A Topological Regularizer for Classifiers via Persistent Homology
— Supplemental Material —

Chao Chen! Xiuyan Ni?
1Stony Brook University, Stony Brook, NY

3Hikvision Research America, Santa Clara, CA

1 Background: Persistent Homology

Persistent homology (Edelsbrunner et al., [2002;
Zomorodian and Carlsson, |2005; |Carlsson and de Silvaj,
2010; |Carlsson et al. |2009) is a fundamental recent
development in the field of computational topology,
underlying many topological data analysis methods.
Below, we provide an an intuitive description to help
explain its role in measuring the robustness of topo-
logical features in the zero-th level set (the separation
boundary) of classifier function f.

Suppose we are given a space Y and a continuous
function f : Y — R defined on it. To characterize
f and Y, imagine we now sweep the domain Y in
increasing f values. This gives rise to the following
growing sequence of sublevel sets:

Yoy, CYq, © - C Yy ,with & <ty < 1y,

where Y<;, := {x € Y | f(x) <t} is the sublevel set of
f att. We call it the sublevel set filtration of Y w.r.t.
f, which intuitively inspects Y from the point of view
of function f. During the sweeping process, sometimes,
new topological features (homology classes), say, a new
component or a handle, will be created. Sometimes an
existing one will be killed, say a component either dis-
appear or merged into another one, or a void is filled. It
turns out that these changes will only happen when we
sweep through a critical points of the function f. The
persistent homology tracks these topological changes,
and pair up critical points into a collection of persis-
tence pairings ILI(f) = {(py,qa)}. Each pair (py, qq) are
the critical points where certain topological feature is
created and killed. Their function values f(p,) and
f(qa) are referred to as the birth time and death time
of this feature. The corresponding collection of pairs of
(birth-time, death-time) is called the persistence dia-
gram, formally, dgm(f) = {(£(5), £(d)) | (pos ga) € I1}.
We use II; and dgm,; to denote those pairings corre-
sponding to k-dimensional topological features. For
each persistent pairing (pp, gq), its persistence is defined
to be | f(pa) — f(qv)|, which measures the life-time (and
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thus importance) of the corresponding topological fea-
ture w.r.t. f. A simple 1D example is given in Figure
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Figure 1: (a) A function f R — R
Its persistence pairings (of critical points) are
marked by the dotted curves: II Iy
{(z1,x6), (x2,25), (x3,24),...}. The corresponding
persistence diagram is shown in (b), with dgm(f)
degmg(f) = {(f1, f6), (f2. f5), (f3, fa), ...}, where f;
f(z;) for each ¢ € [1,6]. For example, as we sweep
pass minimum z3, a new component is created in the
sub-level set. This component is merged to an older
component (created at z1) when we sweep past critical
point (maximum) z4. This gives rise to a persistence
pairing (x3,x4) corresponding to the point (f3, f4) in
the persistence diagram.

The above description is the standard persistence in-
duced by the sub-level set filtratoin of f originally in-
troduced in [Edelsbrunner et al.| (2002)); we refer to
this as ordinary persistence in what follows. To cap-
ture the topological features in the levelsets (instead
of sublevel sets) of all different threshold values, we
use an extension of the aforementioned sublevel set
persistence, called the levelset zigzag persistence (Carls;
son and de Silva), 2010; |Carlsson et al., 2009). Intu-
itively, we sweep the domain Y in increasing function
values and now track topological features of the lev-
elsets, instead of the sublevel sets. The resulting set
of persistence pairings I17(f) and persistence diagram
dgm?(f) have analogous meanings: each pair of criti-
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Figure 2: Tlustration of the merging algorithm to compute Oth persistent pairing. (a) Grid graph on a given
function f. Red curves are the classification boundary (zero-valued level set). (b) The corresponding merging
tree. the green tree is created at its minimum ps and is merged to the yellow tree at the saddle go. The turquoise
subtree is created at its minimum ps and is merged to the yellow tree at saddle g3. Their corresponding pairings
are (p2,q2) and (ps, g3), respectively. Persistence pairings like (p4,qs4) and (ps,gs) are in IIy C Iy, but not in

IIs,, as they are either created after 0 or killed before 0.

cal points (b,d) € ITZ(f) corresponds to the creation
and killing of some homological feature (e.g, connected
components if we look at 0-th dimensional homological
features) in the level set, and the corresponding pair
(f(b), f(d)) € dgmZ(f) are the birth / death times of
this feature. Again, we use dgm{ and IIZ to represent
0-th dimensional (levelset zigzag) persistence diagram,
and its corresponding persistence pairings.

In Figure [2] we give a simple illustration of the merge
tree computed via the algorithm described in Section
2 of the main paper.

2 Sketch of proof for Theorem 2.1

For a classifier function f : X — R, given its Oth lev-
elset zigzag persistence diagram dngZ (f) and its corre-
sponding set of persitsence pairings I1Z (f) w.r.t. f, we
collect TI(Sy) := {(p,q) € IF(f) | f(p) <0, f(g) > 0}
as defined in the main text. Intuitively, each (p,q) € II
corresponds to a 0-D homological feature (connected
component) that first appeared in a level set f~!(a)
with a = f(p) < 0 below the zero level set f~1(0), and
it persists through the zero level set and dies only in
the level set w.r.t. value f(¢) > 0. Thus intuitively,
this set of persistence pairings I maps to the set of
connected components in the separation boundary Sy
bijectively as claimed in Theorem 2.1.

Indeed, this follows from the decomposition of zigzag
persistence module as introduced and studied in
[son and de Silval (2010). We briefly sketch the rea-
soning: Consider the Oth-dimensional levelset zigzag
persistence module induced by the following zigzag
sequence:

KXoy C Xy o) 2 Xty © Xgo5) 2 X3S -1
2 Xy, C Xt 2 Xt

m)

where (i) Xy := f71(t) is the levelset at ¢, and X ) :=
Ut t]) = {z € X |t < f(x) < '} is the inerval
levelest w.r.t. [t,t']; and (i) t1 < ta < -+ < t, is a
set of function values of f containing all critical values,
and where each interval [t;,t;+1] can contain at most
one critical value. (Recall that a critical value is a
function value that some critical point of f takes.)

For simplicity, denoting X;, by X; and Xy, ., by
X ZH. Applying homology functor (using Zs coeflicient
ring) to the above sequence, we have the folling levelset
zigzag persistence module,

P: Ho(X1) —Ho(X?) + Ho(Xs) — Ho(X3)
- Ho(Xgn_q) < Ho(Xon)-

It is known (see|Carlsson and de Silval (2010)) ) that this
zigzag sequence of vector spaces connected by linear
maps can be written uniquely (up to isomorphism)
as the direct sum of a set of indecomosible interval
modules

PrI(by,dy) ®--- @by, dy),

where each interval module I(b;,d;) can be thought
of as an interval [b;,d;] C R (or, equivalently, a point
(b;,d;) € R?). The collection of {(b;,d;)} derived from
the above decomposition gives rise to the 0-th levelset
zigzag persistence diagram dgmg (or, using the lan-
guage of (Carlsson and de Silval (2010)), the persistence
barcode). Furthermore, for any i, restricting the de-
composition to X;, we have that Hy(X;) is isomorphic
to the direct sum of all interval modules I(b;, d;) having
non-trivial restriction to Ho(X;). This implies that

rank(Ho(X;)) = [{(b,d) € dgm¥ | b < t;,d > t;}].

Choosing i such that ¢, = 0 (i.e, X; = Sp = f1(0),
we thus have that rank(Ho(Sy)) = [II(Sf)|, which
establishes the bijection as claimed in Theorem 2.1.
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In general, the level set zigzag persistence takes O(n?3)
time to compute |Carlsson et al.| (2009), where n is the
total complexity of the discretized representation of
the domain X. However, first, we only need the Oth
dimensional levelset zigzag persistence. Furthermore,
our domain X is a hypercube (thus simply connected).
Using Theorem 2 of|Bendich et al.|(2013)), and combined
with the EP Symmetry Corollary of |Carlsson et al.| (2009),
one can then show the following:

Let d/gzl( f) and d/g?n(— f) denote the ordinary 0-
dimensional persistence diagrams w.r.t. the sublevel set
filtrations of f and of — f, respectively. Let IIy and I1_;
denote their corresponding set of persistence pairings.
Set I(Sy) := {(p.q) € Iy | f(p) <0, f(g) = 0} and
I ;(Sy) == {(p,q) € Uy | =f(p) < 0,—f(g) = 0}
(For example, in Figure b), points in the red box corre-
spond to ﬁf(Sf). Given a persistence pair (p, ¢), we say
that the range of this pair covers 0 if f(p) <0 < f(q).
Then by Theorem 2 of Bendich et al.| (2013), and com-
bined with the EP Symmetry Corollary of |Carlsson et al.
(2009), we have that

I1(Sy) = Iy (Sy) UL 4(Sy) UL,

where 11 E consists certain persistence pairs whose range
covers 0 from the 0-th and 1-st dimensional extended
subdigrams induced by the extended persistent homol-
ogy |Cohen-Steiner et al.| (2009). However, since X is
simply connected, H;(X) is trivial. Hence there is no
point in the 1-st extended subdigram. As X is con-
nected, there is only one point {(v1,v,)} in the 0-th
extended subdigram, where v; and v,, are the global
minimum and global maximum of the function f, re-
spectively. (If the domain X has multiple connected
component, then we can apply the formula below to
each component separately.) It then follows that

II(Sy) = Mp(Sy) UL (Sp) U{(vr,0n)}. (2.1)
Hence one can compute II(S¢) by computing the 0-th
ordinary persistence homology induced by the sublevel
set filtration of f, and of —f, respectively. This finishes
the proof of Theorem 2.1.

Remark 1. Finally, we can naturally extend the above
definition by considering persistent pairs and the di-
agram corresponding to the birth and death of high
dimensional topological features, e.g., handles, voids,
etc.
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