determined by an
8-dimensional vector that shows the number of jobs
in each queue. Actions are also 8-dimensional binary
vectors, where each dimension shows if the associated
queue is served or not. The cost at each time step
is equal to the total number of jobs in the system.
Each server can serve only one queue at each time.
We choose three base policies from a family of policies
that is described below.

Family of base policies: The base policies are pa-
rameterized by three components: p1, p2, and p3,
which are associated to each server and satisfy the
these properties: 1) If all of the queues associated to

Optimizing over a Restricted Policy Class in MDPs

state
0 10 20 30 40 50 60 70 80 90 100

Pr
ob
ab
ili
ty

0

0.1

0.2

0.3

0.4

state
0 10 20 30 40 50 60 70 80 90 100

Pr
ob
ab
ili
ty

0

0.1

0.2

0.3

0.4

(a)

,
-10 -5 0 5 10

co
st

0

2000

4000

6000

8000

state
0 20 40 60 80 100

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

(b)

-10 -8 -6 -4 -2 0 2 4 6 8 10

co
st

400

500

600

700

800

900

state
0 10 20 30 40 50 60 70 80 90 100

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

(c)

Figure 2: (a) Stationary distribution of the two initial policies. (b) Top: Cost of the mixture policy versus w.
Bottom: Stationary distribution of the best mixture policy found in the space of w. (c) Top: Cost of the mixture
policy versus ✓. Bottom: Stationary distribution of the best mixture policy found in the space of ✓.

�1 = 0.1

�2 = 0.1
r1 = 4/7.5

r2 = 2/7.5
r3 = 3/7.5

r4 = 3.1/7.5

r5 = 3/7.5

r6 = 2.2/7.5

r7 = 3/7.5

r8 = 2.5/7.5

Figure 3: A system with 8 queues and 3 servers.

server i are empty the server is idle. 2) If only one
of the queues for server i is non-empty, that queue is
served with probability p

i

. 3) If server i has more than
one non-empty queue, it serves the longest queue with
probability p

i

and the rest of the non-empty queues
with probability (1 � p

i

)/(n
q

� 1), where n
q

is the
number of non-empty queues.

The three base policies and their costs are shown in
Table 1. The cost is computed by running each policy
for 10,000,000 iterations, starting from empty system,
and averaging over number of jobs at each iteration.

Table 1: Base Policies for eight queue problem

p1 p2 p3 cost

1 0.8 0.5 0.5 21.78± 0.16
2 0.5 0.8 0.5 22.47±0.08
3 0.5 0.5 0.8 22.98 ± 0.12

Solving the problem in the policy space: As op-
posed to the previous problems, the number of states
in this domain is not limited. We solve the problem
in the primal space using policy gradient, and specifi-
cally a finite di↵erences method. We start from a ran-
dom initial weight. At each iteration, we approximate
the gradient surface using four points around the cur-
rent point and the weights are updated accordingly.
For each point the cost of the mixed policy should

be computed by running the policy for a long time,
e.g. 10,0000,000 iterations. Therefore updating the
weights in each iteration is computationally expensive
and finding the optimum mixing weight in this space
is very tedious. After 200 iterations the weight con-
verges to w⇤ = [0.35, 0.33, 0.32], which corresponds to
J(⇡⇤) = 19.14 (on average).

iteration
0 50 100 150 200

co
st

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

(a)

0 200 400 600 800 1000
iterations

20.5

20.6

20.7

20.8

20.9

21

21.1

21.2

21.3

21.4

co
st

(b)

Figure 4: Mean and standard deviation of cost per
iteration in the eight queue problem. (a) Primal space.
(b) Dual Space.

Solving the problem in the space of occupancy

measures: To solve the problem in this space we
need to run the base policies for a long time (around
10,0000,000 iterations) only once and obtain the sta-
tionary distributions. From there, running the induced
mixed policies to estimate their values are not needed
and the optimal ✓ is obtained using the described al-
gorithm. The optimal value of ✓ for this problem is:
✓ = [1.1246,�0.1143,�0.0102] and the cost of the in-
duced policy is J(⇡

✓

) = 20.59. In fact, by mixing the
policies in this space we obtain a lower cost compared
to the base policies. Although, this cost is slightly
worse than the cost of the policy obtained in the pri-
mal space, the gain in computation is extremely sig-
nificant. Figure 4 shows the cost per iteration in the
two spaces.

Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis

References

Y. Abbasi-Yadkori, P. Bartlett, and A. Malek. Lin-
ear programming for large-scale Markov decision
problems. In International Conference on Machine
Learning (ICML), 2014.

J. Baxter and P. Bartlett. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence
Research, 15:319–350, 2001.

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and
M. Lee. Natural actor-critic algorithms. Automat-
ica, 45(11):2471–2482, 2009.

Rong-Rong Chen and Sean Meyn. Value iteration
and optimization of multiclass queueing networks.
Queueing Systems, 32(1-3):65–97, 1999.

Michael B. Cohen, Jonathan Kelner, John Peebles,
Richard Peng, Anup B Rao, Aaron Sidford, and
Adrian Vladu. Almost-linear-time algorithms for
Markov chains and new spectral primitives for di-
rected graphs. In STOC, 2017.

Daniela Pucci de Farias and Benjamin Van Roy. The
linear programming approach to approximate dy-
namic programming. Operations research, 51(6):
850–865, 2003.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

A. Kumar and S. Zilberstein. History-based con-
troller design and optimization for partially observ-
able MDPs. In In International Conference on Au-
tomated Planning and Scheduling (ICAPS), 2015.

PR Kumar and Thomas I Seidman. Dynamic instabil-
ities and stabilization methods in distributed real-
time scheduling of manufacturing systems. IEEE
Transactions on Automatic Control, 35(3):289–298,
1990.

T. S. Motzkin and E. G. Straus. Maxima for graphs
and a new proof of a theorem of Turán. Canadian
Journal of Mathematics, 17:533–540, 1965.

M. Mundhenk, J. Goldsmith, C. Lusena, and E. Al-
lender. Complexity of finite-horizon Markov deci-
sion process problems. Journal of ACM, 47:681–720,
2000.

C. H. Papadimitriou and J. N. Tsitsiklis. The com-
plexity of Markov decision processes. Mathematics
of operations research, 12(3):441–450, 1987.

J. Peters, S. Vijayakumar, and S. Schaal. Natural
actor-critic. In Proceedings of the Sixteenth Euro-
pean Conference on Machine Learning, pages 280–
291, 2005.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems, 2000.

N. Vlassis, M. L. Littman, and D. Barber. On the com-
putational complexity of stochastic controller opti-
mization in POMDPs. ACM Transactions on Com-
putation Theory, 4(4):12, 2012.

R. Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992.

Y. Ye. A new complexity result on solving the Markov
decision problem. Mathematics of Operations Re-
search, 30:733–749, 2005.

