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Abstract

We propose a hypergraph-based active learn-
ing scheme which we term HS2; HS2 gen-
eralizes the previously reported algorithm
S2 originally proposed for graph-based ac-
tive learning with pointwise queries [1]. Our
HS2 method can accommodate hypergraph
structures and allows one to ask both point-
wise queries and pairwise queries. Based on
a novel parametric system particularly de-
signed for hypergraphs, we derive theoreti-
cal results on the query complexity of HS2

for the above described generalized settings.
Both the theoretical and empirical results
show that HS2 requires a significantly fewer
number of queries than S2 when one uses S2

over a graph obtained from the corresponding
hypergraph via clique expansion.

1 Introduction

Active learning is useful for many machine learning
applications where the acquisition of labeled data is
expensive and time consuming [2]. In this setting, the
learner aims to query for as few labels of data points
as possible while still guaranteeing a desired level of
label prediction accuracy.

Graph-based active learning (GAL) refers to the par-
ticular case when graphs can be used to represent the
data points. Such graphs may either come from real-
life networks, e.g. social networks [3], or some trans-
formation based on data points, e.g. nearest neighbor
graphs [4]. Due to the prevalence of graph-structured
data, GAL has attracted significant attention in the re-
cent research literature. Most previous works on GAL
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shared a similar approach: the nodes selected for la-
beling are determined by minimizing some assumptive
empirical error [5] or upper bound of an empirical er-
ror [6, 7, 8]. Recently, Dasarathy et al. studied the
GAL problem from a substantially different angle [1]:
They attempted to directly detect the boundaries of
different classes over the graph, which further lead to
the classification of nodes. Their approach, termed
S2, benefits from tracking labels of the midpoint of
the shortest path among all paths whose ending nodes
are with different labels. Surprisingly, S2 is shown
to be nearly min-max optimal for the non-parametric
setting of active learning problems [1].

All above works for GAL depend on a pointwise oracle,
that is, each response of a query leading to the label
of one vertex. However, recent works have pointed out
that humans are better at making comparison, and
therefore, a pairwise oracle, whose response is of the
form “nodes u and v (do not) belong to in the same
class”, appears more practical than the pointwise ora-
cle [9, 10, 11, 12]. Mazumadar and Saha [13] proposed
a GAL algorithm that uses pairwise oracles. However,
their algorithm strongly depends on the assumption
that the underlying graph is generated by a stochastic
block model (SBM) [14].

Graphs essentially capture pairwise relations between
data points. Recently, many machine learning and
data mining applications have found that hypergraphs
modeling high-order relations may lead to better learn-
ing performance than traditional graph-based mod-
els [15, 16, 17]. For example, in subspace clustering,
a fit to d-dimensional subspace can only be evaluated
over at least d + 1 data points [18, 19]; in hierarchi-
cal species classification over a foodweb, a carbon-flow
unit based on four species appears to be most predic-
tive [19]. Although some unsupervised or semisuper-
vised learning algorithms over hypergraphs have been
reported in [20, 21, 22], few works targeted the set-
ting of hypergraph-based active learning (HAL). Intu-
itively, to solve HAL problems, one may first “project”
hypergraphs into graphs by replacing hyperedges with
cliques (typically this is a procedure termed clique ex-
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pansion (CE) [18, 15]) and then use traditional GAL
methods. However, a large number of works have
demonstrated that CE causes distortion and leads to
undesired learning performance [23, 24]. To the best of
our knowledge, the approach proposed by Guillory et
al. [25] is the only work that may directly handle HAL.
This method follows the traditional rule of GAL [6]
that attempts to minimize an upper bound one the
prediction error and only works for a pointwise oracle.

Here, we focus on HAL problems. Following the
rule used in S2 [1], we develop several active learn-
ing algorithms, termed with the prefix “HS2” , which
are compatible with multiple classes and with point-
wise/pairwise oracles in the hypergraph setting. Our
contributions are as follows. First, for the setting with
a pointwise oracle, we provide a more general algo-
rithm with tighter analysis compared to [1]: We con-
sider the k-class (k ≥ 2) setting instead of the two-class
one considered in the original S2 algorithm. We de-
fine novel complexity parameters that can handle the
complex interaction between k-ary labels and hyper-
edges. We derive a tighter bound of query complexity,
which, as a by-product, justifies that the proposed al-
gorithm indeed requires fewer queries than a simple
combination of CE and S2. Second, for the setting
with a pairwise oracle, we develop the first model-free
HAL/GAL algorithm: Our algorithm does not need
any generative assuptions on the graphs/hypergraphs
like SBM [13]; Moreover, the corresponding analysis
for the pairwise-oracle setting is novel.

The paper is organized as follows: In Section 2, we
introduce the notation and our problem formulation.
In Section 3, we focus on the case of the pointwise
oracle and theoretically demonstrate the superiority of
HS2 over a combination of CE and S2. In Section 4
we focus on the case of the pairwise oracle. In Section
5 we present experiments for both synthetic and real-
world data to verify our theoretical findings. Due to
the page limitation, we defer the missing proofs to the
supplement.

2 Problem formulations

We use G = (V,E) to denote a hypergraph with a node
set V and a hyperedge set E. A hyperedge e ∈ E is
a set of nodes e ⊂ V such that |e|≥ 2. When for all
e ∈ E, |e|= 2, G reduces to a graph.

Suppose that each node belongs to one of k classes. Let
[k] denote the set {1, 2, ..., k}. A labeling function is a
function f : V 7→ [k] such that f(v) is the label of node
v. Given the labels of all nodes, we call a hyperedge e a
cut hyperedge if there exist u, v ∈ e, f(u) 6= f(v). The
cut set C includes all cut hyperedges. Moreover, define
the boundary of the cut set C as ∂C =

⋃
e∈C e, i.e.,

the set of nodes that appear in some cut hyperedges.
By removing all the cut hyperedges, we suppose that
G is partitioned into T connected components whose
node sets are denoted by V1, V2, ..., VT . For any pair
of connected components Vr, Vs, define the associated
cut component as Crs = {e ∈ C : e ∩ Vr 6= ∅, e ∩
Vs 6= ∅}. Note that two different cut components of
hyperedges Crs and Cr′s′ may have intersection in the
hypergraph setting and the union of Crs for all (r, s)
pairs is the cut set C.

As we are considering active learning problems, in
which the learner is allowed to ask queries and collect
information from the oracle. In this work, we study
two kinds of oracles: the pointwise oracle F0 : V 7→ [k]
and the pairwise oracle O0 : V × V 7→ {0, 1}, which
are defined as follows. For all v1, v2 ∈ V ,

F0(v1) = f(v1), O0(v1, v2) =

{
1, if f(v1) = f(v2)

0, if f(v1) 6= f(v2)

In the pairwise setting, we also allow for a noisy oracle,
denoted byOp, where p stands for the error probability
of the oracle, i.e.,

P (Op(v1, v2) = O0(v1, v2)) = 1− p

We assume that for different pairs of nodes, the re-
sponses of the oracle are mutually independent. How-
ever, for each pair of node (v1, v2), Op(v1, v2) is con-
sistently 0 or 1. Therefore, querying one pair multiple
times does not lead to different responses or affect the
learning performance.

We use the term query complexity, denoted by Q,
to quantify how many times an algorithm uses the
oracle. Our goal is to design algorithms which learn
the partition V =

⋃T
i=1 Vi, or equivalently cut set

C, with query complexity Q as low as possible. In
this work, due to the randomness of the proposed
algorithms, we focus on learning the exact C with high
probability. That is, given a δ ∈ (0, 1), with prob-
ability 1−δ we recover C with query complexity Q(δ).

Remark 2.1. The original S2 paper considers an sim-
pler noise model [1], where one allows independent
responses after querying for a single event multiple
times. In this case, a simple majority voting can
be used for aggregating and denoising the informa-
tion. However, according to real-life experiments in
crowdsourcing [10, 26], such a method intrinsically in-
troduces bias and thus majority voting may even in-
crease the error. Therefore, we consider a more realis-
tic model used in [10]. Also note that this noise model
is not applicable to the case of pointwise oracle as the
noise may always lead to some incorrect labels that
can never be fixed.
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3 HS2 with a pointwise oracle

In this section, we propose the HS2 algorithm with
a pointwise oracle, termed HS2-point, which essen-
tially generalizes the S2 algorithm for GAL [1] to the
hypergraph setting. HS2-point is similar to S2, in
so far that the algorithm only asks for the label of
the midpoint of current shortest path among all paths
that connect two nodes with different labels, while the
path now is defined over hypergraphs. The novelty
of HS2-point appears in the corresponding analysis of
the query complexity. We find that how well cut com-
ponents are clustered determines the query complex-
ity. Later, we will formally define it as the clustered-
ness of cut components. In contrast to [1], for HS2-
point, clusteredness of cut components is determined
by a much more complicated measure that character-
izes the distance between cut hyperedges. Moreover,
we tighten the original analysis for S2. As a corollary,
the tightened bound shows that HS2-point requires
lower query complexity than a naive combination of
the clique-expansion method and S2.

We start by introducing the HS2-point algorithm. As
HS2 depends on shortest paths, we first define a path
in hypergraphs and its length.

Definition 3.1 (Path in hypergraph). Given a hyper-
graph G = (V,E), we say there is a path of length l
between nodes u, v ∈ V if and only if there exists a
sequence of hyperedges (e1, e2, ..., el) ⊆ E such that
u ∈ e1, v ∈ el and ei ∩ ei+1 6= ∅ ∀i ∈ [l − 1].

Algorithm 1: HS2-point

Input : A hypergraph G, query complexity budget
Q(δ)

Output: A partition of V
Main Algorithm: L← ∅
while 1 do

x← Uniformly at random pick an unlabeled
node.
do

Add (x,F0(x)) to L
Remove all hyperedges containing nodes with
different label from G.
if more than Q(δ) queries are used then

Return the remaining connected
components of G

end

while x←MSSP (G,L) exists

end

Conceptually, the algorithm operates by alternating
two phases: random sampling and aggressive search.
Each outer loop corresponds to a random sampling
phase, where the algorithm will query randomly. This
phase will end when two nodes with different labels are

detected and there is a path connecting them, which
is determined by the subroutine MSSP (G,L). Then,
the algorithm turns into the inner loop, i.e., the ag-
gressive search phase that searches cut hyperedges. In
the inner loop, cut hyperedges are gradually removed
and G breaks into a collection of connected compo-
nents. L is a list to collect labeled nodes with labels.
Algorithm 1 will keep tracking the size of L. When
the query complexity budget is used up, the algorithm
ends and outputs the remaining connected components
of G.

The aggressive search phase that finds all cut hyper-
edges within low query complexity is the most impor-
tant step. The key idea is the following. On the path
between two nodes with different labels, there must be
at least one cut hyperedge. Intuitively, to efficiently
find this cut hyperedge, we may use a binary-search
method along the shortest one of such paths. That
is, we iteratively query for the label of the node that
bisects this path. The binary search and the search
of a shortest path are done simultaneously by the key
subroutine MSSP (G,L) (Algorithm 2). Finding the
shortest path in the hypergraph can be implemented
via standard BFS algorithm [27]. A more efficient way
to search the shortest path in a dynamic hypergraph is
described in [28]. Since we focus on query complexity,
discussion of the time complexity of the algorithms is
outside the scope of the paper.

Algorithm 2: MSSP

Input : The hypergraph graph G, label list L
Output: The midpoint of shortest-shortest path
Main Algorithm:
for each v, u ∈ L such that u, v has different label do

Pv,u ← shortest path between v, u in G.
lu,v ← length of Pu,v.(=∞ if doesn’t exist)

end
(v∗, u∗) = arg min lu,v
if (v∗, u∗) exists and lv∗,u∗ ≥ 2 then

Return the midpoint of Pv∗,u∗ .
else

Return ∅
end

To characterize the query complexity of Algorithm 1
we need to introduce the following concept.

Definition 3.2 (Balancedness). We say that G is β-

balanced if β = mini∈[k]
|Vi|
n .

Definition 3.3 (Distance between cut hyperedges).
Let dG−Csp (v, u) denote the shortest path between
nodes v, u with respect to the hypergraph G after all
cut hyperedges are removed. Let Ωi(e) = {x ∈ e|x ∈
Vi}. Define the directed distance between cut hyper-
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edges as ∆ : C × C → N ∪ {0,∞}: for e1, e2 ∈ C,

∆(e1, e2)

= sup
(i,j):e1,e2∈Ci,j

(
sup

v1∈Ωi(e1)

inf
u1∈Ωi(e2)

dG−Csp (v1, u1)

+ sup
v2∈Ωj(e1)

inf
u2∈Ωj(e2)

dG−Csp (v2, u2) + 1
)

(1)

If e1, e2 do not belong to a common cut component,
let ∆(e1, e2) =∞.

For e1, e2 that belong to certain cut component, the
metric ∆(e1, e2) characterizes the length of shortest
path that contains e2 after we have found and removed
e1. With the above distance, we may characterize the
clusteredness of cut hyperedges. First, we need to con-
struct a dual directed graph Hr = (C, E) according to
the following rule: the nodes of Hr correspond to cut
hyperedges of G and for any two nodes e, e′, ee′ is
an arc in Hr if and only if ∆(e, e′) ≤ r. According
to the definition, each cut component Ci,j is mapped
to a group of nodes in Hr. Now, we may define κ-
clusteredness:

Definition 3.4 (κ-clusteredness). A cut set C is said
to be κ-clustered if for each cut component Ci,j , the
corresponding nodes in Hκ are strongly connected.

κ-clusteredness indicates the cut hyperedges in one cut
component should not be κ away from another cut
hyperedge. For better understanding, suppose HS2-
point has found and removed the cut hyperedge e1.
Another hyperedge e2 in the same cut component ap-
pears in the shortest path whose endpoints are in e1.
This parameter guarantees that HS2-point needs only
at most dlog2 κe queries along such a path to find the
cut hyperedge e2. Hence, if the hypergraph has a small
κ, we can efficiently find all the cut hyperedges in C
after we find the first one in each cut component in
the random sampling phase. Typically κ is not large,
as κ is naturally upper bounded by the diameter of
the hypergraph, which, in a small-world situation, is
O(log n) at most [29].

The novel part of HS2-point is that we propose Defini-
tion 3.3 and Definition 3.4, which properly generalizes
the parametric system of S2 [1] to hypergraphs and
leads to the following theoretical estimation of query
complexity.

Theorem 3.5. Suppose that G = (V,E) is β-
balanced. The cut set C induced from a label function
f is κ-clustered and m non-empty cut components.
Then for any δ > 0, Algorithm 1 will recover C ex-
actly with probability at least 1 − δ if Q(δ) is larger

than

Q∗(δ) , log(1/(βδ))

log(1/(1− β))
+m(dlog2(n)− log2(κ)e)

+ min(|∂C|, |C|)(dlog2(κ)e+ 1) (2)

Note that Theorem 3.5 not only generalizes Theorem
3 from [1] to the hypergraph case but also provides
a tighter result. Specifically, it improves the original
term |∂C| to min(|∂C|, |C|). Recall the definitions of
|∂C| and |C|. Typically, |C|< |∂C| corresponds to
the case when the number of cut hyperedges is small
while the size of each cut hyperedge is large, which
may appear in applications that favor large hyper-
edges [23, 24, 30]. This improvement is also critical
for showing that the HS2-point algorithm has lower
query complexity than a simple combination of CE
and the original S2 algorithm [1]. We will illustrate
this point in the next subsection.

3.1 Comparison with clique expansion

Clique expansion (CE) is a frequently used tool for
learning tasks over hypergraphs [15, 16, 21, 19]. CE
refers to the procedure that transforms hypergraphs
into graphs by expanding hyperedges into cliques.
Based on the graph obained via CE, one may leverage
the corresponding graph-based solvers to solve learn-
ing tasks over hypergraphs. For HAL, we may choose
a similar strategy. Suppose the obtained graph af-
ter CE is denoted by G(ce) = (V (ce), E(ce)), so that
V (ce) = V , and for u, v ∈ V (ce), uv ∈ E(ce) if and only
if ∃e ∈ E such that u, v ∈ e. In this subsection we will
compare the bounds of query complexity of HS2-point
evaluated over G and that of S2 evaluated over G(ce).

Suppose G is β-balanced, with m cut components and
the corresponding cut set C is κ-clustered. In the fol-
lowing proposition, we show that some parameters of
G(ce) are the same as those of G.

Proposition 3.6. G(ce) is β-balanced and has ex-
actly m cut components. Let C(ce) be the cut
set of G(ce). Then, C(ce) is κ-clustered and |∂C|=
|∂C(ce)|. However, we always have min(|C|, |∂C|) ≤
min(|C(ce)|, |∂C(ce)|).

As graphs are special case of hypergraphs, Theo-
rem 3.5 can be used to characterize the query com-
plexity of S2 over G(ce). For this purpose, recall the
parameters in Theorem 3.5 that determine the query
complexity. Combining them with Proposition 3.6, it
is clear that the HS2 algorithm often allows for lower
query complexity than that of CE plus S2 and such
gain comes from the case when |C|≤ |C(ce)|. To see
the benefit of HS2-point more clearly, consider the ex-
ample in Figure 1. Once HS2-point finds and removes
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CE

Figure 1: An example of clique expansion. Left: the
orginal hypergraph G with 4 hyperedges; Right: the
clique-expanded graph G(ce). The colors of nodes iden-
tify the labels and the dashed hyperedges/edges are
cut hyperedges/edges.

the cut hyperedge of G, the correct partition of V is
learnt. So we only need to collect the labels of any two
nodes in |∂C|. However, if we use S2 over the obtained
graph G(ce), all three nodes in ∂C(ce)(= ∂C) must be
queried for labels before we learn the correct partition.

Remark 3.1. The benefit of HS2-point essentially
comes from the fact that |C| is often smaller than
|C(ce)|. Note that the query complexity for S2 derived
in [1] does not reflect such a parametric dependence.

Remark 3.2. Note that in the example in Figure 1 we
have |C|≤ |C(ce)| and |∂C|= |∂C(ce)|. However, |C| is
not necessarily smaller than |C(ce)|. Consider the fol-
lowing example: Suppose all nodes of G have different
labels and there are

(
n
3

)
hyperedges in E that cover

all triples. Then, G(ce) is a big clique connecting all
nodes. In this case |C|=

(
n
3

)
>
(
n
2

)
= |C(ce)|. Never-

theless, in this case we have |∂C|= |∂C(ce)|< |C(ce)|
and hence Proposition 3.6 still holds. This example
shows that it is non-trivial to prove Proposition 3.6.

4 HS2 with pairwise oracle

We now look into the HAL problem with a pairwise
oracle. Since the proposed algorithms also depends on
the strategy of searching for the shortest path that con-
nects two nodes with different labels, we refer to them
as HS2-pair. As mentioned, to our best knowledge,
HS2-pair appears to be the first model-free strategy
to handle the HAL/GAL problems with a pairwise or-
acle.

We analyze settings with both noiseless and noisy or-
acles. The noiseless case is simple and will be intro-
duced first. Then, we introduce the noisy case that
is much more involved. Note that in the setting with
a pairwise oracle, the exact label of each node is not
known and not relevant. Hence, without loss of gen-
erality, we associate the ith class identified during the
learning procedure with the label i.

4.1 Noiseless case

We start by introducing the setting with a noiseless
pariwise oracle. The key point is to first seed a few
classes and then classify a newly selected node via pair-
wise comparison with the seeds. If there is a match,
we assign the node to its corresponding class; other-
wise, we assign the node to a new class. Notationally,
we let Si, i ∈ [k] be the set of nodes that have been
classified to the ith class so far. Each Si starts from
one node when a node from the ith new class is de-
tected and Si gradually grows when new nodes of this
class are detected. As all nodes u ∈ Si share the same
label, for a new node v, we use O0(v, Si) to denote the
query O0(v, u), u ∈ Si. The HS2-pair algorithm for
the noiseless case is listed in Algorithm 3.

Algorithm 3: The noiseless HS2-pair

Input : A hypergraph G and query complexity
budget Q(δ).

Output: A partition of V .
Main Algorithm: L← ∅, #c ← 1
v ← Uniformly at random pick an unlabeled node
Add (v, 1) to L and set S1 ← {x}
while 1 do

v ← Uniformly at random pick an unlabeled node
do

Collect O0(v, Si) for all i ∈ [#c]
if ∃i, O0(v, Si) = 1 then

Add (v, i) to L and v to Si
else

#c← #c + 1
Add (v, #c) to L and Set S#c ← {v}

end
Remove all hyperedges containing nodes with
different labels from G
if more than Q(δ) queries are used then

Return the remaining connected
components of G

end

while x←MSSP (G,L) exists

end

The only difference between HS2-pair in the noiseless
case andHS2-point is the way to label a newly selected
node. We leverage the pairwise oracle to compare the
new node with each class that has been identified. In-
tuitively, we need at most k pairwise queries to iden-
tify the label of each node. Moreover, without addi-
tional assumptions on the data, it appears impossible
to identify the label of each node with o(k) many pair-
wise queries. Therefore, combining this observation
with Theorem 3.5, we establish the query complexity
of Algorithm 3 in the following corollary, which essen-
tially is Θ(k) times the number of queries required by
HS2-point.
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Corollary 4.1. Suppose G = (V,E) is β-balanced.
The cut set C is κ-clustered and the number of non-
empty cut components is m. Then for any δ > 0,
Algorithm 3 will recover C exactly with probability at
least 1− δ if Q(δ) is larger than kQ∗(δ), i.e.,

k
log(1/(βδ))

log(1/(1− β))
+ km(dlog2(n)− log2(κ)e)

+ kmin(|C|, |∂C|)(dlog2(κ)e+ 1).

4.2 Noisy case

We consider next the setting with a noisy pairwise ora-
cle. The key idea is similar to the one used in the noise-
less case: we first identify seed nodes for the different
classes. Due to the noise, however, we need to identify
a sufficiently large number of nodes within each class
during Phase 1 so that the classification procedure in
Phase 2 has high confidence. To achieve this, we adopt
a similar strategy as used in Algorithm 2 of [10] in
Phase 1, which can correctly classify a group of ver-
tices into different clusters with high probability based
on pairwise queries as long as the size of each cluster
is not too small. Phase 2 reduces to classifying the
remaining nodes. In contrast to the noiseless case, we
adopt a normalized majority voting strategy: we will
compare the ratios of the nodes over different classes
that claim to have the same label with the incoming
node. We list our HS2-pair with noise in Algorithm 4.

We know describe the query complexity of Algo-
rithm 4.

Theorem 4.2. Suppose G = (V,E) is β-balanced.
The cut set C induced from a label function f is κ-
clustered and has m non-empty cut components. Then
for any δ > 0, p < 1

2 , Algorithm 4 will recover C ex-
actly with probability at least 1 − δ if Q(δ) is larger
than

Q∗(δ/4)M +
128Mk2 logM

(2p− 1)4
(3)

where Q∗(δ) is defined in (2), and M is an integer
satisfying

M

logM
≥ 128k

β(2p− 1)4
, M ≥ 12

β
log

4k

δ
,

M ≥ 8

δ
, M ≥ 2

βD(0.5||p)
log

8(k − 1)Q∗(δ/4)

δ
.

(4)

Here D(p||q) denotes the KL-divergence of two
Bernoulli distributions with parameters p and q.

We only provide a sketch of the proof of Theorem 4.2.
The complete proof is postponed to the supplement.

Proof. (sketch) In Phase 2, we expect to select Q∗(δ1)
nodes for labeling, according to Theorem 3.5. This

Algorithm 4: HS2-pair with noise

Input : A hypergraph G, query complexity budget
Q(δ), parameter M

Output: A partition of V
Phase 1:
Uniformly at random sample M nodes from G;
Use Algorithm 2 in [10] on these M nodes to get a

partition S1, ..., Sk. Let S =
⋃k
i=1 Si;

Phase 2:
L← {(v, i)|v ∈ Si, i ∈ [k]};
Remove all hyperedges whose containing different
labels from G;
while 1 do

Uniformly at random sample an unlabeled node v;
do

Mi ← |{u ∈ Si|Op(u, v) = 1}| for all i ∈ [k];

i∗ ← arg maxi∈[k]Mi/|Ŝi|, add (v, i∗) to L;
Remove all hyperedges that contain different
labels from G;
if more than Q(δ) queries are used then

Return the remaining connected
components of G

end

while x←MSSP (G,L) exists;

end

phase may require MQ∗(δ1) queries. To classify all
these nodes correctly via normalized majority voting
with probability at least 1− δ2, we require each Si to
be large enough. Specifically, via the Chernoff bound
and the union bound, we require

min
i∈[k]
|Si|≥

1

D(0.5||p)
log

2(k − 1)Q∗(δ1)

δ2
. (5)

To obtain a sufficiently large |Si|, we need to sample a
sufficiently large number of points M in Phase 1. With
probability 1− kexp(−Mβ/8), we can ensure that

min
i∈[k]
|Si|≥

βM

2
. (6)

Combining (5) and (6) gives the fourth inequality in
(4). Moreover, we also need to cluster these Si cor-
rectly via Algorithm 2 in [10], which requires the first

three constrains in (4) and the additional 128Mk2 logM
(2p−1)4

queries according to Theorem 3 in [10]. This gives the
formulas in Theorem 4.2.

Remark 4.1. Suppose that the parameters (p, k, δ, β)
are constants. Then, the fourth requirement of M in
(4) reduces to M = O(log(Q∗(δ))), and the overall
query complexity equals O(Q∗(δ) log(Q∗(δ))). Com-
paring this to Theorem 3.5 and Corollary 4.1, we only
need O(log(Q∗(δ))) times more queries for the setting
with the noisy pairwise oracle.
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Recall the perfect partitioning according to the labels
follows V =

⋃T
i=1 Vi. If we additionally assume that T

equals the number of classes k, Phase 1 of Algorithm 4
will guarantee to sample at least one node from each
Vi, i ∈ [T ]. This observation allows us to get rid of the
random sampling procedure in Phase 2. So the first
term in Q∗(δ) essentially vanishes. We may achieve
the following tighter result.

Corollary 4.3. Suppose G = (V,E) is β-balanced.
The cut set C induced from a label function f is κ-
clustered and m non-empty cut components. More-
over, suppose T = k. Then, for any δ > 0, p < 1

2 ,
Algorithm 4 will recover C exactly with probability at
least 1− δ if Q(δ) is larger than

Q∗1M +
128Mk2 logM

(2p− 1)4

where Q∗1 = m(dlog2(n)− log2(κ)e)
+ min(|∂C|, |C|)(dlog2(κ)e+ 1),

and now M is the smallest integer satisfying

M

logM
≥ 128k

β(2p− 1)4
, M ≥ 12

β
log

3k

δ
,

M ≥ 6

δ
, M ≥ 2

βD(0.5||p)
log

6(k − 1)Q∗1
δ

.

In the end of this section, we remark on the CE method
in the setting with the pairwise oracle. One still may
first apply CE to obtain a graph G(ce) and then run
Algorithms 3 and 4 over G(ce). Corollary 4.1 and The-
orem 4.2 again indicate, the query complexity depends
on min{|C|, |∂C|}; By using Proposition 3.6, we can
again demonstrate the superiority of our proposed ap-
proaches over CE-based methods.

5 Experiments

In this section, we evaluate the proposed HS2-based
algorithms on both synthetic data and real data. We
mostly focus on demonstrating the benefit of HS2 in
handling the high-order structures. For the setting
with a pointwise oracle, we compare HS2-point with
some GAL algorithms including the original S2 [1]
and EBM [7], a greedy GAL algorithm based on error
bound minimization. To make these GAL algorithms
applicable to our high-order data, we will first trans-
form hypergraphs into standard graphs by clique ex-
pansion which was introduced in Section 3.1. For the
setting with a pairwise oracle, as there are no other
model-free algorithms even for GAL to the best of our
knowledge, we compare HS2-pair over hypergraphs
with the combination of clique expansion and HS2-
pair over graphs (termed CE + S2-pair later). All the
results are averaged over 100 independent tests.

For the real datasets, we test both HS2 and CE+S2 on
the task of motion segmentation, which is essentially
a subspace clustering problem and typically needs to
utilize hypergraph structures [31]. We use the popular
benchmark — the Hopkins 155 dataset [32] to eval-
uate the performance. As mentioned in [33, 30], the
trajectories on the distinct motions can be grouped
into 4-dimensional subspaces. We generate 5-uniform
hypergraphs from the data, since a fit to d-dimensional
subspace can only be evaluated over at least d+1 data
points. It is crucial to use hypergraphs instead of stan-
dard graphs for this tasks.

5.1 Synthetic data

For the synthetic data, we investigate the effects of
the scale of hypergraphs n, the number of classes k
on all proposed algorithms. We generate labeled hy-
pergraphs according to the following random hyper-
graph model: fix the number of inner-cluster and intra-
cluster hyperedges, and then generate all hyperedges
uniformly at random without replacement. Specifi-
cally, we fix the size of all hyperedges to be 5, and
restrict each cluster to be equal-sized. In our exper-
iments, we uniformly randomly place n

k log n
k hyper-

edges within each cluster. This ensures that each clus-
ter will be connected with high probability. Then we
uniformly randomly place 1

3
n
k log n

k hyperedges across
different clusters, which means |C|= 1

3
n
k log n

k .

For the experiments on pointwise queries, the results
are shown in Figure 2. As it shows, HS2-point out-
performs S2 and EBM with nontrivial gains (roughly
by a factor of 2). The reason why the query complex-
ity scales linearly in n is due to our experiment set-
ting. We place n

k log n
k hyperedges within each cluster

which makes the κ small. Hence the query complex-
ity is dominated by the last term in (2). In addition,
we also vary the size of hyperedges and the number
of cut edges. The results are shown in Figure 3. We
can see that HS2-point will perform better when the
size of hyperedges gets larger. Also we observe that
when the number of cut edges gets larger, the CE+S2

approach needs to query all n nodes while the HS2 ap-
proach doesn’t have to. All these results suggest that
our HS2 is better than the CE+S2 approach.

For the experiments on pairwise noiseless queries, the
results are shown in Figure 4. Again, our HS2-pair
algorithm outperforms the naive combination of CE
and S2-pair. Different from the pointwise case, we can
see that the query complexity increases almost linearly
with respect to the number of classes. This is because
we need Θ(k) pairwise queries to identify the label of
one node.

To test HS2-pair with noisy oracle, we construct a
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Figure 2: Simulation results with pointwise oracles
over synthetic data. Left: query complexity vs scale
of hypergraphs n with fixed k = 3; Right: query com-
plexity vs the number of classes k with fixed n = 200.
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Figure 3: Simulation results with pointwise oracles
over synthetic data. Left: query complexity vs size
of hyperedges with fixed k = 3, n = 900; Right:
query complexity vs the number cut edge |C| with
fixed k = 3, n = 900.

larger hypergraph, due to the fact that in phase 1
it requires sufficient numbers of pairs of nodes to be
queried. We set the total number of nodes in the hy-
pergraph n = 5000, number of clusters k = 2 and
the number of pairs of nodes to be queried in phase
1 M = 2000. The result is shown in Table 1. As ex-
pected, HS2 is better than CE+S2 in terms of query
complexity.

noisy HS2-pair CE+noisy S2-pair
Query

Complexity 5,401,830 8,574,332

Table 1: Query complexity with noisy pairwise oracle
on synthetic graphs.

5.2 Real world application

We test the algorithms on 4 checker board sequences
in the Hopkins 155 dataset under the pointwise query
setting. They are sequences of indoor scenes taken
with a handheld camera under controlled conditions.
The checkerboard pattern on the objects is used to
assure a large number of tracked points. We follow
the same methodology as [30] to generate hypergraphs
from these data. For each cluster i with ni points, we
sample ni log ni subsets of 5 points from them, as a
4D-subspace was required to be fitted on each sample
via SVD. We denote N =

∑
i ni to be the number of
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Figure 4: Simulation results with pairwise oracles over
synthetic data. Left: query complexity vs scale of hy-
pergraphs n with fixed k = 3; Right: query complexity
vs the number of classes k with fixed n = 200.

total inner-cluster sample. We place a hyperedge on
the sampled subset if the sum of the distance of corre-
sponding points to the fitted 4D-subspace is less than
a threshold. Then we sample N

6 subsets of 5 points
uniformly at random among all points and place hy-
peredges by following the same criterion. The results
are in the Figure 5. We can see that indeed HS2 needs
much less queries than CE+S2, which matches our
theoretical and synthetic results.
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Figure 5: Results for the experiments on the Hopkins
155 dataset. The title for each subfigure describes how
the correponding data is obtained. For example, 2RT
means that object 2 translates and rotates on the same
axis. Each task contains about 400 to 500 points.
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