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Appendix

A  PRELIMINARIES

A.1 Relevant Results on Gaussian Process Multi-armed Bandits

We first review some relevant definitions and results from the Gaussian process multi-armed bandits literature, which will
be useful in the analysis of our algorithms. We first begin with the definition of Maximum Information Gain, first appeared
in |Srinivas et al.|[2009], which basically measures the reduction in uncertainty about the unknown function after some
noisy observations (rewards).

For a function f : X — R and any subset A C X of its domain, we use f4 := [f(2)]zeA to denote its restriction to A,
i.e., a vector containing f’s evaluations at each point in A (under an implicitly understood bijection from coordinates of the
vector to points in A). In case f is a random function, f4 will be understood to be a random vector. For jointly distributed
random variables X,Y", I(X;Y) denotes the Shannon mutual information between them.

Definition 1 (Maximum Information Gain (MIG)) Let f : X — R be a (possibly random) real-valued function defined
on a domain X, and t a positive integer. For each subset A C X, let Y4 denote a noisy version of f 4 obtained by passing
fa through a channel P [Y 4| fa]. The Maximum Information Gain (MIG) about | after t noisy observations is defined as

Y (f, X) = Acl;lﬁf‘:tl(fA;YA)-

(We omit mentioning explicitly the dependence on the channels for ease of notation.)

MIG will serve as a key instrument to obtain our regret bounds by virtue of Lemmal]

For a kernel function ¥ : X x X — R and points z,z1,...,2s € X, we define the vector ky(z) :=
[k(z1,2),...,k(xs,z)]T of kernel evaluations between x and 1, . . ., 5, and Ky, oy = Ko = [k(z4, )] 1<4,j<s be
the kernel matrix induced by the x;s. Also for each z € X and A > 0, let 02(z) := k(z,7) — ks(2)T (Ks + \) " tky(2).

Lemma 1 (Information Gain and Predictive Variances under GP prior and additive Gaussian noise) Let £ : X X
X — R be a symmetric positive semi-definite kernel and f ~ GPx(0,k) a sample from the associated Gaussian pro-
cess over X. For each subset A C X, let Y4 denote a noisy version of fa obtained by passing fa through a channel that
adds iid N'(0, \) noise to each element of fa. Then,

1
X) = “In|l+ 2K 13
Ye(f, &) AC20x 3 n|l+ Al (13)
and .
1 _
Y (f, &) = wmax o Zln (L+ X0 (zy)). (14)
T1,e Ty pot
Proof The proofs follow from Srinivas et al.|[2009]. |

Remark. Note that the right hand sides of and depend only on the kernel function k, domain X, constant A and
number of observations ¢. Further, as shown in Theorem 8 of [Srinivas et al.|[2009], the dependency on A is only of O(1/A).
Hence to indicate these dependencies on k and X’ more explicitly, we denote the Maximum Information Gain ~;(f, X') in
the setting of Lemma [T]as v, (k, X).

Lemma 2 (Sum of Predictive variances is bounded by MIG) Let k : X x X — R be a symmetric positive semi-definite
kernel such that it has bounded variance, i.e. k(z,x) < 1 forall x € X and f ~ GPx(0,k) be a sample from the
associated Gaussian process over X, then forall s > 1l and r € X,

o2 y(z) <1+ A Nol(a), (15)

and
t

> o () < @A+ D)k, X). (16)

s=1
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Proof From our assumption k(z,z) < 1, we have 0 < ¢?_;(z) < 1forallz € X, and hence 02_;(z,) < In (1 +
A o2 i (xs))/In(1+ A1) since a/ In(1 4 ) is non-decreasing for any a € [0, 0o). Therefore

t t

ol i(z) <2/In(1+ A7) <1

s=1 s=1

n (142702 () < 230(ks X)/In(1 + A7),

l\J\H

where the last inequality follows from (14] Now see that 2/ In(1+ A7) < (2+ A1) /A"t = 2\ + 1, since In(1 + a) >
2a/(2 + «) for any « € [0, 00). Hence ZS 102 (z) < 2N+ D)y (k, X).
)

Further from Appendix F in Chowdhury and Gopalan|[2017], see that 02(z) = 02_,(x) — k2_ (x5, )/ (A + 02_; (zs))
for all x € X, where ky(z,2) := k(z,2') — ks(2)T (K5 + M)~ ks(2'). Since ks—1(z,-),x € X lie in the reproducing
kernel Hilbert space (RKHS) of k_1, the reproducing property implies that ks_1 (x5, 2) = (ks—1(zs, ), ks—1(z, ) k. _;-
Hence by Cauchy-Schwartz inequality k2, (zs,2) < ||ks—1(zs, ~)Hi871 [ks—1(z, ~)||i571 = ke—1(xs, x5)ks—1(z,2) =

02_1(zs)o?_,(x), where the second last step follows from the reproducing property and the last step is due to

2
02(z) = ks(z.z). Therefore o2(z) > o2 ,(x) (1 - as+(xs)) = Xo?_ (z)/(A + o?_4(z,)). Further
A+o2_(zs)
by the bounded variance assumption, o2_(z;) < 1 and hence A/(A + ¢Z_;(z5)) > A/(1 + X). This implies
oZ(x)/oi_1(x) = A/(1+A) and hence 07, (z) < (1 + A~ 1)o (). u
Lemma 3 (Ratio of predictive variances is bounded by Information Gain Kandasamy et al.[[2018]) Ler £ : X X

X — R be a symmetric, positive-semidefinite kernel and f ~ GPx(0,k). Further, let A and B be finite subsets of
X, and for a positive constant ), let 04 and o oy be the posterior standard deviations conditioned on queries A and
AU B respectively (similarly defined as in Lemma . Also, let y(k, X ) denote the maximum information gain after t noisy
observations. Then the following holds for all x € X :

oalx)
A,Bénﬁ:)l{m:t m < exp (%(ka X)) (17)

Proof The proof can be figured out from |Desautels et al.|[2014]], but we include it here for completeness. Let Y4 and Yp
are vectors of noisy observations when we query f at A and B respectively, and ( f(z);Yp | YA) denotes the mutual
information between f(x) and Y, conditioned on Y. Note that

I(f(x);Yp | Ya) = H(f(z) | Ya) — H(f(2) | Yaup) = %ln (2mec? (z)) — %ln (2mec? p(z)) =In (;:j%).

Hence for all z € X and for all finite subsets A, B of X, we have

oa(x)

A =P (I(f(x);YB ; YA)>. (18)

Now, by monotonicity of mutual information, we have I (f(z);Yp | Ya) < I(f;Yp |Ya) forall z € X. Further, if
|B| = t, we have (f; Ys | YA) < maxpcy: =t 1 (f; Ys | YA). Thus for all z € X and for all finite subset B of X’
for which |B| = t, we have

I(f(z);Ys | Ya) < Bcgligl _, I(f;Ys | Ya).

Now by submodularity of conditional mutual information, for all finite subset A of X', we have

Ys | Y, :Yn).
pBax  I(fiYe|Ya) < | max  I(f;Ye)

Further see that I (f;Yg) = I (fp;Ys), since H(Yp | f) = H(Yp | fp). This implies, for all z € X and for all finite
subsets A, B of X for which |B| = t, that

I(f(z);Yp |Ya) < Bcgl?ﬁlt I(fB;YB) =ik, X). (19)

Now the result follows by combining (I8)) and (19). |
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Bound on Maximum Information Gain |Srinivas et al.[[2009] proved upper bounds over 7 (k, X') for three commonly
used kernels, namely Linear, Squared Exponential and Matérn, defined respectively as

kLinear (x; 'T/) = ‘rT‘rlv
ksp(z,2') = exp(—s°/21%),
21V [ s\/2v : sV 2
k atérn\L, ! = BV )
Mat (m Z‘) 1—\(1/) < l ) < l >
where I > 0 and v > 0 are hyper-parameters of the kernels, s = ||z — 2’||, encodes the similarity between two points

z,x’ € X and B, denotes the modified Bessel function. The bounds are given in Lemma

Lemma 4 (MIG for common kernels) Ler k : X x X — R be a symmetric positive semi-definite kernel and f ~
GPx(0,k). Let X be a compact and convex subset of R? and the kernel k satisfies k(z,x') < 1 for all z,x' € X. Then

for

e Linear kernel: vy¢(kpincar, X) = O(d1nt).
e Squared Exponential kernel: ~y;(ksp, X) = O (Int)4).

o Matérn kernel: vyi(kpratérn, X) = 0) (td(d“)/@”*d(d“)) In t).

Note that, the Maximum Information Gain ~;(k, X’) depends only poly-logarithmically on the number of observations ¢
for all these kernels.

Reproducing kernel Hilbert spaces (RKHS) A Reproducing kernel Hilbert space (RKHS) H(X) is a complete sub-
space of the space of square integrable functions Lo (X) defined over the domain X'. It includes functions of the form
f(x) =3, aik(x, ;) with a; € Rand x; € X, where k is a symmetric, positive- definite kernel function. The RKHS has
an inner product (-, -), which obeys the reproducing property: f(z) = (f, k(z,-))x for all f € H(X), and the induced
RKHS norm ||f||> = (f, f), measures smoothness of f with respect to the kernel k. Lemma 5 gives a concentration
bound for a member f of Hy(X). A (slightly) modified version of Lemma has appeared independently in |Chowdhury
and Gopalan|[2017] and Durand et al.[[2017].

Lemma 5 (Concentration of an RKHS member) Let k : X x X — R be a symmetric, positive-semidefinite kernel and
f: X = R be a member of the RKHS Hy,(X) of real-valued functions on X with kernel k. Let {x,};>1 and {e;}1>1 be
stochastic processes such that {x;}1>1 form a predictable process, i.e., ©; € o({xs,e5}'2}) for each t, and {e;}+>1 is
conditionally R-sub-Gaussian for a positive constant R, i.e.,

2 P2
Vt>0, VAER, E[e* | F_q] Sexp<A2R )

where Fi_1 is the o-algebra generated by {zs, Es}i;ll and x;. Let {y,};>1 be a sequence of noisy observations at the
query points {x; };>1, where y, = f(x;) + &, For A > 0and x € X, let

pe—1(x) = kt—l(x)T(Kt—l + AI)AYE—h
o? () = k(z,z)-— ki1 ()T (Ko—y + M) 7k (),
where Yi_1 == [y1,. .. ,yt,l]T denotes the vector of observations at {x1,...,xi_1}. Then, for any 0 < & < 1, with

probability at least 1 — 6, uniformly overt > 1,2 € X,

R 12
|f(z) = e (z)] < (IIfk 5 2(1n(1/5) +3 ;m (1+ A‘103_1(5%))))0“(36)-

Proof The proof follows from the proof of Theorem 2.1 in|Durand et al.| [2017]. |
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A.2 Relevent Results on Episodic Continuous Markov Decision Processes

Definition 2 (Bellman operator) For any MDP M = {S, A, Ry, Py, H}, any policy m = S x {1,...,H} — A, any
period 1 < h < H, any value function V : S — R and any state s € S, the Bellman operator TT%L is defined as

(T%LV) (8) = EM (Sa 71—(87 h)) + Es’ [V(S/)] )
where the subscript s' implies that s’ ~ Py (s, (s, h)) and Ry denotes the mean reward function.
This operator returns the expected value of the state s, where we follow the policy 7 (s, h) for one step under Py .

Lemma 6 (Bellman equation) For any MDP M = {S, A, Ry, Py, HY, any policy n : S x {1,...,H} — A and any
period 1 < h < H, the value functions Vﬂ)Mh satisfy

Vﬂ‘]\,/gl(s) = (Ti{hVW%Jrl)(S)
forall s € S, with VT%{_H =0.

Proof For any MDP M = {S, A, Ry, P, H, }and policy m: S x {1,..., H} — A, period h € {1,..., H} and state
s € S, recall the finite horizon, undiscounted, value function

H
ZRM(sj,aj) ’ Sp = s],

i=h

V]Wh(S) = EMﬂT

7\—7

where the subscript 7 indicates the application of the learning policy 7, i.e., a; = 7(s;, j), and the subscript M explicitly
references the MDP environment M, i.e., 5,41 ~ Pas(s;,a;), forall j = h, ..., H. See that, by definition, V., | (s) = 0
for all s € S. Further Vﬂl‘ﬁl(s) can be rewritten as

H
Vﬂ%(s) = Ry (s,ﬂ(s,h)) +Enrr Z Rur(sj,a ) | Sp = s]
j=h+1
— H —
= Ry (s,ﬂ(s,h)) +Eg EMJT[ Z Ry(sj,a4) | She1 = S’H
j=h+1

= Ru(s,m(s,h)) +Eg [Vﬂ%+1(8/):|,

where the subscript s implies that s’ ~ Py (s, 7(s, h)). Now the result follows from Deﬁnition [ |

Lemma 7 (Bounds on deviations of rewards and transitions imply bounds on deviation of the value function) Let
M, 1 > 1 be a sequence of MDPs and for each l > 1 and m; be the optimal policy for the MDP M. Let M, be an MDP
with the transition function P, and s;p+1 ~ Pyi(s1,n, 1), where aip, = m(sy.p, h). Now foralll > 1and1 < h < H,
define

M M, M M,
A =Egop, zin) |:V7-rl7lh+1(5/) - Vm,h+1(sl)} - (Vm,th(Sl,hH) - Vm,h+1(51,h+1)),

where z; 1, := (Si.n, ar,p). Then for any T > 1,

T T H
Z (Vﬂjlv{ll(sm) - Vﬂ]\l/{i(sz,l)) < Z Z (‘RMZ (z,n) — Ru(zin)| + Log, || Pos (i) — P*(Zl,h)HQ + Az,h),

=1 =1 h=1

where Ly, is defined to be the global Lipschitz constant ({I)) of one step future value function for MDP M,.

Proof The arguments in this proof borrow ideas from |Osband et al.|[2013]]. Applying Lemma@ forh =1,s = s, and
two MDP-policy pairs (M, m;) and (M, m;), we have
VM (i) = VM (si) = (TXYV) (sin) — (T2 VS (s00)

m,1 2 m,1 2

= (TM V2 (s10) — (T2 VM) (s10) + (T V) (s00) — (T V) (s1,0).

1,2 m,1 7,2 m,1 2 m,1 V2
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71'[,2

Further using Deﬁnitionfor M=M,rmr=m,h=1,V = VMand s = 51,1, we have

(T%*lvﬂ]\l/{é)(sl,l) = R* (81,1, 7”(51717 1)) =+ ES’NP*(SL1,7TL(SL1,1)) [VWJE{ZZ(S/)} ; (20)

where R, and P, denote the reward and transition functions of the MDP M, respectively. Again using Definition [2] for
M=M,rm=mh=1V =V ands = s,1, we have

(TX5VM5) (s1,1) = R (st mi(s0,1, 1) + Brop, (510 mi(s0.0,1)) [Vﬁl{g(s/)} , (1)
Subtracting (Z1) from (20), we have
(TVA) (s10) = (TS (s10) = Bamruamonni |Vora(s) = Vas(s')]

= V%lz(slz) - V%é(sm) + A,

where A1 = Eyp, (5,1 ,m(s1.1,1)) [VMLQ(S/) — VM (8/)} — (V];/{lg(sm) — V]yé(Sl,Q)). Then (20) implies

T, 1,2 ™ ™
M, M, M M, M, M M, v, M,
Vei(sin) = Vi i(sin) = Vi b(si,2) = Vi 5(s2) + (T 4 Vi 5) (si1) — (T, 5 Vi, 5) (s1,1) + Ava.
Now since VWA?H 4+1(s) = 0 for any MDP M, policy 7 and state s, an inductive argument gives

H

Vali (o) = Vi (s1) = 3 (T V50 (sun) = (T V ) (s) + A ) (22)
h=1

M, M, M, M,
where A p = oo, (51w (51,0.h)) [Vm,lh-i-l(sl) - Vm,h+1(5')} - (Vm,2+1(51,h+1) - Vm,h+1(51,h+1)>~

Now using Deﬁnitionrespectively for M = M;and M = M, withw =7, V = V%’h 41 and s = s; 5,, we have
M, 1M 1M - M,
(e Vara) (s10) = (Tar 3 Van) (s10) = <RML (1.0 T1(1,05 1)) + Bt P, (51 w1 (50,040) [Vmﬁﬂ(s')})

_ (R* (st,hs T (1,05 1)) + B opy (51w (s1.0,h)) [VWJZW,ZH(S/)} ) .
Further using the fact that a; j, = m;(s;, 1)) and defining z; ;, = (s;.5, a;,n), We have
(Tfjr\ﬁhvﬂlt/{%+1) (s1,n) — (T%%,Vn]‘l/{lh+1) (s1,n)
= R, (51,0, a1,0) = BR800 a1n) + By opay (s1ann) [VW%LH (s’)} —Egnp, (51000 {wa‘l/{lhﬂ(s’)]

= Ry (21,0) = Ru(21,n) + Esrapag, (z00) [V%Ml(sl)] —Eswp, (210) [Vﬂ%H(SI)] :

and Ay = Borp, () | Vi () = VG2 ()] = (Vs Gsun) = VG 1 (i)

Now for an MDP M, a distribution ¢ over S and for every period 1 < h < H, recall that the one step future value function
is defined as

UM (0) 1= Egn [V ia ()],
where 7, denotes the optimal policy for the MDP M. Observe that 7 is the optimal policy for the MDP M;. This implies
(Tl Vargn) (1) = (To3 Vitan) (s1a) = B (z1) = Baaun) + Uy (Pag, (z1,0)) = Up™ (Pe(z1.0))

Further (T) implies - B
U™ (Pary (z11)) = Up™ (Pe(z1,0)) < Laay [P sy (z1,0) = Pz |l 5

where Ly, is defined to be the global Lipschitz constant @) of one step future value function for MDP M. Hence we have
M, M, M, /M, - - 5 5
(T‘,rl7lhv7rl7l}L+1)(sl,h) — (Tthmth)(Sz,h) < !RM, (z1.n) — R*(Zl,h)| + Ly, HPM,(Zz,h) — P*(Zz,h)||2~ (23)

Now the result follows by plugging (23 back in (22) and summing over [ =1,...,7. |
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B ANALYSIS OF GP-UCRL AND PSRL IN THE KERNELIZED MDPs

B.1 Preliminary Definitions and Results

Now we define the span of an MDP, which is crucial to measure the difficulties in learning the optimal policy of the MDP
[Jaksch et al., [2010, [Bartlett and Tewari, 2009].

Definition 3 (Span of an MDP) The span of an MDP M is the maximum difference in value of any two states under the
optimal policy, i.e.
Upy = Jmaxs Vﬂ]\flg(s) - Vw%J(s/)'

Now define Wy, := SIE%S Vﬂﬂé’h(s) _ wa\é’h(s’) as the span of M at period / and let Wy, := maxpe(1,.. 7} YM,n S

the maximum possible span in an episode. Clearly W, < Uy

Definition 4 A sequence of random variables {Z;}>1 is called a martingale difference sequence corresponding to a
filtration {F }>o, if for allt > 1, Z; is Fy-measurable, and for all t > 1,

E [Z | Fi-a] =0.

Lemma 8 (Azuma-Hoeffding Inequality) If a martingale difference sequence {Z;};>1, corresponding to filtration
{Fi}i>o, satisfies | Z;| < oy for some constant oy, forallt =1,...,T, then forany 0 < § < 1,

Lemma 9 (Bound on Martingale difference sequence) Let M; be the set of plausible MDPs constructed by GP-UCRL
(Algorithm|[l) at episode 1,1 > 1 and M;,l > 1 be a sequence of MDPs such that M, € M for each | > 1 and m; be
the optimal policy for the MDP M for each | > 1. Let M, be an MDP with reward function R, and transition function

M, M,
Py. Let s; py1 ~ Pi(s1,n, a1,n), where aj p, = m(s;,n, h). Now define Ay, := Egop, (2 ) [mehﬂ(s’) - thﬂ(s’)} —

(VFJLV{’,I+1(SI7h+1) — Vﬁjt/{ﬁ+1(5l,h+1)>’ with 2, = (Si,n, a1,). Then for any 0 < 6 < 1 and T > 1, with probability at
least 1 — 0,

T H
Z Z Ay < (LD +2CH)\/2rHIn(1/9),

=1 h=1

where D := max; gcs ||S —j’ |5 is the diameter of the state space S, C'is a uniform upper bound over the absolute value
of the mean reward function R,, i.e. |R*(z)’ < Cforall z € Z and L is an upper bound over the global Lipschitz constant
of one step future value function for MDP M,, i.e. Ly;, < L.

Proof First assume that M, is fixed in advance. For each [ > 1 and h € {1,...H}, we define H;_; :=
{85.ks @j ks Tj ey Sjk+1 F1<j<i—1,1<k<p as the history of all observations till episode { — 1 and G;p = H;—1 U
{81k, @1k, 71 ks S1k+1 F1<k<n as the history of all observations till episode [ and period h. See that Ho = @ and H; = G g
for all | > 1. Further defining G o := H;—1 U{s;1}, wesee that G, j, = Gy —1 U{an, T, Siny1 f forallh € {1,... H}.
Clearly the sets G; , satisfy G0 C G;1 C Gi2 C ... C G,y C Gyy10 forall [ > 1. Hence, the sequence of sets
{Gi.n}1>1,0<n<m defines a filtration.

Now by construction in Algorithm[T} M; is deterministic given ;. Hence, M; and ; are also deterministic given ;_.
o M, M, M, M, :
This implies Ay, = By p, (z,.) [mehﬂ(s/) — Vm’hﬂ(s’)} - (Vﬂ_hlh+1($l,h+1) - Vm’h+1(sl7h+1)) is G5, - measurable.
Further note that a; ;, = m;(s;,, h) is deterministic given G; 5,1, as both m; and s; j, are deterministic given G; 1. This
implies
M / M, / M, M,
E [Al,h | gl7h—1] = ES,NP*(ZLTh) |:Vm,lh+1(s ) - Vm,h+1(5 )] - ESZ,}H»INP*(ZLJI) [Vm,lh+1(sl7h+1) - Vm,thl (Sl»h-i-l)

= 0. 4)
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Further, observe that |A; ;| < (max VL (s) — min VL (s) + (max VM (s) - min V(). The first

term maX Vm hal

(Deﬁmtlon' Now from (1] . we get Wpy, < Lpy, D, where D := max, scs ||s — ||, is the diameter of the state space S
and Ly, is a global Lipschitz constant for the one step future value function. Further by construction of the set of plausible

MDPs M; and as M; € M;, we have Lj;, < L. Hence, we have maxV th1( s) — man 1lh+1( ) < LD. Now, since
by our hypothesis |R ! < Cforall z € Z, see that VFMh (s) < CH forallm,1 < h § H and s € S. Hence, we have

axV th1() man hH()SQCH.

S mln is upper bounded by W ,,,, which is an upper boun overt e span of the 1
Vo (s b ddb\Ill hich i bound h f the MDP

Therefore the sequence of random variables {A; 5 };>11<n<p is a martingale difference sequence (Definition EI) with
respect to the filtration {G; 5, }1>1,0<n<m, With [A; | < LD+ 2CH foralll > 1and 1 < h < H. Thus, by Lemma for
any 7 > 1 and 0 < § < 1, we have with probability at least 1 — 6,

T H T H
SN A< [2n(1/6) Y Y (LD +2CH)? = (LD + 2CH)+/2rHIn(1/9). (25)
=1 h=1 =1 h=1

Now consider the case when M, is random. Then we define 7:1171 = H;_1 U M, and _C';l,h = G;.n U M,. Then
{A;n}i>1,1<h<m is a martingale difference sequence with respect to the filtration {G; 1, }1>1,0<n<m, and hence holds
in this case also. |

B.2 Analysis of GP-UCRL in Kernelized MDPs

Recall that at each episode [ > 1, GP-UCRL constructs confidence sets Cr ; and Cp; as

Cri=1{f:Z = R| |f(2) = pri-1(2)| < BrioR1-1(2)Vz € Z},

m (26)
Cri={f:Z=R"| |f(2) = pri-1(2)lly < Brillopi—1(2)|,Vz € 2},
where 1ir,0(2) = 0, 0% o(2) = kr(z, 2) and for each [ > 1,
R (2) = kpy(2)" (Kry + HI) 'Ry, @7
crfw(z) = kR(Z, Z) - kRJ(Z)T(KRJ + HI)ilkRJ(Z).
Here H is the number of periods, [ is the (IH) x (LH) identity matrix, R; = [r11,...,7; |7 is the vector of rewards
observed at Z; = {Zj,k}lgjgl,lgkgH = {z11,..., 21,1}, the set of all state-action pairs available at the end of episode
l. kri(2) = [kr(21.1,2),...,kr(z1,1,2)]" is the vector kernel evaluations between 2 and elements of the set Z; and
Kpry = [kr(u,v)]uvez, is the kernel matrix computed at Z;. Further up;(z) = [upi-1(2,1),..., upi—1(z,m)]" and
opi(z) = [opi—1(2,1),...,0pi-1(z,m)]", where pupo(z,i) = 0, 0po(z,i) = kp((2,1), (z,4)) and for each [ > 1,
wpi(z,4) = kpi(z,i)  (Kpy + mHI)™LS), o8

op1((2,1))) = kp((2,1), (2,4)) = kpa(z, )T (Kpy + mHI) " kp(2,9).

Here m is the dimension of the state space, H is the number of periods, I is the (mlH) x (mlH) identity matrix, S; =
[slT,Q, co sty H}T denotes the vector of state transitions at Z; = {211, ..., z;, i }, the set of all state-action pairs available

T
at the end of episode I. kp;(z,i) = |:kp((21717 1),(2,49),....kp((z,m,m), (2, z))} is the vector of kernel evaluations
between (z,7) and elements of the set Z; = {(Zj7k,i)}1<j<l renericiem = 11,1, (z,m,m)} and Kp; =
[kp(u,v)]u vez, 1s the kernel matrix computed at Z,. Here forany 0 < 6 < 1, Bg, Bp,op,0p > 0, Br, := Br +
o

T\ 2(0(3/6) + 201 (k. A, 2)

chosen confidence widths of Cr; and Cp; respectively.

) + Ym@—1yu(kp, Ap, Z)) are properly

Lemma 10 (Concentration of mean reward and mean transition functions) Let M, = {S, A, R,, P,, H} be an MDP
with period H, state space S C R™ and action space A C R". Let the mean reward function R, be a member of the
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RKHS Hy,, (Z) corresponding to the kernel kg : Z x Z — R, where Z := S x A and let the noise variables g 1 j, be
conditionally o p-sub-Gaussian (@) Let the mean transition function P, be a member of the RKHS Hy, . (2 ) corresponding
to the kernel kp : Z x Z R, where Z:=Zx {1,...,m} and let the noise variables € p,; j, be conditionally component-
wise independent and o p-sub-Gaussian @) Further let HR*HkR < Bgr and HP < Bp. Then, forany 0 < § < 1, the
following holds:

el

P[Vz € ZV1 > 1,|Ru(2) = pra-1(2)| < Bryora-1(z)] > 1-5/3, (29)
P[Vz € Z,Vl>1,||P.(z) — MP,171(Z)||2 < Bpillopi-1(2)|,] = 1-46/3, (30)

Proof First fix any 0 < 6 < 1. Nowforall! > land1 < h < H + 1, letus define Z; ,_1 = {2k h1<j<i—1,1<k<m U
{ziehi<k<n-1 = {z11,...,21,H,. .-, 211,...,21,h—1} as the set of all state-action pairs available till period h — 1 of
episode . Further, let Ry p—1 = [F1,1, -y T1,Hy s T01;--- ,rl’h,l]T denotes the vector of rewards observed at Z; 1.
See that Z; 0 = Z;_1, 5 and Rj o = Rj_1 g forall ] > 2. Also Ry = 0 and Z1 o = (). Now we define, for all z € Z,
l>1land1 < h < H + 1, the following:

prin-1(2) =kpin-1(2) (Kryp_1+HI) 'Ry 1,

2 T -1 G

orin-1(2) = kr(2,2) = krin-1(2)" (Krih—1 + HI)” kran-1(2),
where krn-1(2) = [kr(211,2),-- - kr(z1.1,2), .., kr(211,2), ..., kr(21.n—1,2)]T is the vector kernel evaluations
between z and elements of the set Z; 41, Kryn—1 = [kr(2,2')]2,27¢2,,_, is the kernel matrix computed at Z; ;1.
See that g 0(2) = pri—1,0(2), and o 10(2) = opy—1,u(z) foralll > 2 and z € Z. Also ppr1,0(2) = 0 and
or1,0 =kgr(z,2)forall z € Z.

At the staie—action pair z; 5, the reward observed is 1, = ﬁ*(zl,h) + €gr,1,n. Here, by our hypothesis, the mean reward
function R, € Hy,(Z) and the noise sequence {er1}i>1,1<n<m is conditionally og-sub-Gaussian. Now Lemma
implies that, with probability at least 1 — ¢ /3, uniformly overall z € Z,1 > land1 < h < H,

(,h—1)
R(2) = pran(2)] < ( IR, + % 2<1n(3/5) + % Y m(t+ H—la%jykl(zj*)))) oRin1(2).

(4,k)=(1,1)
Again, from Lemmam we have

(I,h—1)
1 _
3 > W+ H 'oh1(28) < va-vuasn-1(kr, £),
(4,k)=(1,1)

where v (kg, Z) denotes the maximum information gain about an f ~ GPz(0, kg) after ¢ noisy observations with iid
Gaussian noise N (0, H). Therefore, with probability at least 1 — §/3, uniformly overall z € Z,1 > 1and1 < h < H,

|R.(2) — prun-1(2)] < (BR + %\/Q(ln(3/5) + 'Y(l—l)H+h—1(kR7Z)))"'R,l,h—l(z)a (32)

since by our hypothesis HR* < Bg. Now see that g0 = pri—1 and orj0 = ogr,—1 and Br; = Bgr +

[
j—%\/2(ln(3/6) + Y- kR, AR, Z)) for every [ > 1. Hence li follows by using ti with h = 1.

Further foralll > 1land1 < h < H + 1, let 5y, = [slTQ, ey sfHH, ceey s{z, ceey slj:h]T denotes the vector of state
transitions at Z; p,—1 = {211, ., 21, Hy+ -+, 211, - - - » 2l,h—1}» Where every state s, = [s;n(1),...,s5;,(m)]T,1 <j <
1,1 < h < H+1,is anm - dimensional vector. Further forall! > 1,1 < h < H and 1 < b < m+ 1, define the following
set:

21 hb—1

|
—~
—
&
x
~.
=
—
—
IN
<.
A
|
-
-
A
>
AN
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=
A
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3
(-
—~
—~
S
e
~.
=
—
—
IN
e
IN
>
L
=
IN
&
IN
3
-
—~
—
kS
5
~.
=
—
-
12
IN
i
—

iy Rt )

{Zlyhfl X {1,. . ,m}} U {{Zl,h} X {1,. .. 7b— 1}}
{(Zl,lal)w'-a(Zl,lam)a"'a(zl,h—lvl)7"'7(Zl,h—1am)a(zl,h,71)a'"a(zl,hab_ 1)}a
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and the following vector

Sihp-1 = [SIT,haSl,hH(l)a ey sippr (0= 1)
= [S{)Q, el S{HJFD el SEQ, e sfh, Sth41(1), .., sp+1(b— n*
= [5172(1), ey Sl’g(m), ey Sl,h(l), ey sl7h(m), Sl,h+1(1)a ceey 5l,h+1(b — 1)]T

See that Z; 0 = Z;p—1,m and Sy o = Sip—1,m foralll > 1and 2 < h < H. Further 2,19 = Z;_1,1,m and
Si11,0 = Si—1,5,m forall I > 2. Also Z; 10 = 0and S;,1,0 = 0. Now we define, forallz € Z,1 < ¢ <m,l > 1and
1 < h < H + 1, the following:

weinp—1(2,4) = kpino—1(2,9)" (Kpinp—1 +mHI) ™ S p -1,

5 - - , AT 1 - 33)
opinp1(24) =kp((2,1),(2,9) = kpinp-1(2.1)" (Kpinp—1 +mHI) kpypp-1(z,i),

T
where kp; pp—1(2,1) = [kp((zm, 1), (z, z)), ce, kp((zu,,, b—1),(z, z))} is the vector of kernel evaluations between

(z,1) and elements of the set Z~’l hv—1, Kpipp—1 = [k:p(z z )] B is the kernel matrix computed at Zl hib—1-

ZZGZ]
See that (ipj h.0 = P h—1,m and op h0 = Op1 h— 1mf0ralll>1and2<h<H Further, pup ;1,0 = tp,i—1,H,m and

opi1,0=0pi—1,Hm foralll > 2. Also ptp1.1,0(z, z)—Oandapllo—kp((z i), (z, )) forallz€ Zand1 <i<m.

sdady sdady

At the state-action pair z; 5,, the MDP transitions to the state s; 541, where s, +1(i) = Py (211,1) +epin(i), 1 <i < m.
Thus, we can view s;,5,11(4) as a noisy observation of P, at the query (z;,,7) € Z. Here, by our hypothesis, the mean
transition function P, € Hy,, (Z) and the noise sequence {ep 1 (¢)}1>1,1<h<H,1<i<m is conditionally o p-sub-Gaussian.

Now Lemmaimplies that, with probability at least 1 — §/3, uniformly overall z € Z,1 <i<m,l > 1,1 <h < H
and1 <b<m:

(I,h,b—1)

2
= . . = op 1 Upyj,k,q71(zj,kaQ) .
|Pa(2,4) = ppnp-1(2,7)| < <|‘P*||kp+m 2(111(3/5) t3 ” )§ ‘L 1)1n (1 + e )) P nb—1(2,1).
7,8,9)=(1,1,

Again, from Lemmam we have
1 (1,h,b—1)
=Y m (1 +
(4:k,q)=(1,1,1)

2
UP~ j, ks 71(Z',k7Q) ~
: qu : ) < ’ym(l—l)H+m(h—1)+b_1(kp,2)7

where 7;(kp, Z) denotes the maximum information gain about an f ~ GP;(0,kp) after ¢ noisy observations with iid
Gaussian noise A (0, mH). Therefore, with probability at least 1 — §/3, uniformly overall z € Z,1 < i < m, [ > 1,
1<h<Hand1l<b<m,

\/2( In(3/8) + Ym—1)H4mh—-1)+o—1(kP, 5)))0P,1,h,b71(27 i), (34)

- . . op
Py(z,1) —ppinp-1(2,1)| < (

’ *( ) IU’P; U 1( )‘ \/m?
since by our hypothesis H?*Hkp < Bp. Now see that up; 1,0 = ppy—1 and op;1,0 = op—1 for every [ > 1. Hence
using for h = 1 and b = 1, see that, with probability at least 1 — /3, uniformly overall z € Z,1 <i < m,and! > 1,

[P — ppaa(z0)] < ( \/7\/2 (10(3/6) + Y- 1ysr (ke 2)) )01 (2,3):

ﬁ\/z (I0(3/0) + Yma—nyz (b, Ap, 2)), Pu(2) = [Pu(,1),..., Pu(z,m)]7,

ppi—1(2) = [wpi-1(2,1), ..., upi—1(z,m)]T and op;_1(2) = [op1—1(2,1),...,0p1-1(z,m)]T. Then, with proba-
bility at least 1 — 6/3, uniformly over all z € Z and [ > 1,

HP*(Z) _“P»lfl(z)Hz < ZﬁPlJPl 1(2,7) = Bpi
=1

m
> 0%, i(z0) = Bpallopi-1(2)]l,
=1

and hence (30) follows. [ ]
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Lemma 11 (Sum of predictive variances upper bounded by Maximum Information Gain) Let or; and op; be de-
fined as in 27] and 28] respectively and let the kernels kg and kp satisfy kgr(z,z) < 1 and kp((2,i),(z,i)) < 1 for
all z € Zand 1 < i < m. Then forany T > 1,

T H
S orialzn) < V2erH?*vu(kg, 2) (35)
I=1 h=1
ZZ”UPZ 1z, < \/2emTH2’YmTH(kP72~)7 (36)
=1 h=1

where 7yi(kg, Z) denotes the maximum information gain about an f ~ GPz(0,kr) after t noisy observations with iid
Gaussian noise N'(0, H) and ~;(kp, Z) denotes the maximum information gain about an f ~ GP3(0,kp) after t noisy
observations with iid Gaussian noise N'(0, mH).

Proof Note that o ;_1(2) = 0r,0(2), where g o(%) is defined in 1) Now from , see that 012%’[,0(2) < (1+

1/H)0122,l,1(2) <(1+ 1/H)2a}23’l72(z) << (14 1/H)H_1012%,1,H—1(Z)’ Le. 0%7170(2) <1+ 1/H)h_10??,,l,h—1(2)
forall z € Z and 1 < h < H. This implies

T H
Zzam 1(21,n) ZZURlO zn) < ZZ(l+1/H)h710?z,z,h—1(zl,h)
I=1 h=1 I=1 h=1 I=1 h=1
T H
< (1+1/H)"! Z Zoé,l,hq(zl,h)
I=1 h=1
< (L+1/H)" ' (2H + V)yru(kg, Z)
< 2eHv,m(kr, 2), (37)

where the second last inequality follows from (16) and last inequality is due to the fact that (1 + 1/a)®* < e and (1 +
1/a)™}(2a + 1) < 2« for all o > 0. Further by Cauchy-Schwartz inequality

T

H T H
2203,1—1(21,11) < THZZU%J_l(Zz,h)- (38)
=1 h=1

=1 h=1

Now (33) follows by combining (37) and (38).

Similarly Note that op;_1(2,7) = O'Pl)l’Q(Z i), where opy1,0(2,) is defined in (33). Now from (15), see that
U%vhlwo(z,i) < (1+ l/mH)m(h D+b— OPlhb (zyi)forallz € 2,1 <i<m 1 <h<Handl<b<m.
This implies

T H m T H m T H m
DD hualanb) =D > obuoland) < Y3 Y (14 1/mH)" I e (2, 0)
1=1 h=1 b=1 1=1 h=1 b=1 =1 h=1 b=1
m
< (14 1/mH)mH-Dm= 1222 b1 b—1(211,0)
l=1 h=1 b=1
< (L4+1/mH)™ " 2mH + 1) ymrn (kp, Z)
< 2emH%pmru(kp, Z), (39)

where the second last inequality follows from and last inequality is due to the fact that (1 + 1/a)® < e and (1 +
1/a)71(2a + 1) < 2a for all o > 0. Further by Cauchy-Schwartz inequality

T m

T H T H H
SN llori—i(zim)lly < | THY Y lopacizn)lly = | 7THY D> 02, 1 (z1m,b). (40)

=1 h=1 =1 h=1 =1 h=1b=1

Now (36) follows by combining (39) and (#0). |
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B.2.1 Frequentist Regret Bound for GP-UCRL in Kernelized MDPs: Proof of Theorem ]

Note that at every episode {, GP-UCRL (Algorithm [T selects the policy m; such that

Vil (su1) = max max V2 (s1.1), (1)

where s; ; is the initial state, M is the family of MDPs constructed by GP-UCRL and M; is the most optimistic realization
from M. Further see that the mean reward function R, of the unknown MDP M, lies in the RKHS #y,, (Z). Thus for all
z € Z,

[Ru(2)| = [(Ru, kR (2, )ia| < |[Ball,, Fr(2,2) < Br, 42)
where the first equality is due to the reproducing property of RKHS, the first inequality is the Cauchy- Schwartz ineqlality

and the final inequality is due to hypothesis that HR Hk < Brand kg(z,z) < 1forall z € Z. Now, , Lemma(7|and
Lemma@together imply that for any 0 < 6 < 1 and 7 > 1, with probability at least 1 — 6/3,

T

T H
Z (VA (s10) = V2 (s10) ZZ (|RM, zin) — Ra(zin)| 4 Lag, ||Pag, (z0n) — P*(Zl,h)HQ)

=1

+(LD +2BrH)+\/27H In(3/9). (43)
Now for each [ > 1, we define the following events:
Ery = {Vz€ Z,|Ru(2) — pri-1(2)| < Bruori-1(2)},
Ep; = {Vz€ Z,||P.(2) - /~LP,171(Z)||2 < Bpillopi-1(2)|, }-

By construction of the set of MDPs M; in Algorithm |I|, it follows that when both the events Er,; and Ep; hold for all
[ > 1, the unknown MDP M, lies in M; for all [ > 1. Thus implies Vm Y(si1) > V (sl 1) forall I > 1. This in
turn implies, for every episode [ > 1,

VM (s11) = VM (s01) < VA (s1) = Vi (si,)- (44)
Further when Er ; holds for all { > 1, then
|Rag, (z1.0) = Ru(zin)| < |Ras (zn) — pra—1(zin)| + |Ru(zin) — pra-1(z0n)| < 2Br0 ora—1(z1.0), (45)
since the mean reward function R M, lies in the confidence set Cg . Similarly when E'p; holds forall I > 1,

|Pas (z1.0) — Pulzin)|y < | Pan(zin) — mra—1(zin)|]y + || Pe(zin) — mpa—1(zin)||, < 28p0 lopi-1(zin)lly »
(46)
since the mean transition function P M, lies in the confidence set Cp; .

Now combining @), (P_-éf[), @) and @), when both the events Fr; and Ep; hold for all [ > 1, then with probability at
least 1 —4/3,

T H

Z(V;\ﬁ*l(sl’l) Vm 1 Sl1 222 BRZURZ 1 Z[ h)+L]VILBPl ||Upl l(zlh)” ) (LD+2BRH) 2TH1H(3/§).
=1 =1 h=1

3

Now Lemma(l0|implies that P[V] > 1, Eg ] > 1—6/3 and P[V] > 1, Ep,;] > 1 — /3. Hence, by a union bound, for any
7 > 1, with probability at least 1 — 4,

T T H T H
Z (VM (510)- VM1 (s1,1)) < 2Br.» Z Z or1—1(z1,n)+2LBP - Z Z lopi—1(zin)|l,+(LD+2BrH)\/27H In(3/6).

=1 I=1 h=1 I=1 h=1
(47)

Here we have used the fact that both Sr; and Sp; are non-decreasing with the number of episodes ! and that
Ly, < L by construction of M; (and since M; € M;). Now from Lemma we have ZzT:1 Zthl ori—1(zn) <
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V2erH?y,y(kg, Z) and 3°;_, Zthl lopi—1(zin)lly < \/QemTHz’ymTH (kp, Z). Therefore with probability at least
1 — 6, the cumulative regret of GP-UCRL after 7 episodes, i.e. after T' = 7H timesteps is

T

Regret(T) = Z (Vﬂ]\ﬁ*l(sl’l) — V%i (sl’l))
1=1

< ZﬁR7T\/2eH’yT(kR,Z)T—|—2L5p77\/26mH7mT(kp,£§)T+(LD—|—2BRH) 2T 1n(3/9),

OR
where g = B+ —=1/2(1n(3/60) 4+ vy(r— kr,2))and Bp, = Bp +
Brir = Brt T 2(I3/0) + 9y, 2)) and iy = B

Now the result follows by defining yr(R) := yr(kr, Z) and Y1 (P) := YT

P
miL
kp, 2

V2(I(3/8) + Anr -1y, 2)).
)

B.3 Bayes Regret of PSRL under RKHS Priors: Proof of Theorem 2]

® = (®p, Pp) is the distribution of the unknown MDP M, = {S, A, R,, P,, H}, where ® and ®p are specified by
distributions over real valued functions on Z and Z respectively with a sub-Gaussian noise model in the sense that

e The reward distribution is R, : S x A — R, with mean R, € Hy,(Z),
noise.

R.|| k, < Br and additive o p-sub-Gaussian

e The transition distribution is P, : S x A — S, with mean P, € H ,;P(z)
additive and independent o p-sub-Gaussian noise.

. < Bp and component-wise

At the start of episode [, PSRL samples an MDP M from ®;, where ®; = (®r;, ®p,) is the corresponding posterior
distribution conditioned on the history of observations H;_; := {sj, k> Qi ks ’f’j’k}lg j<i—1,1<k<H. Therefore, conditioned
on H;_1, both M, and M; are identically distributed. Hence for any o(?;_1) measurable function g, E [g(M*) ‘ ’Hl,l] =
E [g(M;) | Hi—1] and hence by the tower property,

Elg(M,)] = E[g(M)]. (48)

See that, conditioned on H;_1, the respective optimal policies 7, and 7; of M, and M, are identically distributed. Since
51,1 1s deterministic, implies that E [V#‘fﬁ (81,1)} = {VMz (51,1)} . Hence for every episode [ > 1,

ﬂ']l
E [V (s10) = Vi) = E[VM(s10) = V¥ (su)] + B [V (s10) = V¥ 1)
= E Vi) = Vi ()] - (49)

Now, from Lemmal[7} for any 7 > 1,

T T

B [V (i) = ViG] | <

H
Z [’RMZ zin) — Bu(zin)| + Lag, || Poa (z10) — Pulzin)||, + Al,h]] ;
=1

=1 h=1

(50)

M M, M, M,
where 2y, := (synsain) and Ay = Eyop, (2, ) [Vm ha1(8) = Vi (s /)} - (le,l}l+1(sl,h+l) - Vm,h+1(3l,h+1)>-
From Ii see that £ [Al,h ! gl,h,l, M,, Ml} = 0, where gl’h,1 =H;_ 1 U {Sl,lw ik, Tk 3l,k+1}1§k§h71 denotes the

history of all observations till episode { and period h — 1. Now by tower property E [A; ;] = 0,1 > 1,1 < h < H. Hence,
combining (#9) and (50), for any 7 > 1,

T

Z [V%*I(Sl,l) - VM Sl 1 }‘| < E [ZZ “RM] Zl. h (Zl h)| +LJV[l ||PM1 Zlh) P*(Zl,h)||2]‘| . (51)

=1 =1 h=1

E

Now fix any 0 < § < 1 and for each I > 1, define two events E, := {R, € Cry, P, € Cp; VI > 1} and Ey := {Ryy, €
Cri, P, € Cpy VI > 1}, where Cr,Cp;,l > 1 are the confidence sets constructed by GP-UCRL as defined in .
Now from Lemma[I0] P[E,] > 1 — 26/3 and hence by P [Ey] > 1 — 26/3. Further define E := E, N Ey; and by
union bound, see that

P[E] < P[ES] + P[ES,] < 45/3. (52)
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(5T) and (32) together imply,

T

H
Z [ijt{ﬁ(slvl) - V (81 1 }‘| < E lzz [|RM1 Zin) R*(Zl,hﬂ | E

=1

E

TE [Lag, |[Pac (i) = Pazin)ll, | | E] + 80BrrH/3,  (53)

where we have used that V%*l(su) - Vﬁjt{; (s1,1) < 2BgrH, since m*(z)| < Brforall z € Z. Now from Lemma and
construction of Cry,l > 1,

T H T H
E Z’RMI(Zl,h) R, (2 h | |E < 2225&10}2,1—1(21,}1)
I=1 h=1 I=1 h=1
T H
< 28r- Y Y ori-1(2n) (54)
I=1 h=1
< 2B\ 2etH>yh(kr, 2), (55)
where the last step follows from Lemma Now form (48), E[Ly,] = E|[L,] and therefore E [Lyy, | E] <

E[La,) /P[E] <EI[L,] /(1 —46/3). Similarly from Lemma (10|and construction of Cp,1 > 1,

T H T H
E ZZLNIZ |Par,(z10) — Pulzin)|, | E| < ZZE[LMZ | E] —1(z1,n) |l
1=1 h=1 1=1 h=1
E[
< 45/3 ﬁPTZZ;hZ:lHUPl 1(z1,n) 5
E|[L,
< [45}325137\/2677”1{ mra(kp Z)es (56)

where the last step follows from Lemma {1} Combining (33)), (33) and (36)), forany 0 < § < 1and 7 > 1,

y (L.
E ; [Vﬂj\ﬁq(sz,l) - Vﬁjl”i(sz 1)}1 < 2Bp \2eTH?v, g (kR, Z) + 46/32ﬁp7\/2em7H Ymr (kp, Z)
+80BRTH/3,
_ op p
where Sgr,» = Br+ T\/Q (In(3/6) + ¥(r—1yu (kr, Z)) and Bp, = m\/2(ln(3/6) v ke ).

See that the left hand side of the above is independent of §. Now using § = 1/7H, the Bayes regret of PSRL after 7
episodes, i.e. after I' = 7 H timesteps is

E [Regret(T)] = ZE [VM* s11) = Vo, (s, 1)}

< 2ap.\/2¢Hvr(kg, Z)T + 3E[L,] ap,f\/ 2emH~pr(kp, Z2)T + 3Bg,

since 1/(1 —4/37H) < 3/2as 7 > 2, H > 2. Here ar, := Bp + \C/r—%\/Q(ln(ST) +Yer—yu(kr, 2)), ap, =

(o2 d .
\/n% \/ 2(In(3T) + Y (r—1y21 (kp, Z)). Now the result follows by defining yr(R) := vr(kg, Z) and Y7 (P) :=
Ymr(kp, Z).

C BAYES REGRET UNDER GAUSSIAN PROCESS PRIORS

In this section, we develop the Bayesian RL analogue of Gaussian process bandits, i.e., learning under the assumption that
MDP dynamics and reward behavior are sampled according to Gaussian process priors.
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Regularity and Noise assumptions Each of our results in this section will assume that the mean reward function R,
and the mean transition function P, are randomly sampled from from Gaussian processes GPz (0, kr) and GP3(0, kp),
respectively, where Z := SxAand Z := Zx{1,...,m}. Further, we will assume the noise sequences {€r.1,n },~1 1<p<p

are iid Gaussian NV'(0, Ag) and {ep 1}, ;<) <5 are iid Gaussian N'(0, \pI). Note that the same GP priors and noise
models were used to design our algorithms (see Section [3.1). Thus, in this case the algorithm is assumed to have exact
knowledge of the data generating process (the ‘fully Bayesian’ setup).

Further, in order to achieve non-trivial regret for continuous state/action MDPs, we need the following smoothness as-
sumptions similar to those made by |Srinivas et al.|[2009]] on the kernels. We assume that S C [0, ¢;1]™ and A C [0, ca]™
are compact and convex, and that the kernels kr and kp satisfy{?] the following high probability bounds on the derivatives
of GP sample paths R, and P,, respectively:

P {bug |0R.(2)/02;] > LR} < ape~(Ln/bn)’ (57)
ze

holds for all 1 < j < m + n and for any L > 0 corresponding to some ar,br > 0, and

P [sug |0P.(2,1)/0%;] > Lp] < ape~(Lr/br)’ (58)
z€

holds foral 1 < j <m+n,1 <¢ < mandforany Lp > 0 corresponding to some ap,bp > 0. Also we assume that

P {sug |R.(2)| > L} < ae*(L/b)Q, (59)
1S

holds for any L > 0 for some corresponding a, b >

Choice of confidence sets for GP-UCRL For any fixed 0 < § < 1, at the beginning of each episode !, GP-UCRL
construct the confidence set Cr; as

Cru={f:1f(2) = pri—1([2])] < Briori—1([z)) + 1/1%,Vz}, (60)
where ppri-1(2), ogri-1(2) are defined as in and Br; = \/21n(|Sl||Al\77212/5). Here (S1)i>1
and (A;);>1 are suitable discretizations of state space S and action space A respectively, [z]; =
([s]is[a]1), where [s]; is the closest point in S; to s and [a]; is the closest point in 4; to a.  Also

m m
|S1] = max{(?cllebR\/ln(6(m+n)aR/6)> ,(QClmlsz\/ln(Gm(ern)ap/5)) } and |A| =

max { (QanZQbR\/ln(G(m + n)aR/(S))n, (202nl2bp \/ln(Gm(m + n)ap/é))n}.

Similarly GP-UCRL construct the confidence set Cp; as

Cra = {1 1)~ mrar (Dl < B Nomi a0l + Yo, w2}, )
where fOp; = \/2 In (8] [Ai| mm212/8), ppi(z) = [upi—1(z,1),...,upy—1(z,m)]T and opy(z) =

lopi-1(2,1),...,0p1-1(%, m)]T with up;_1(z,7) and opi—1(z,1) be defined as in

Theorem 3 (Bayesian regret bound for GP-UCRL under GP prior) Ler M, = {S, A, R,, P,,H} be an MDP with
period H, state space S C [0, c1]™ and action space A C [0, co]", m,n € N,c1,ca > 0. Let S and A be compact
and convex. Let the mean reward function R, be a sample from GPz(0,kr), where Z := S x A and let the noise

!9This assumption holds for stationary kernels k(z, z’) = k(z — 2') that are four times differentiable, such as SE and Matérn kernels
with v > 2.

""This is a mild assumption on the kernel kg, since R, (z) is Gaussian and thus has exponential tails.
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variables eg 1 1, be iid Gaussian N(0,AR). Let the mean transition function P, be a sample from GP5(0,k p) , where
Z:=Zx {1,...,m} and let the noise variables € p, j, be iid Gaussian N'(0, \pI). Further let the kernel kg, satisfy ,
and the kernel kp satisfy (58). Also let kr(z,2) < 1, kp((2,i), (2,4)) < 1 forall z € Z and 1 < i < m. Then for
any 0 < ¢ < 1, GP-UCRL, with confidence sets (60) and (61), enjoys, with probability at least 1 — 6, the regret bound

Regret(T) < 2Br.r exp (Yyu—-1(R)) V@2 g + D)y7(R)T + 2LBp , exp (Ymu—-1(P)) vV @XAp + 1)Ymr(P)T
+(Lym +1)Hr?/3 + (LD 4+ 2CH)+/2T In(6/6),

where C := by/In(6a/0), Br, = \/2 In (|| |A;| 7212 /6) and Bp, = \/2 In (S| |Ai| mm212/5).

Theorem 4 (Bayes regret of PSRL under GP prior) Let M, be an MDP as in Theorem 3| and ® be a (known) prior
distibution over MDPs M.,. Then the Bayes regret of PSRL (Algorithm[2) satisfies

E [Regret(T)] < 2ag,-exp (vu-1(R)) v (2 g + 1)y (R)T + 3 E L] aprexp (Ymu—1(P)) vV (2Ap + 1)Ymr(P)T
+3C + (1 4+ vmE [L,])nH,

where C = E [sup,¢ z ‘E*(z)

|, arr = \/2 In (|S-||A;| 7272T) and op,; := \/2 In (|S-||Az| mm272T).

C.1 Detail Analysis

Here the state space S C [0, ¢;1]™ and the action space A C [0, c]™ for ¢1,c2 > 0. Both S and A are assumed to be
compact and convex. Then at every round [/, we can construct (by Lemma 15 of |Desautels et al.|[2014]]) two discretization
sets S; and A; of S and A respectively, with respective sizes S; and A;, such that for all s € S and a € A, the following
holds:

IA

Is — [shill, am/ 1SV,

la—lalill, < ecan/ A",

A

where [s]; := argming g, [|s — §'||;, is the closest point in S; to s and [a]; := argmin,c 4, [|a — a'[| is the closest point
in A; to a (in the sense of 1-norm). Now for any s € S and a € A, we define z := [s?,a’]? and correspondingly
(2], == [[s]], [a}lT]T. Further define Z := S x A :={z = [sT,aT]T : s € S,a € A}and Z; :== S x A = {z =
[sT,aT]T : s € Sj,a € Aj}. See that z, [2]; € R™ " and Z, Z; C R™*™.

Lemma 12 (Samples from GPs are Lipschitz) Let S C [0,¢1|™ and A C [0, co]™ be compact and convex, m,n €
N,ci,¢c2 > 0. Let R, be a sample from GPz(0,kg), where Z := S x A, P, be a sample from GP3(0,kp), where

Z:=Zx {1,...,m}. Further let the kernels kg and kp satisfy and (@) respectively. Then, for any 0 < 6 < 1, the
following holds:

P[Vz € 2,1 > 1|R.(2) — Ru([2]))| < 1/1?] > 1-4/6, (62)
P[Vz€ Z,V1 <i<m,Vl > 1|P.(z4) — Pu([2]1,9)| < 1/1°] > 1-5/6. (63)

Proof From (57)), recall the assumption on kernel kp:
P {suzp! |8E*(z)/8zj| > LR] < aRe*(LR/bR)Q,l <j<m+n,
z€
holds for any Lr > 0 for some corresponding ar, br > 0. Now using union bound,
P {Vl <j<m+n sug |OR.(2)/0z;| < LR} >1—(m+ ’]’L)aRe_(LR/bR)Q.
z€

From Mean-Value Theorem, this implies that with probability at least 1 — (m + n)age™Fr/ br)* |

VZ,Z/ € 27 |R*(Z) _R*(Z/)} < LR HZ - Z,“l .
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Therefore, with probability at least 1 — (m + n)a re~(Lr/ bR)2,

A

VI>1,Vz € Z,|R.(2) — Ro([2])| < Lrlz— [zl
= Lr(lls = [shll, + la = [alill, )
Le(crm/|1SY™ + can/ |AY™).

N

Now for any 0 < § < 1 choose L = bR\/ln(G(m + n)ag/d). Then with probability at least 1 — §/6,

VI >1,Vz € Z,|Ri(2) — Ru([2]1)] < bR\/ln(G(m +n)agr/d) (C1m/ |Sl|1/m + con/ |Al|1/n). (64)
Similarly from (58], recall the assumption on kernel kp:

P [sup|8P*(z7i)/8zj| > Lp] < ape*(LP/bP)il <j<m+n,1<i<m,
zEZ

holds for any Lp > 0 for some corresponding ap,bp > 0. Now using union bound,

P [Vl <j<m+n,Vl1<i<m sup |8ﬁ*(z,i)/5‘zj| <Lp|>1 fm(m+n)ape*(LP/bP)2.
ZEZ

Now from Mean-Value Theorem, this implies that with probability at least 1 — m(m + n)ape™ L7/ bp)*

V2,2 € Z,V1 <i<m,

7*(Z77;) - P*(ZIJ)‘ < LP ”Z - Z/Hl .
Therefore, with probability at least 1 — m(m + n)a pe—(Lr/ bP)2, we have

VI > 1,Vz € ZV1 <i<m,|Pu(z,9) — Pu(z]1,i)] < Lplz— [zl
Lp(lls = [shlly + lla = [alell,)
Lp(erm/ S + ean/ | A",

IN

Now choose Lp = bp \/ln(6m(m + n)ap/8). Then with probability at least 1 — §/6,

Vi >1,¥z € 2,1 <i<m,|Py(2i) — Pul[2]1,9)| < bp\/ln(ﬁm(m+ n)ap/8) (crm/ |Si|M™ + can/ |AM™).

(65)

Now by using |S;| = max{(chmZQbR\/ln m + n)aR/5)> (261ml2bp\/l (6m(m+ n)ap/é)) }

|A| = max{<202nl2b3\/ln (m+mn aR/é)) (QanZQbP\/ln 6m m+n) ap/(5 in and , We getﬂ

and [63] respectively.

Now recall that at each episode [ > 1, GP-UCRL constructs confidence sets Cr; and Cp; as
Cru={f:Z—=R|Vz€Z|f(2) — pri-1([z])| < Bruori-1([2]) + 1/1°}, 6)
Coi={f:Z=R"|Vz€Z|f(2) — ppar([Zl)ll, < Bpuillopi—1([zI)ll, + Vm/I*},

where (g 0(2) = 0, 0% 4(2) = kr(z, 2) and for each [ > 1,

pri(2) = kri(2)T(Kry + Arl) 'Ry, )
0'1237l(z) = kR(Z, Z) — k‘R,l(Z)T(KRJ + /\RI)ilk‘R’l(z).
Here [ is the (IH) x (ILH) identity matrix, R, = [r11,...,7 )7 is the vector of rewards observed at Z; =
{zjkh<j<ii<k<m = {z11,-..,7 1}, the set of all state-action pairs available at the end of episode I. kg ;(z) =

[kr(21.1,2),--.,kr(21.m,2)]T is the vector kernel evaluations between z and elements of the set Z; and Kr; =
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[kRr(u,v)]u ez, is the kernel matrix computed at Z;. Further pip;(2) = [upi—1(2,1), ..., upi—1(z,m)]T and op,(2) =

[opi—1(2,1),...,0p1—1(z,m)]T, where pp(z,1) =0, opo(z,i) = kp((2,1), (z,4)) and for each | > 1,

ppa(z,1) = kpi(z,0)" (Kpy + ApI) ™15y, ©8)

Ulzg,l((z,i))) =kp((z,1),(2,4)) — k‘pJ(z,i)T(KpJ + /\pI)flkpyl(z,i).
Here I is the (mlH) x (miH) identity matrix, S} = [s{,,...,5]5,,]" denotes the vector of state transi-
tions at Z; = {z11,...,2;,m}, the set of all state-action pairs available at the end of episode I. kp;(z,i) =
T

[kp((zm, 1),(2,1)),-... kp((z1,1,m), (z,z))} is the vector of kernel evaluations between (z,7) and elements of the
set Z; = {(Zj’k’i)}léjél,lékSH,ISiSm = {(zl’l, 1)yooey (zl,H,m)} and Kp; = [kp(u’v)}u,veél is the kernel matrix

computed at Z;. Here forany 0 < § < 1, g, = \/2 In (8] [Ai| 7212/6) and Bp; := \/21n(|81| |Ay| mm212/6)
are properly chosen confidence parameters of Cr; and Cp; respectively, where both |S;| and |.A4;| are approximately
O((l2 ln(l/é))d) with d = max{m,n}.

Lemma 13 (Posterior Concentration of Gaussian Processes) Let M, = {S, A, R,, P,, H} be an MDP with period H,
state space S C [0, c1]™ and action space A C [0,c2]™, m,n € N,c1,¢2 > 0. Let S and A be compact and convex. Let
the mean reward function R, be a sample from GPz(0,kg), where Z := S x A and let the noise variables e, 1, be iid
Gaussian N'(0,\R). Let the mean transition function P, be a sample from GP3(0,kp) , where Z := Z x {1,...,m}
and let the noise variables p j, be iid Gaussian N(0,\pI). Further let the kernels kr and kp satisfy and
respectively. Then, for any 0 < § < 1, the following holds:

P[Vz € Z2,V1 > 1,|Ru(2) — pru—1([2]1)| < Bra oru—1([2]:) + 1/17] 1-6/3, (69)
P[Vz e Z,VI> 1, ||Pu(2) — pri—1([2])|, < Brallopi—1([2)]l, + vVm/P?] > 1-4/3, (70)

ALY,

Proof Note that conditioned on H;—1 = {5, x, @5k, Tj.k» S5 k+1 F1<j<i—1,1<k<H> R.(2) ~ N(NR,Z—l(Z)a 01237171(2)» If
a~N(0,1),c >0, then P[|a| > ¢] < exp(—c?/2). Using this Gaussian concentration inequality and a union bound over
alll > 1 and all z € Z;, with probability at least 1 — §/6, we have

VI > 1,Vz € 2, |Ru(2) — pra-1(2)| < Bruori-1(2). (71)
Now as [2]; € Z;, using union bound in and (71), we have with probability at least 1 — §/3,
R.(2) — pru—1([2])| < Bruora—1([z]) + 1/1°.

Similarly, conditioned on H;_1, P, (z,1) ~ ./\/'(,uRJ_l(z, i), O'QP’lil(Z, z)) forall z € Z and 1 < i < m. Then using the
Gaussian concentration inequality and a union bound over all/ > 1, all z € Z; and all ¢ = 1,...,m, with probability at
least 1 — 6/6, we have

Vi>1,Vz € Z,

Vi>1,Vz € Z;,V1 <i<m,

Po(2,1) — ppi—1(2,9)| < Briopi—1(z,i). (72)
Now as [z]; € Z;, using union bound with and , we have with probability at least 1 — 6/3,
vi > 1,VZ € Z;v:l < { < m, |F*(Z?7’) - ,U‘P,l—l([z]lai)‘ < /BP,ZO-P,Z—l([Z]lai) + 1/l2

Now Recall that P, (z) = [P«(z,1),..., Pu(z,m)]T, ppi—1(2) = [upi(2,1),...,ppi—1(z,m)]T and op;_1(2) =
lopi(2,1),...,6p1-1(2,m)]T. Then with probability at least 1 — §/3, for all [ > 1 and for all z € Z,

|Pi(2) — ppi—a ()], < Z (5P,IUP,171([2]172') + %)2 < 251%,1‘7?3,1—1([2]1»1') + Z%
im1 i—1 im1
\/TTL

= Brillopi—1([z1)l, + o
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Lemma 14 (Sum of predictive variances upper bounded by Maximum Information Gain) Let or; and op; be de-
fined as in [67) and [68] respectively and let the kernels kg and kp satisfy kr(z,z) < 1 and kp((2,i),(z,i)) < 1 for
all z € Zand 1 < i < m. Then, forany T > 1,

T H
Z Z ori—1([zn))) < exp (va-1(kr, 2)) V@R + 1)TH, g (kr, Z) (73)
=1 h=1
SO o (znl)ly < exp (1 (e 2)y @Ap + DrHApuresr (i, 2), (74)
=1 h=1

where (kg, Z) denotes the maximum information gain about an f ~ GPz(0,kr) after t noisy observations with iid
Gaussian noise N (0, \r) and ~y;(kp, Z) denotes the maximum information gain about an f ~ GP3(0,kp) after t noisy
observations with iid Gaussian noise N'(0, \p).

Proof Note that op;_1(2) = oru0(z), where og;o(z) is defined in 1) From Lemma GR’I’O(Z())
OR,1,h—1(2
exp (fyh_l(kR, Z)) forall z € Z and 1 < h < H. This implies

T

H
ZZJRZ 1([z1n]i ZZURZO Zinl) < ZZ exp (29n—-1(kr, X)) 0% 101 ([20]1)
1=1 h=1 =1 h=1 =1 h—1
< exp (2yn-1(kr, 2 ZZUth 1([zeml0)
I=1 h—1
< exp (2’yH,1(k:R, Z)) (2Ar + D)vru(kgr, 2), (75)

where the second last inequality follows from (T6). Further by Cauchy-Schwartz inequality

T H T H
SN oraca(lzal) < | THY Y od ([, (76)

=1 h=1 =1 h=1

Now (73) follows by combining (73] and (76).

Similarly Note that op;_1(2,1) = op.1,0(%,%), Where op;1,0(z,1%) is defined in (33| @ Now from Lemmag we have
op11,0(2: 1)

< exp (Ym(h—1)+b—1(kp, Ap, )) forallze 2,1 <i<m,1<h<Hand1l <b < m. This implies
opihb—1(2,1)

T H m T H m
DD obialmplnt) = Y23 ohiollaalnb)
=1 h=1b=1 =1 h=1b=1
T H m
< Y DD e (2mn-vyro-1(kpy 2)) 0P p 1 ([200]10)
=1 h=1b=1
< exp (Q’Ym(H 1)+m—1 (kp, Z ZZZGPZhb 1([z1,n]1,0)
I=1 h=1b=1
< exp (2Ymu-1(kp, 2))(2Ap + DYmru (kp, Z), (77)

where the second last inequality follows from (T6). Further by the Cauchy-Schwartz inequality

T H T
D> llopia(znl)ll, < THZZHUPI L[zl = THZZZUH ([z0n]1, ). (78)

=1 h=1 =1 h=1 =1 h=1b=1

Now (74) follows by combining (77) and (78). |



Online Learning in Kernelized Markov Decision Processes

C.2 Bayesian Regret Bound for GP-UCRL under GP prior: Proof of Theorem 3]
Note that at every episode {, GP-UCRL (Algorithm [T selects the policy ; such that

Vol (s11) = max max VM (si1) (79)

where s; 7 is the initial state, M; is the family of MDPs constructed by GP-UCRL and M; is the most optimistic realization
from M. Further from 59

[sup ’R ’ > L} < ae_(L/b)z,
zZ€EZ

holds for any L > 0 for some corresponding a, b > 0. Thus for any 0 < § < 1, setting L = b+/In(6a/J), with probability

atleast 1 — /6, forall z € Z
|R.(2)] <by/In(6a/6). (80)
Now (80), Lemma and Lemma@together with an union bound imply that for any 7 > 1, with probability at least 1 —§/3,

T

Z (V%ﬁ(sl,l) 1(s11) Z Z (‘RML Zih) E*(«%,h)‘ + Ly, HPML (z1,h) — ﬁ*(zl,h)HQ)

=1 =1 h=1
+(LD + 2CH)+/27H In(6/9), (81)

where C' := by/In(6a/d). Now for each I > 1, we define the following events:
Ery = {Vz€ Z,|Ru(2) — pra—1([z])| < Bru ora—1([z]) + 1/},
Ep; = | Pe(2) — MP,171([Z]1)’ < Bpillopi—1([2)||y + vVm/?}.

By construction of the set of MDPs M; in Algorithm |I|, it follows that when both the events E'r; and Ep; hold for all
[ > 1, the unknown MDP M, lies in M, for all [ > 1. Thus (79) implies V2% (s1,1) > V,* (s,1) for all [ > 1. This in
turn implies, for every episode [ > 1,

VM (s11) = VA (s10) < VAT (s11) = VAT (s0)- (82)
Further when E'r; holds for all [ > 1, then

|Ros, (z10) — Ru(zin)| < |Ras (z10) = pra—1([zen])] + | Rezin) — pra—1([z00])] < 280 ri—1([z000) + 2/17,
(33)
since the mean reward function R/, lies in the confidence set Cr; as defined in . Similarly when Ep; holds for all
[>1,

IN

|Pas, (1) — ra—1([zenl)|], + || Pe(zin) — mpa—1([zenl) ||, (84)
261 llopi—1([z,]0) |, +2v/m/ 1, (85)

since the mean transition function P a;, lies in the confidence set Cp; as defined in . Now combining , ,
and (84), when both the events Er ; and Ep; hold for all | > 1, then with probability at least 1 — /3,

|Pas (z1.0) = Palzin) ||,

IN

r T H

Z (Vw]\:[,*l(sl,l) - Vﬂ]\l/{i(sl,l)) <2 Z Z (Braori—1([z0)1) + 1/ + Loy, Bea lopg—1([z0,0]) |, + Las, vm/1?)

1=1 =1 h=1
+(LD + 2CH) /27 H1n(6/5).

Now Lemma|[13]implies that P [Vl > 1, Er] > 1—6/3and P[Vl > 1, Ep,;] > 1—§/3. Hence, by a union bound, for any
7 > 1, with probability at least 1 — 6,

T

T H T H
Z (VM (s11) = Viali(si1)) < 2Bmer Z Z ori-1([z.nl1) +2LBp Z Z llopi—1([z,n]0)l5

=1 =1 h=1 =1 h=1
+(Lv/m 4+ 1)Hr?/3 + (LD 4 2CH)+/27H In(6/5). (86)
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Here we have used the fact that both Sr; and Sp; are non-decreasing with the number of episodes [, ZT:1 1/ 2 <
72/6 and that Ly, < L by construction of M; (and since M; € M;). Now from Lemma (14, we have

S S orie1([zanl) < exp (vi—1(kr, 2))v/@Ar + DTHyrr(kr, 2) and S S5 lopic1([nnl)ll, <

exp (fym m-1(kp, Z )) \/ 2 \p + V)T HYmrm (kp, ) Therefore with probability at least 1 — ¢, the cumulative regret of
GP-UCRL after 7 episodes, i.e. after ' = 7 H timesteps is

T

Regret(T) = Z (Vﬁ{*l(sl,l) — Vﬂj\fi(su))
=1
< 2Bprexp (Yu—1(kr, 2))V @A\ + 1)y7(kr, 2)T

+2L6P,'r exp (’Ymel(kPa Z~)) \/(2)‘13 + 1)’7mT(kP7 Z)T
+(Lyv/m +1)Hr?/3 4 (LD + 2CH)+/2T n(6/6),

where C' := by/In(6a/0), Br,r = \/2 In (|S;||A-|7272/6) and Bp, = \/2 In (|S;||A-| ma272/§). Now the result
follows by defining v (R) := yr(kg, Z) and V1 (P) := Ymr (kp, Z).

C.3 Bayes Regret of PSRL under GP prior: Proof of Theorem 4]

® = (Pg, Pp) is the distribution of the unknown MDP M, = {S, A, R,, P,, H}, where ® and @ p are specified by GP
priors GPz (0, kgr) are GP3(0, kp) respectively with a Gaussian noise model in the sense that

e The reward distribution is R, : S x A — R, with mean R, ~ GPz(0, kr), and additive N'(0, Ar) Gaussian noise.
e The transition distribution is P, : S x A — S, with mean P, ~ GP3(0, l;:p), and component-wise additive and

independent A/(0, Ag) Gaussian noise.

Conditioned on the history of observations H;—1 := {8, x,@;k,7jk}1<j<i—1,1<k<z both M, and M; are identically
distributed with ®; = (Pg,;, Pp;), where Pr,; and ®p,; are specified by GP posteriors GPz(fig,1—1,kr,—1) and
GPs(ppi—1,kp;—1) respectively.

In this case we use the confidence sets Cr; and Cp; as given inand define anevent £ := E,NE,;, where E, := {ﬁ* €
Cru, Px € Cpy V1 > 1} and Epy == {Rp;, € Cry, Py, € Cpy VI > 1}. Now from Lemma|13| P [E,] > 1 — 26/3 and
hence P [E] > 1 — 44/3 similarly as in the proof of Theorem[2] Further implies

Z [VWAK*I(SIJ) - VWJ:{E(SZ 1 }‘| < E [ZZ “RIWI Zl h Zl h | ‘ E

=1 =1 h=1

E

+E [Lus [Pos (21,0) —R<zl,h)u2} | B| +so0rHfs @)

where we have used that E [Vﬂjt{*l(sm) — M

m,1

(5171)} < 2CH, where C' = E [sup,cz |R.(2)|]. From Lemmaand
construction of Cpy,l > 1,

T H
B35 [FanCeun) = Bulenn)| | B| < > (28r00 a1 () +2/12)
=1 h=1 =1 h=1
w2 H
< 28r-exp (yu-1(kn, 2))V (20 + DT Hyr (i, 2) + —5—,(88)

where the last step follows from Lemma@ Similarly from Lemma@ and construction of Cp,[ > 1,

T H
E|Y 3 Los [Pan(ain) = Pulzn) |, | E
=1 h=1
T H
< SSE[Lag | B) (2860 lopi (i), + 2vm i)
=1 h=1
E[L,]

< m(Qﬂpfexp(VmH 1(kp, 2 ))\/(2>\P+1)TH’YmTH(kP, )+\/>7T2H/3) (89)
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where the last step follows from Lemma [T4] and from the proof of Theorem 2] Combining (87), (88) and (89), for any
O<d<landT >1,

T

Z [VﬂAﬁ*l(Sl,l) - Vﬁfi (811)” < 2Bgrrexp (yu-1(kg, 2)) V@2A\r + V)7H, g (kr, \r, Z)

=1
% exp (Yma—1(kp, Z)) \/(2>\P + 1)7HYmrp (kp, Z)

(1+ 115[56*/]3 vm)n?H
3 )

E

+2/6P,T

+86CTH/3 +

where g, = \/2 In (|S-||A;|7272/6) and Bp, = \/2 In (|S-||A;| mn272/5). See that the left hand side is inde-
pendent of . Now using 6 = 1/7H, the Bayes regret of PSRL after 7 episodes, i.e. after 7' = 7 H timesteps is

E [Regret(r)] = ZE [Vﬂj\fﬁ(sm) - Vw]t/{i(sl,l)}
I=1

IN

20, exp (vr—-1(kr, 2)) v/ (2\g + )y (kg, 2)T

+3E (L] ap.exp (Ymu—1(kp, Z)) \/(2/\1: + Dymr(kp, 2)T + 3C + (1 + vmE [L,])7*H,

since 1/(1 — 4/37H) < 3/2as7 > 2, H > 2. Here C' = E [sup,cz |R.(2)|]. ar, = \/21n(|87| | Ay | w272T),

ap, = \/2 In (|S;||A-| ma272T). Now the result follows by defining yr(R) := ~yr(kg,Z) and v,7(P) :=
Ymr (kp, Z).
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