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Appendices

A Detailed Proofs of Theorem 1

A.1 Proof of Lemma 1

Proof of Lemma 1. Define that R(s) =
∑s
t=1 maxk∈KXk,t −XAt,t, then we have thatR(T ) = E[R(T )].

R(T ) =E[R(T )]

=E[R(T )I{τ1 ≤ T}] + E[R(T )I{τ1 > T}]
≤T · P(τ1 ≤ T ) + E[R(T )I{τ1 > T}].

(10)

Define Nk(t) as the number of times arm k has been selected by the Algorithm 2 in the first t steps, i.e., Nk(t) =∑t
i=1 I(Ai = k). No false alarm is raised and we do not restart the UCB algorithm if the evnet {τ1 > T} happens.

Therefore, we have the following equation:

E[R(T )I{τ1 > T}] =
∑

∆
(1)
k >0

∆
(1)
k · E[Nk(T )I{τ1 > T}].

Thus, it remains to show an upper bound for E[Nk(T )I{τ1 > T}]. By the definition of Algorithm 2, we have that for any
k ∈ K

Nk(T )I{τ1 > T}

=

T∑
t=1

I{At = k, τ1 > T,Nk(t) < l}

+

T∑
t=1

I{At = k, τ1 > T,Nk(t) ≥ l}

≤l +

T∑
t=1

I{t mod bK/γc = k,Nk(t) ≥ l}

+

T∑
t=1

I{k = argmax
k̃∈K

UCBk̃, Nk(t) ≥ l}

≤l + dTγ/Ke+

T∑
t=1

I{k = argmax
k̃∈K

UCBk̃, Nk(t) ≥ l},

(11)

where the first inequality is due to the fact that if the event {At = k, τ1 > T} happens, then we do not restart the UCB
algorithm before time T and the selection of the kth arm is based on either the uniform sampling or the largest UCB index
in a stochastic bandit setting. Setting l = d8 log T/(∆

(1)
k )2e and following the same argument as in the proof of Theorem 1

of [Auer et al., 2002a], we have that

E[Nk(T )I{τ1 > T}] ≤ Tγ

K
+

8 log T

(∆
(1)
k )2

+ 1 +
π2

3
+K.

Summing over k ∈ K we prove the result.

A.2 Proof of Lemma 2

Proof of Lemma 2. Define τk,1 as the first detection time of the kth arm. Then, τ1 = mink∈K{τk,1} since Algorithm 2 is
designed to reinitialize the UCB algorithm if a change is detected on any of the K arms. Using the union bound, we have
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that

P(τ1 ≤ T ) ≤
K∑
k=1

P(τk,1 ≤ T ).

Define that for any k ∈ K and t ≥ w

Sk,t =

∣∣∣∣∣∣
i=t∑

i=t−w/2+1

Zk,i −
t−w/2∑

i=t−w+1

Zk,i

∣∣∣∣∣∣ . (12)

Then, for any k ∈ K, τk,1 is given by
τk,1 = inf{t ≥ w : Sk,t > b}

Let Z+ be the set of all positive integers. Define that for any 0 ≤ j ≤ w − 1 the stopping times

τ
(j)
k,1 = inf

{
t = j + nw, n ∈ Z+ : Sk,t > b

}
.

We have that τk,1 = min{τ (0)
1 , . . . , τ

(w−1)
1 }. Note that under the stationary environment, for any 0 ≤ j ≤ w − 1, τ (j)

k,1 is a
random variable with the geometric distribution

P(τ
(j)
k,1 = nw + j) = p(1− p)n−1,

where p = P(Sk,w > b). Therefore, considering union bound we have that for any k ∈ K

P(τk,1 ≤ T ) ≤ w
(

1− (1− p)bT/wc
)
.

The remaining task is to find an upper bound for p. Note that for any k ∈ K, Sk,w is a random variable with zero mean. We
have by the McDiarmid’s inequality and the union bound that

p ≤ 2 · exp

(
−2b2

w

)
.

Combining the above analysis we conclude the result.

A.3 Proof of Lemma 3

Proof of Lemma 3. Assume that δ(1)

k̃
≥ 2b/w + c for some k̃ ∈ K. Since the uniformly sampling scheme (step 2-4 of

Algorithm 2) guarantees that in any time interval with length larger than L/2 each arm is sampled at least w/2 times,
conditioning on {τ1 > ν1}, we have that

P(ν1 < τ1 ≤ ν1 + L/2 | τ1 > ν1)

≥P
(
Sk̃,w > b

)
≥1− 2 exp

(
−

(w|δ(1)

k̃
|/2− b)2

w

)

≥1− 2 exp

(
−wc

2

4

)
,

(13)

where Sk,t is defined in (12) and we use McDiarmid’s inequality in the second inequality.
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A.4 Proof of Lemma 4

Proof of Lemma 4. First, define that N = db/δ(1)

k̃
e · dK/γe, we obtain a simple upper bound for the EDD as follows.

E[τ1 − ν1 | ν1 < τ1 ≤ ν1 + L/2]

=

L/2∑
i=1

P(τ1 ≥ ν1 + i | ν1 < τ1 ≤ ν1 + L/2)

≤N +

L/2∑
i=N

(P(τ1 ≥ ν1 + i | ν1 < τ1 ≤ ν1 + L/2)) .

Since the uniformly sampling scheme guarantees that we have at least i/dK/γe samples from each arm within i time steps,
we use McDiarmid’s inequality and Lemma 3 to have that

L/2∑
i=N

(P(τ1 ≥ ν1 + i | ν1 < τ1 ≤ ν1 + L/2))

=

L/2∑
i=N

P(ν1 + i ≤ τ1 ≤ ν1 + L/2 | τ1 > ν1)

P(ν1 ≤ τ1 ≤ ν1 + L/2 | τ1 > ν1)

≤ 1

1− 2 exp (−wc2/4)
·
L/2∑
i=N

2 exp

(
−

(i/d(K/γ)eδ(1)

k̃
− b)2

w

)

≤ dK/γe
1− 2 exp (−wc2/4)

·
w/2∑

j=db/δ(1)
k̃
e

2 exp

(
−

(jδ
(1)

k̃
− b)2

w

)
.

Define q = d(w/2) · δ(1)

k̃
e− b and we have q > 1 from the assumption that δ(1)

k̃
> 2b/w+ c. Combining the above analysis,

we have that (
1− 2 exp

(
−wc2/4

))
· E[τ1 − ν1 | ν1 < τ1 ≤ ν1 + L/2]

≤N + dK/γe ·
w/2∑

j=db/δ(1)
k̃
e

2 exp

(
−

(jδ
(1)

k̃
− b)2

w

)

≤N + 2dK/γe ·
(

1 +

∫ q

1

exp

(
− l

2

w

)
dl

)
≤N + 2dK/γe·[

1 +
√
w

(
1− 1√

w
+

∫ q/
√
w

1

exp(−u2)du

)]

≤N + 2dK/γe ·

(
√
w +
√
w

∫ q/
√
w

1

u exp(−u2)du

)
≤
(
db/δ(1)

k̃
e+ 3

√
w
)
· dK/γe,

where we transform l into u = l/
√
w in the third inequality and we use the fact that exp(−u2) ≤ u exp(−u2), u ≥ 1 in the

fourth inequality. On the other hand, by the definition of the conditioning event we also have that(
1− 2 exp

(
−wc2/4

))
· E[τ1 − ν1 | ν1 < τ1 ≤ ν1 + L/2] ≤ L/2.

Combining the above analysis we conclude the result.
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A.5 Proof of Theorem 1

Proof of Theorem 1. Recall that L = wdK/γe. Algorithm 2 guarantees that in any time interval with length larger than
L each arm is sampled at least w times. Define events Fi = {τi > νi}, 1 ≤ i ≤ M − 1. Define events Di = {τi ≤
νi + L/2}, 1 ≤ i ≤ M − 2 and event DM−1 = {τM−1 ≤ T}. Therefore, the event FiDi is the good event where the
ith change can be detected correctly and efficiently. Define that R(s) =

∑s
t=1 maxk∈KXk,t −XAt,t, then we have that

R(T ) = E[R(T )]. Equipped with the sequence of good events, we have that

R(T ) = E[R(T )] ≤E[R(T )I{F1}] + T · (1− P(F1))

≤E[R(ν1)I{F1}] + E[R(T )−R(ν1)] + 1

≤C̃1 + γν1 + E[R(T )−R(ν1)] + 1.

Above, the second inequality is due to Lemma 2 that P(F1) ≥ 1 − 1/T provided that b = [w log(2KT 2)/2]1/2 and the
third inequality is due to the bound in the end of Lemma 1, which is the bound for the UCB algorithm in a stochastic bandit
setting.

The next step is to bound E[R(T )−R(ν1)]. Using the law of total expectation, we have that

E[R(T )−R(ν1)]

≤E[R(T )−R(ν1) | F1D1] + T · (1− P(F1D1))

≤E[R(T )−R(ν1) | F1D1] + 2,

where the last inequality is due to Lemma 3 that we have P(D1 | F1) ≥ 1− 1/T provided that c = 2
√

log(2T )/w and the
fact that P(F1D1) = P(D1 | F1) · P(F1) for any probability measure P.

Therefore, the remaining task is to bound E[R(T ) − R(ν1) | F1D1]. Denote Ẽ as the expectation according to the
piecewise-stationary bandit starts from the second segment. Further splitting the regret, we have that

E[R(T )−R(ν1) | F1D1]

≤E[R(T )−R(τ1) | F1D1] + E[R(τ1)−R(ν1) | F1D1]

≤Ẽ[R(T − ν1)] + E[τ1 − ν1 | F1D1]

≤Ẽ[R(T − ν1)] + min(L/2, (db/δ(1)e+ 3
√
w) · dK/γe)/ (1− 1/T )

where the second inequality is due to the renewal property given that the whole algorithm restarts in the time interval
between ν1 and ν1 + L/2 and the last inequality is due to Lemma 4 by setting c = 2

√
log(2T )/w.

Combining the above analysis, we bound the regret in a recursive manner as follows (assuming T ≥ 2):

E[R(T )] ≤ Ẽ[R(T − ν1)] + C̃1

+ γν1 + 2 min(L/2, (db/δ(1)e+ 3
√
w) · dK/γe) + 3.

The recursive manner means that we can apply the same method to bound Ẽ[R(T − ν1)], by conditioning on the event
D2F2. Repeating this procedure M − 1 times, we obtain that

E[R(T )] ≤
∑M
i=1 C̃i + γT

+
∑M−1
i=1

2K·min(w2 ,d
b

δ(i)
e+3
√
w)

γ + 3M.
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