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Appendix A Proof of g>t (x∗t − x∗t+1) ≤ 2η‖gt‖2

Lemma 6 (Theorem 5.1 in (Hazan, 2016)). Let x∗t = arg minx∈(1−α)K Ft(x). We have g>t (x∗t −x∗t+1) ≤ 2η‖gt‖2.

Proof. We denote the regularizer in line 6 of Algorithm 1 by R(x) , ‖x−x1‖2 and define the Bregman divergence
with respect the function F by

BF (x‖y) = F (x)− F (y)−∇F (y)>(x− y). (14)

Since x∗t+1 is a minimizer of Ft+1 and Ft+1 is convex, we have

Ft+1(x∗t ) = Ft+1(x∗t+1) + (x∗t − x∗t+1)>∇Ft+1(x∗t+1)

+BFt+1
(x∗t ‖x∗t+1)

≥ Ft+1(x∗t+1) +BFt+1
(x∗t ‖x∗t+1)

= Ft+1(x∗t+1) +BR(x∗t ‖x∗t+1)

In the last equation, we use the fact that the Bregman divergence is not influenced by the linear terms in F .
Using again the fact that x∗t is the minimizer of Ft, we further deduce

BR(x∗t ‖x∗t+1) ≤ Ft+1(x∗t )− Ft+1(x∗t+1)

= (Ft(x
∗
t )− Ft(x∗t+1)) + ηg>t (x∗t − x∗t+1)

≤ ηg>t (x∗t − x∗t+1).

On the other hand, applying Taylor’s theorem in several variables with the remainder given in Lagrange’s form,
we know that there exists ξt ∈ [x∗t ,x

∗
t+1] , {λx∗t + (1− λ)x∗t+1 : λ ∈ [0, 1]} such that

BR(x∗t ‖x∗t+1) =
1

2
(x∗t − x∗t+1)>H(ξt)(x

∗
t − x∗t+1),

where H(ξt) denotes the Hessian matrix of R at point ξt. Notice that the Hessian matrix of R is the identity
matrix everywhere. Therefore BR(x∗t ‖x∗t+1) = 1

2‖x
∗
t − x∗t+1‖2. By Cauchy-Schwarz inequality, we obtain

g>t (x∗t − x∗t+1) ≤ ‖gt‖·‖x∗t − x∗t+1‖

= ‖gt‖·
√

2BR(x∗t ‖x∗t+1)

≤ ‖gt‖·
√

2ηg>t (x∗t − x∗t+1)

,

which immediately yields
g>t (x∗t − x∗t+1) ≤ 2η‖gt‖2

Appendix B Proof of Lemma 4

Proof. We verify the inequality when t = 1 or 2. When t ≥ 3, we have

(1 + 1/t)2/5 ≥ 1 ≥ 8

5
t−3/5.

Since 2(1 + 1/t)2/5 ≥ 2(1 + 1/t)1/5, we obtain

3(1 + 1/t)2/5 ≥ 2(1 + 1/t)1/5 +
8

5
t−3/5.

Therefore, we have

3(1 + 1/t)2/5 − 2(1 + 1/t)1/5 − 8

5
t−3/5 ≥ 0. (15)
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Let g(t) = t2/5. Since g(t) is concave, we have g(t + 1) − g(t) ≤ g′(t), which gives (t + 1)2/5 − t2/5 ≤ 2
5 t
−3/5.

Combining the above inequality with (15), we see

3(1 + 1/t)2/5 − 2(1 + 1/t)1/5 + 4t2/5 − 4(t+ 1)2/5 ≥ 0.

Multiplying both sides with t2/5, we complete the proof.

Appendix C Proof of Lemma 5

Proof. By the definition of gt+1, we have ‖gt+1‖≤ nM/δ. It suffices to show
√

2D2σt+1 ≥ nηM/(2δ). By the
definition of σt+1, η, and δ, it is equivalent to 4T 3/5 − (t + 1)1/5 ≥ 0. Since 1 ≤ t ≤ T , we only need to show
4T 3/5 − (T + 1)1/5 ≥ 0. We define f(T ) = 4T 3/5 − (T + 1)1/5. Its derivative is f ′(T ) = 12(T+1)4/5−T 2/5

5T 2/5(T+1)4/5
. We have

12(T + 1)4/5

T 2/5
= 12

(
T +

1

T
+ 2

)2/5

≥ 12 · 42/5 ≥ 1

if T ≥ 1. Therefore, we know that f ′(T ) ≥ 0 if T ≥ 1. Thus f is non-decreasing on [1,∞]. This immediately
yields f(T ) ≥ f(1) ≥ 0, which completes the proof.

Appendix D Proof of Theorem 2

Proof. The regret of Algorithm 2 by the end of the t-th iteration is at most

dlog2(t+1)e−1∑
m=0

β(2m)4/5 = β

(
2dlog2(t+1)e)4/5 − 1

24/5 − 1

≤ β

1− 2−4/5
(t+ 1)4/5.
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