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Appendices

A Detailed Proofs of Theorem 1|

A.1 Proof of Lemmal[ll

Proof of Lemmall} Define that R(s) = >_;_, maxgex Xkt — X4, ¢, then we have that R(T) = E[R(T)).

R(T) =E[R(T)]
=E[R(T")I{n < T} +E[R(T){r >T}] (10)
<T-P(r < T)+E[R(T)I{r, > T}

Define Ni(t) as the number of times arm k has been selected by the Algorithm [2|in the first ¢ steps, i.e., Ni(t) =
St I(A; = k). No false alarm is raised and we do not restart the UCB algorithm if the evnet {r; > T’} happens.
Therefore, we have the following equation:

ERD){n >TY =Y AP -EN(T){r > T}
NGRS

Thus, it remains to show an upper bound for E[Ny(T)I{r; > T}]. By the definition of Algorithm[2] we have that for any
ke

Ny, (T)]I{Tl > T}

T
=Y A =k,m > T,Ni(t) <1}

t=1
T
+Y A =k, > T, Ny(t) > 1}
t=1
d (11)
<I+ Y It mod |K/v]| =k, Ny(t) > 1}
t=1

T
+ZH{/€ = argmax UCBj, Ni(t) > 1}
t=1 kek

T
<l+[Tv/K1+ Y I{k = argmaxz UCB, Ny(t) > 1},
t=1 ke

where the first inequality is due to the fact that if the event {A; = k, 7, > T} happens, then we do not restart the UCB
algorithm before time 7" and the selection of the kth arm is based on either the uniform sampling or the largest UCB index

in a stochastic bandit setting. Setting [ = [8logT/ (A,(:))zw and following the same argument as in the proof of Theorem 1
of [Auer et al., 2002al], we have that

T~  8logT 2
< l4 25— — .
E[Ne(T)I{r > T} < % + (A,(Cl))Q + 1+ 3 + K

Summing over k& € IC we prove the result.

A.2 Proof of Lemma[2l

Proof of Lemma[2] Define 7y 1 as the first detection time of the kth arm. Then, 71 = mingex{7k,1} since Algorithm 2]is
designed to reinitialize the UCB algorithm if a change is detected on any of the K arms. Using the union bound, we have
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that

K
’7'1<T SZ Tk1<T
k=1

Define that forany £ € K and ¢t > w

i=t t—w/2
Ske=| > Zei— Y., Zkil. (12)
i=t—w/2+1 i=t—w-+1

Then, for any k € K, 71,1 is given by
Tk, = inf{t > w: S+ > b}

Let Z™T be the set of all positive integers. Define that for any 0 < j < w — 1 the stopping times
7',5]1) = mf{t =j+nw,neZt: Skt > b}.

We have that 7, 1 = min{Tl(O), e ,Tl(w_l)}. Note that under the stationary environment, for any 0 < 57 < w — 1, 7',5]1) isa

random variable with the geometric distribution

B} = nw+j) =p(L—p)" ",
where p = P(Sj ., > b). Therefore, considering union bound we have that for any k € K

Pl <T) <w (1 -(1 _p)LT/ufJ) _

The remaining task is to find an upper bound for p. Note that for any k € IC, S ., is a random variable with zero mean. We
have by the McDiarmid’s inequality and the union bound that

(-%)
p<2-exp (-,
w

Combining the above analysis we conclude the result. O

A.3 Proof of Lemma[3

Proof of Lemma[3] Assume that 5]%1) > 2b/w + c for some k € K. Since the uniformly sampling scheme (step 2-4 of

Algorithm [2) guarantees that in any time interval with length larger than L/2 each arm is sampled at least w/2 times,
conditioning on {71 > 1}, we have that

P(l/l <17 <1 —|—L/2 | T > 1/1)
>P(S,~€7w >b>

(1)
>1- 2exp (_(ww,; /2 - b>2) (13)

w

2
>1—2exp (_u;f) ,

where Sy, ; is defined in @) and we use McDiarmid’s inequality in the second inequality. O
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A.4 Proof of Lemmald]

Proof of Lemma)] First, define that N = [b/0 ’%1)1 - [K/~], we obtain a simple upper bound for the EDD as follows.

]E[Tl — 11 | m<m<uv +L/2]
L/2
=> P(n>wvi+i|lv<n <+ L/2)
1=1
L/2
SN+ > (P >wn+iln <n<n+L/2).
=N

Since the uniformly sampling scheme guarantees that we have at least i /[ K/~] samples from each arm within ¢ time steps,
we use McDiarmid’s inequality and Lemma [3]to have that

L2
Z(P(Tl > +i|lnn<n <+ L/2)
i=N

L/2
_Z/:P(V1+iST1SV1+L/2T1>V1)

Pivy <71 <wi+LJ2 |1 > 0)

1 i s ( i/ [(F/7)16 — b)?)

< .
1 —2exp(—wc?/4) = w

LRI P (_(jé,&”b)?)i

i=N

—1—2exp(—wc?/4 w
p w2

Define ¢ = [(w/2) - 51%1)] — b and we have ¢ > 1 from the assumption that 5]%1) > 2b/w + ¢. Combining the above analysis,
we have that

(1 — 2exp (—w02/4)) ‘Bl —wv |1 <71 <wvp+L/2]

w/2 SO _ g2
SN+[EK/MA- ), 2exp (—W>

=1/ Y
<N +2[K/v]- (1 + /jexp <—Z> dl)
<N +2[K/~]-
1++Vw (1 - % + /lq/ﬁ exp(—uz)duﬂ

a/vw
<N +2[K/v] - <\/?u + \/E/l uexp(u2)du>
< (Te/ol"1+3vw) - /A1,

where we transform [ into v = [/,/w in the third inequality and we use the fact that exp(—u?) < wexp(—u?),u > 1 in the
fourth inequality. On the other hand, by the definition of the conditioning event we also have that

(1—2exp (—wc®/4)) -Elr — vy |11 <7 <1 +L/2] < LJ2.

Combining the above analysis we conclude the result. O
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A.5 Proof of Theorem

Proof of Theorem[]] Recall that L = w[K/~]. Algorithm 2] guarantees that in any time interval with length larger than
L each arm is sampled at least w times. Define events F; = {7; > v;},1 < i < M — 1. Define events D; = {1; <
vi+L/2},1 <i< M —2andevent Dy;_1 = {7aps—1 < T'}. Therefore, the event F;D; is the good event where the
ith change can be detected correctly and efficiently. Define that R(s) = Zle maxpex Xkt — Xa,,t, then we have that
R(T) = E[R(T)]. Equipped with the sequence of good events, we have that

R(T) = E[R(T)] <E[R(T)I{F}] + T - (1 - P(F1))
<E[R(n)I{F1}] + E[R(T) — R(11)] +1
<C1 +yv1 +E[R(T) = R(v)] + 1.
Above, the second inequality is due to Lemma that P(F}) > 1 — 1/T provided that b = [wlog(2KT?)/2]'/? and the

third inequality is due to the bound in the end of Lemma([I] which is the bound for the UCB algorithm in a stochastic bandit
setting.

The next step is to bound E[R(T") — R(v1)]. Using the law of total expectation, we have that
E[R(T) — R(r1)]
<E[R(T) — R(»1) | F1D1] +T - (1 — P(F1Dy))
<E[R(T) — R(v1) | F1D1] +2,
where the last inequality is due to Lemmathat we have P(D; | F1) > 1 — 1/T provided that ¢ = 24/log(27") /w and the
fact that P(Fy D1) = P(D; | Fy) - P(F}) for any probability measure P.

Therefore, the remaining task is to bound E[R(T) — R(v1) | F1D;]. Denote E as the expectation according to the
piecewise-stationary bandit starts from the second segment. Further splitting the regret, we have that

E[R(T) — R(v1) | F1D1]
SE[R(T) R(Tl) ‘ FlDl] —|—E[R(T1) — R(lll) | FlDl]
S [R(T 1/1)] +E[T1 — | FlDl]
<E[R(T — )] + min(L/2, (1b/6] + 3vw) - [K/41)/ (1~ 1/T)

where the second inequality is due to the renewal property given that the whole algorithm restarts in the time interval
between vy and v; + L/2 and the last inequality is due to Lemmaby setting ¢ = 24/log(27") /w.

Combining the above analysis, we bound the regret in a recursive manner as follows (assuming 7" > 2):

E[R(T)] < E[R(T — v1)] + C4
+ 1 4 2min(L/2, ([b/6M] 4 3vw) - [K/v]) + 3

The recursive manner means that we can apply the same method to bound IE‘[R(T — 11)], by conditioning on the event
Dy F5. Repeating this procedure M — 1 times, we obtain that

E[R(T)] <02, G +49T

2K -min +3
+ZM 1 (2’; )“ \/>)

3M.
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