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Appendix
A PRELIMINARIES

A.1 Relevant Results on Gaussian Process Multi-armed Bandits

We first review some relevant definitions and results from the Gaussian process multi-armed bandits literature, which will
be useful in the analysis of our algorithms. We first begin with the definition of Maximum Information Gain, first appeared
in Srinivas et al. [2009], which basically measures the reduction in uncertainty about the unknown function after some
noisy observations (rewards).

For a function f : X → R and any subset A ⊂ X of its domain, we use fA := [f(x)]x∈A to denote its restriction to A,
i.e., a vector containing f ’s evaluations at each point inA (under an implicitly understood bijection from coordinates of the
vector to points in A). In case f is a random function, fA will be understood to be a random vector. For jointly distributed
random variables X,Y , I(X;Y ) denotes the Shannon mutual information between them.

Definition 1 (Maximum Information Gain (MIG)) Let f : X → R be a (possibly random) real-valued function defined
on a domain X , and t a positive integer. For each subset A ⊂ X , let YA denote a noisy version of fA obtained by passing
fA through a channel P [YA|fA]. The Maximum Information Gain (MIG) about f after t noisy observations is defined as

γt(f,X ) := max
A⊂X :|A|=t

I(fA;YA).

(We omit mentioning explicitly the dependence on the channels for ease of notation.)

MIG will serve as a key instrument to obtain our regret bounds by virtue of Lemma 1.

For a kernel function k : X × X → R and points x, x1, . . . , xs ∈ X , we define the vector ks(x) :=
[k(x1, x), . . . , k(xs, x)]T of kernel evaluations between x and x1, . . . , xs, and K{x1,...,xs} ≡ Ks := [k(xi, xj)]1≤i,j≤s be
the kernel matrix induced by the xis. Also for each x ∈ X and λ > 0, let σ2

s(x) := k(x, x)− ks(x)T (Ks + λI)−1ks(x).

Lemma 1 (Information Gain and Predictive Variances under GP prior and additive Gaussian noise) Let k : X ×
X → R be a symmetric positive semi-definite kernel and f ∼ GPX (0, k) a sample from the associated Gaussian pro-
cess over X . For each subset A ⊂ X , let YA denote a noisy version of fA obtained by passing fA through a channel that
adds iid N (0, λ) noise to each element of fA. Then,

γt(f,X ) = max
A⊂X :|A|=t

1

2
ln
∣∣I + λ−1KA

∣∣ , (13)

and

γt(f,X ) = max
{x1,...,xt}⊂X

1

2

t∑
s=1

ln
(
1 + λ−1σ2

s−1(xs)
)
. (14)

Proof The proofs follow from Srinivas et al. [2009].

Remark. Note that the right hand sides of (13) and (14) depend only on the kernel function k, domain X , constant λ and
number of observations t. Further, as shown in Theorem 8 of Srinivas et al. [2009], the dependency on λ is only of Õ(1/λ).
Hence to indicate these dependencies on k and X more explicitly, we denote the Maximum Information Gain γt(f,X ) in
the setting of Lemma 1 as γt(k,X ).

Lemma 2 (Sum of Predictive variances is bounded by MIG) Let k : X ×X → R be a symmetric positive semi-definite
kernel such that it has bounded variance, i.e. k(x, x) ≤ 1 for all x ∈ X and f ∼ GPX (0, k) be a sample from the
associated Gaussian process over X , then for all s ≥ 1 and x ∈ X ,

σ2
s−1(x) ≤ (1 + λ−1)σ2

s(x), (15)

and
t∑

s=1

σ2
s−1(xs) ≤ (2λ+ 1)γt(k,X ). (16)
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Proof From our assumption k(x, x) ≤ 1, we have 0 ≤ σ2
s−1(x) ≤ 1 for all x ∈ X , and hence σ2

s−1(xs) ≤ ln
(
1 +

λ−1σ2
s−1(xs)

)
/ ln(1 + λ−1) since α/ ln(1 + α) is non-decreasing for any α ∈ [0,∞). Therefore

t∑
s=1

σ2
s−1(xs) ≤ 2/ ln(1 + λ−1)

t∑
s=1

1

2
ln
(
1 + λ−1σ2

s−1(xs)
)
≤ 2γt(k,X )/ ln(1 + λ−1),

where the last inequality follows from (14). Now see that 2/ ln(1 + λ−1) ≤ (2 + λ−1)/λ−1 = 2λ+ 1, since ln(1 + α) ≥
2α/(2 + α) for any α ∈ [0,∞). Hence

∑t
s=1 σ

2
s−1(xs) ≤ (2λ+ 1)γt(k,X ).

Further from Appendix F in Chowdhury and Gopalan [2017], see that σ2
s(x) = σ2

s−1(x) − k2
s−1(xs, x)/

(
λ + σ2

s−1(xs))
for all x ∈ X , where ks(x, x′) := k(x, x′) − ks(x)T (Ks + λI)−1ks(x

′). Since ks−1(x, ·), x ∈ X lie in the reproducing
kernel Hilbert space (RKHS) of ks−1, the reproducing property implies that ks−1(xs, x) = 〈ks−1(xs, ·), ks−1(x, ·)〉ks−1 .
Hence by Cauchy-Schwartz inequality k2

s−1(xs, x) ≤ ‖ks−1(xs, ·)‖2ks−1
‖ks−1(x, ·)‖2ks−1

= ks−1(xs, xs)ks−1(x, x) =

σ2
s−1(xs)σ

2
s−1(x), where the second last step follows from the reproducing property and the last step is due to

σ2
s(x) = ks(x.x). Therefore σ2

s(x) ≥ σ2
s−1(x)

(
1 −

σ2
s−1(xs)

λ+ σ2
s−1(xs)

)
= λσ2

s−1(x)/
(
λ + σ2

s−1(xs)
)
. Further

by the bounded variance assumption, σ2
s−1(xs) ≤ 1 and hence λ/

(
λ + σ2

s−1(xs)
)
≥ λ/(1 + λ). This implies

σ2
s(x)/σ2

s−1(x) ≥ λ/(1 + λ) and hence σ2
s−1(x) ≤ (1 + λ−1)σ2

s(x).

Lemma 3 (Ratio of predictive variances is bounded by Information Gain Kandasamy et al. [2018]) Let k : X ×
X → R be a symmetric, positive-semidefinite kernel and f ∼ GPX (0, k). Further, let A and B be finite subsets of
X , and for a positive constant λ, let σA and σA∪B be the posterior standard deviations conditioned on queries A and
A∪B respectively (similarly defined as in Lemma 1). Also, let γ(k,X ) denote the maximum information gain after t noisy
observations. Then the following holds for all x ∈ X :

max
A,B⊂X :|B|=t

σA(x)

σA∪B(x)
≤ exp

(
γt(k,X )

)
. (17)

Proof The proof can be figured out from Desautels et al. [2014], but we include it here for completeness. Let YA and YB
are vectors of noisy observations when we query f at A and B respectively, and I

(
f(x);YB

∣∣ YA) denotes the mutual
information between f(x) and YB , conditioned on YA. Note that

I
(
f(x);YB

∣∣ YA) = H
(
f(x)

∣∣ YA)−H(f(x)
∣∣ YA∪B) =

1

2
ln
(
2πeσ2

A(x)
)
− 1

2
ln
(
2πeσ2

A∪B(x)
)

= ln

(
σA(x)

σA∪B(x)

)
.

Hence for all x ∈ X and for all finite subsets A,B of X , we have

σA(x)

σA∪B(x)
= exp

(
I
(
f(x);YB

∣∣ YA)). (18)

Now, by monotonicity of mutual information, we have I
(
f(x);YB

∣∣ YA) ≤ I
(
f ;YB

∣∣ YA) for all x ∈ X . Further, if
|B| = t, we have I

(
f ;YB

∣∣ YA) ≤ maxB⊂X :|B|=t I
(
f ;YB

∣∣ YA). Thus for all x ∈ X and for all finite subset B of X
for which |B| = t, we have

I
(
f(x);YB

∣∣ YA) ≤ max
B⊂X :|B|=t

I
(
f ;YB

∣∣ YA) .
Now by submodularity of conditional mutual information, for all finite subset A of X , we have

max
B⊂X :|B|=t

I
(
f ;YB

∣∣ YA) ≤ max
B⊂X :|B|=t

I (f ;YB) .

Further see that I (f ;YB) = I (fB ;YB), since H(YB
∣∣ f) = H(YB

∣∣ fB). This implies, for all x ∈ X and for all finite
subsets A,B of X for which |B| = t, that

I
(
f(x);YB

∣∣ YA) ≤ max
B⊂X :|B|=t

I (fB ;YB) = γt(k,X ). (19)

Now the result follows by combining (18) and (19).
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Bound on Maximum Information Gain Srinivas et al. [2009] proved upper bounds over γt(k,X ) for three commonly
used kernels, namely Linear, Squared Exponential and Matérn, defined respectively as

kLinear(x, x
′) = xTx′,

kSE(x, x′) = exp
(
−s2/2l2

)
,

kMatérn(x, x′) =
21−ν

Γ(ν)

(
s
√

2ν

l

)ν
Bν

(
s
√

2ν

l

)
,

where l > 0 and ν > 0 are hyper-parameters of the kernels, s = ‖x− x′‖2 encodes the similarity between two points
x, x′ ∈ X and Bν denotes the modified Bessel function. The bounds are given in Lemma 4.

Lemma 4 (MIG for common kernels) Let k : X × X → R be a symmetric positive semi-definite kernel and f ∼
GPX (0, k). Let X be a compact and convex subset of Rd and the kernel k satisfies k(x, x′) ≤ 1 for all x, x′ ∈ X . Then
for

• Linear kernel: γt(kLinear,X ) = Õ(d ln t).

• Squared Exponential kernel: γt(kSE ,X ) = Õ
(
(ln t)d

)
.

• Matérn kernel: γt(kMatérn,X ) = Õ
(
td(d+1)/(2ν+d(d+1)) ln t

)
.

Note that, the Maximum Information Gain γt(k,X ) depends only poly-logarithmically on the number of observations t
for all these kernels.

Reproducing kernel Hilbert spaces (RKHS) A Reproducing kernel Hilbert space (RKHS) Hk(X ) is a complete sub-
space of the space of square integrable functions L2(X ) defined over the domain X . It includes functions of the form
f(x) =

∑
i αik(x, xi) with αi ∈ R and xi ∈ X , where k is a symmetric, positive- definite kernel function. The RKHS has

an inner product 〈·, ·〉k, which obeys the reproducing property: f(x) = 〈f, k(x, ·)〉k for all f ∈ Hk(X ), and the induced
RKHS norm ‖f‖2k = 〈f, f〉k measures smoothness of f with respect to the kernel k. Lemma 5 gives a concentration
bound for a member f of Hk(X ). A (slightly) modified version of Lemma 5 has appeared independently in Chowdhury
and Gopalan [2017] and Durand et al. [2017].

Lemma 5 (Concentration of an RKHS member) Let k : X × X → R be a symmetric, positive-semidefinite kernel and
f : X → R be a member of the RKHS Hk(X ) of real-valued functions on X with kernel k. Let {xt}t≥1 and {εt}t≥1 be
stochastic processes such that {xt}t≥1 form a predictable process, i.e., xt ∈ σ({xs, εs}t−1

s=1) for each t, and {εt}t≥1 is
conditionally R-sub-Gaussian for a positive constant R, i.e.,

∀t ≥ 0, ∀λ ∈ R, E
[
eλεt

∣∣ Ft−1

]
≤ exp

(
λ2R2

2

)
,

where Ft−1 is the σ-algebra generated by {xs, εs}t−1
s=1 and xt. Let {yt}t≥1 be a sequence of noisy observations at the

query points {xt}t≥1, where yt = f(xt) + εt. For λ > 0 and x ∈ X , let

µt−1(x) := kt−1(x)T (Kt−1 + λI)−1Yt−1,

σ2
t−1(x) := k(x, x)− kt−1(x)T (Kt−1 + λI)−1kt−1(x),

where Yt−1 := [y1, . . . , yt−1]T denotes the vector of observations at {x1, . . . , xt−1}. Then, for any 0 < δ ≤ 1, with
probability at least 1− δ, uniformly over t ≥ 1, x ∈ X ,

|f(x)− µt−1(x)| ≤

(
‖f‖k +

R√
λ

√√√√2
(

ln(1/δ) +
1

2

t−1∑
s=1

ln
(
1 + λ−1σ2

s−1(xs)
)))

σt−1(x).

Proof The proof follows from the proof of Theorem 2.1 in Durand et al. [2017].
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A.2 Relevent Results on Episodic Continuous Markov Decision Processes

Definition 2 (Bellman operator) For any MDP M = {S,A, RM , PM , H}, any policy π : S × {1, . . . ,H} → A, any
period 1 ≤ h ≤ H , any value function V : S → R and any state s ∈ S, the Bellman operator TMπ,h is defined as(

TMπ,hV
)
(s) = RM

(
s, π(s, h)

)
+ Es′

[
V (s′)

]
,

where the subscript s′ implies that s′ ∼ PM
(
s, π(s, h)

)
and RM denotes the mean reward function.

This operator returns the expected value of the state s, where we follow the policy π(s, h) for one step under PM .

Lemma 6 (Bellman equation) For any MDP M = {S,A, RM , PM , H}, any policy π : S × {1, . . . ,H} → A and any
period 1 ≤ h ≤ H , the value functions VMπ,h satisfy

VMπ,h(s) =
(
TMπ,hV

M
π,h+1

)
(s)

for all s ∈ S, with VMπ,H+1 := 0.

Proof For any MDP M = {S,A, RM , PM , H, } and policy π : S × {1, . . . ,H} → A, period h ∈ {1, . . . ,H} and state
s ∈ S, recall the finite horizon, undiscounted, value function

VMπ,h(s) := EM,π

[
H∑
j=h

RM (sj , aj)
∣∣ sh = s

]
,

where the subscript π indicates the application of the learning policy π, i.e., aj = π(sj , j), and the subscript M explicitly
references the MDP environmentM , i.e., sj+1 ∼ PM (sj , aj), for all j = h, . . . ,H . See that, by definition, VMπ,H+1(s) = 0

for all s ∈ S. Further VMπ,h(s) can be rewritten as

VMπ,h(s) = RM
(
s, π(s, h)

)
+ EM,π

[
H∑

j=h+1

RM (sj , aj)
∣∣ sh = s

]

= RM
(
s, π(s, h)

)
+ Es′

[
EM,π

[ H∑
j=h+1

RM (sj , aj)
∣∣ sh+1 = s′

]]

= RM (s, π(s, h)) + Es′
[
VMπ,h+1(s′)

]
,

where the subscript s′ implies that s′ ∼ PM
(
s, π(s, h)

)
. Now the result follows from Definition 2.

Lemma 7 (Bounds on deviations of rewards and transitions imply bounds on deviation of the value function) Let
Ml, l ≥ 1 be a sequence of MDPs and for each l ≥ 1 and πl be the optimal policy for the MDP Ml. Let M? be an MDP
with the transition function P? and sl,h+1 ∼ P?(sl,h, al,h), where al,h = πl(sl,h, h). Now for all l ≥ 1 and 1 ≤ h ≤ H ,
define

∆l,h := Es′∼P?(zl,h)

[
VMl

πl,h+1(s′)− VM?

πl,h+1(s′)
]
−
(
VMl

πl,h+1(sl,h+1)− VM?

πl,h+1(sl,h+1)
)
,

where zl,h := (sl,h, al,h). Then for any τ ≥ 1,

τ∑
l=1

(
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
)
≤

τ∑
l=1

H∑
h=1

( ∣∣RMl
(zl,h)−R?(zl,h)

∣∣+ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

+ ∆l,h

)
,

where LMl
is defined to be the global Lipschitz constant (1) of one step future value function for MDP Ml.

Proof The arguments in this proof borrow ideas from Osband et al. [2013]. Applying Lemma 6 for h = 1, s = sl,1 and
two MDP-policy pairs (Ml, πl) and (M?, πl), we have

VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1) =
(
TMl
πl,1

VMl
πl,2

)
(sl,1)−

(
TM?
πl,1

VM?
πl,2

)
(sl,1)

=
(
TMl
πl,1

VMl
πl,2

)
(sl,1)−

(
TM?
πl,1

VMl
πl,2

)
(sl,1) +

(
TM?
πl,1

VMl
πl,2

)
(sl,1)−

(
TM?
πl,1

VM?
πl,2

)
(sl,1).
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Further using Definition 2 for M = M?, π = πl, h = 1, V = VMl
πl,2

and s = sl,1, we have(
TM?
πl,1

VMl
πl,2

)(sl,1
)

= R?
(
sl,1, πl(sl,1, 1)

)
+ Es′∼P?(sl,1,πl(sl,1,1))

[
VMl
πl,2

(s′)
]
, (20)

where R? and P? denote the reward and transition functions of the MDP M? respectively. Again using Definition 2 for
M = M?, π = πl, h = 1, V = VM?

πl,2
and s = sl,1, we have(

TM?
πl,1

VM?
πl,2

)
(sl,1) = R?

(
sl,1, πl(sl,1, 1)

)
+ Es′∼P?(sl,1,πl(sl,1,1))

[
VM?
πl,2

(s′)
]
. (21)

Subtracting (21) from (20), we have(
TM?
πl,1

VMl
πl,2

)
(sl,1)−

(
TM?
πl,1

VM?
πl,2

)(sl,1
)

= Es′∼P?(sl,1,πl(sl,1,1))

[
VMl
πl,2

(s′)− VM?
πl,2

(s′)
]

= VMl
πl,2

(sl,2)− VM?
πl,2

(sl,2) + ∆l,1,

where ∆l,1 := Es′∼P?(sl,1,πl(sl,1,1))

[
VMl
πl,2

(s′)− VM?
πl,2

(s′)
]
−
(
VMl
πl,2

(sl,2)− VM?
πl,2

(sl,2)
)

. Then (20) implies

VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1) = VMl
πl,2

(sl,2)− VM?
πl,2

(sl,2) + (TMl
πl,1

VMl
πl,2

)(sl,1)− (TM?
πl,1

VMl
πl,2

)(sl,1) + ∆l,1.

Now since VMπ,H+1(s) = 0 for any MDP M , policy π and state s, an inductive argument gives

VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1) =

H∑
h=1

((
TMl

πl,h
VMl

πl,h+1

)
(sl,h)−

(
TM?

πl,h
VMl

πl,h+1

)
(sl,h) + ∆l,h

)
, (22)

where ∆l,h := Es′∼P?(sl,h,πl(sl,h,h))

[
VMl

πl,h+1(s′)− VM?

πl,h+1(s′)
]
−
(
VMl

πl,h+1(sl,h+1)− VM?

πl,h+1(sl,h+1)
)

.

Now using Definition 2 respectively for M = Ml and M = M? with π = πl, V = VMl

πl,h+1 and s = sl,h, we have

(
TMl

πl,h
VMl

πl,h+1

)
(sl,h)−

(
TM?

πl,h
VMl

πl,h+1

)
(sl,h) =

(
RMl

(
sl,h, πl(sl,h, h)

)
+ Es′∼PMl

(sl,h,πl(sl,h,h))

[
VMl

πl,h+1(s′)
])

−
(
R?
(
sl,h, πl(sl,h, h)

)
+ Es′∼P?(sl,h,πl(sl,h,h))

[
VMl

πl,h+1(s′)
])
.

Further using the fact that al,h = πl(sl,h, h)) and defining zl,h = (sl,h, al,h), we have(
TMl

πl,h
VMl

πl,h+1

)
(sl,h)−

(
TM?

πl,h
VMl

πl,h+1

)
(sl,h)

= RMl
(sl,h, al,h)−R?(sl,h, al,h) + Es′∼PMl

(sl,h,al,h)

[
VMl

πl,h+1(s′)
]
− Es′∼P?(sl,h,al,h)

[
VMl

πl,h+1(s′)
]

= RMl
(zl,h)−R?(zl,h) + Es′∼PMl

(zl,h)

[
VMl

πl,h+1(s′)
]
− Es′∼P?(zl,h)

[
VMl

πl,h+1(s′)
]
.

and ∆l,h = Es′∼P?(zl,h)

[
VMl

πl,h+1(s′)− VM?

πl,h+1(s′)
]
−
(
VMl

πl,h+1(sl,h+1)− VM?

πl,h+1(sl,h+1)
)

.

Now for an MDP M , a distribution ϕ over S and for every period 1 ≤ h ≤ H , recall that the one step future value function
is defined as

UMh (ϕ) := Es′∼ϕ
[
VMπM ,h+1(s′)

]
,

where πM denotes the optimal policy for the MDP M . Observe that πl is the optimal policy for the MDP Ml. This implies(
TMl

πl,h
VMl

πl,h+1

)
(sl,h)−

(
TM?

πl,h
VMl

πl,h+1

)
(sl,h) = RMl

(zl,h)−R?(zl,h) + UMl

h

(
PMl

(zl,h)
)
− UMl

h

(
P?(zl,h)

)
.

Further (1) implies
UMl

h

(
PMl

(zl,h)
)
− UMl

h

(
P?(zl,h)

)
≤ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2
,

where LMl
is defined to be the global Lipschitz constant (1) of one step future value function for MDP Ml. Hence we have(

TMl

πl,h
VMl

πl,h+1

)
(sl,h)−

(
TM?

πl,h
VMl

πl,h+1

)
(sl,h) ≤

∣∣RMl
(zl,h)−R?(zl,h)

∣∣+ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2
. (23)

Now the result follows by plugging (23) back in (22) and summing over l = 1, . . . , τ .
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B ANALYSIS OF GP-UCRL AND PSRL IN THE KERNELIZED MDPs

B.1 Preliminary Definitions and Results

Now we define the span of an MDP, which is crucial to measure the difficulties in learning the optimal policy of the MDP
[Jaksch et al., 2010, Bartlett and Tewari, 2009].

Definition 3 (Span of an MDP) The span of an MDP M is the maximum difference in value of any two states under the
optimal policy, i.e.

ΨM := max
s,s′∈S

VMπM ,1(s)− VMπM ,1(s′).

Now define ΨM,h := max
s,s′∈S

VMπM ,h(s) − VMπM ,h(s′) as the span of M at period h and let Ψ̃M := maxh∈{1,...,H}ΨM,h as

the maximum possible span in an episode. Clearly ΨM ≤ Ψ̃M .

Definition 4 A sequence of random variables {Zt}t≥1 is called a martingale difference sequence corresponding to a
filtration {Ft}t≥0, if for all t ≥ 1, Zt is Ft-measurable, and for all t ≥ 1,

E
[
Zt
∣∣ Ft−1

]
= 0.

Lemma 8 (Azuma-Hoeffding Inequality) If a martingale difference sequence {Zt}t≥1, corresponding to filtration
{Ft}t≥0, satisfies |Zt| ≤ αt for some constant αt, for all t = 1, . . . , T , then for any 0 < δ ≤ 1,

P

 T∑
t=1

Zt ≤

√√√√2 ln(1/δ)

T∑
t=1

α2
t

 ≥ 1− δ.

Lemma 9 (Bound on Martingale difference sequence) LetMl be the set of plausible MDPs constructed by GP-UCRL
(Algorithm 1) at episode l, l ≥ 1 and Ml, l ≥ 1 be a sequence of MDPs such that Ml ∈ Ml for each l ≥ 1 and πl be
the optimal policy for the MDP Ml for each l ≥ 1. Let M? be an MDP with reward function R? and transition function
P?. Let sl,h+1 ∼ P?(sl,h, al,h), where al,h = πl(sl,h, h). Now define ∆l,h := Es′∼P?(zl,h)

[
VMl

πl,h+1(s′)− VM?

πl,h+1(s′)
]
−(

VMl

πl,h+1(sl,h+1) − VM?

πl,h+1(sl,h+1)
)

, with zl,h := (sl,h, al,h). Then for any 0 ≤ δ ≤ 1 and τ ≥ 1, with probability at
least 1− δ,

τ∑
l=1

H∑
h=1

∆l,h ≤ (LD + 2CH)
√

2τH ln(1/δ),

where D := maxs,s′∈S ‖s− s′‖2 is the diameter of the state space S , C is a uniform upper bound over the absolute value
of the mean reward functionR?, i.e.

∣∣R?(z)∣∣ ≤ C for all z ∈ Z and L is an upper bound over the global Lipschitz constant
(1) of one step future value function for MDP M?, i.e. LM? ≤ L.

Proof First assume that M? is fixed in advance. For each l ≥ 1 and h ∈ {1, . . . H}, we define Hl−1 :=
{sj,k, aj,k, rj,k, sj,k+1}1≤j≤l−1,1≤k≤H as the history of all observations till episode l − 1 and Gl,h := Hl−1 ∪
{sl,k, al,k, rl,k, sl,k+1}1≤k≤h as the history of all observations till episode l and period h. See thatH0 = ∅ andHl = Gl,H
for all l ≥ 1. Further defining Gl,0 := Hl−1∪{sl,1}, we see that Gl,h = Gl,h−1∪{al,h, rl,h, sl,h+1} for all h ∈ {1, . . . H}.
Clearly the sets Gl,h satisfy Gl,0 ⊂ Gl,1 ⊂ Gl,2 ⊂ . . . ⊂ Gl,H ⊂ Gl+1,0 for all l ≥ 1. Hence, the sequence of sets
{Gl,h}l≥1,0≤h≤H defines a filtration.

Now by construction in Algorithm 1,Ml is deterministic givenHl−1. Hence,Ml and πl are also deterministic givenHl−1.
This implies ∆l,h = Es′∼P?(zl,h)

[
VMl

πl,h+1(s′)−VM?

πl,h+1(s′)
]
−
(
VMl

πl,h+1(sl,h+1)−VM?

πl,h+1(sl,h+1)
)

isGl,h - measurable.
Further note that al,h = πl(sl,h, h) is deterministic given Gl,h−1, as both πl and sl,h are deterministic given Gl,h−1. This
implies

E
[
∆l,h

∣∣ Gl,h−1

]
= Es′∼P?(zl,h)

[
VMl

πl,h+1(s′)− VM?

πl,h+1(s′)
]
− Esl,h+1∼P?(zl,h)

[
VMl

πl,h+1(sl,h+1)− VM?

πl,h+1(sl,h+1)
]

= 0. (24)
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Further, observe that |∆l,h| ≤
(

max
s
VMl

πl,h+1(s) − min
s
VMl

πl,h+1(s)
)

+
(

max
s
VM?

πl,h+1(s) − min
s
VM?

πl,h+1(s)
)
. The first

term max
s
VMl

πl,h+1(s)−min
s
VMl

πl,h+1(s) is upper bounded by Ψ̃Ml
, which is an upper bound over the span of the MDP Ml

(Definition 3). Now from (1), we get ΨMl
≤ LMl

D, where D := maxs,s′∈S ‖s− s′‖2 is the diameter of the state space S
and LMl

is a global Lipschitz constant for the one step future value function. Further by construction of the set of plausible
MDPsMl and as Ml ∈ Ml, we have LMl

≤ L. Hence, we have max
s
VMl

πl,h+1(s) −min
s
VMl

πl,h+1(s) ≤ LD. Now, since

by our hypothesis
∣∣R?(z)∣∣ ≤ C for all z ∈ Z , see that VM?

π,h (s) ≤ CH for all π, 1 ≤ h ≤ H and s ∈ S . Hence, we have
max
s
VM?

πl,h+1(s)−min
s
VM?

πl,h+1(s) ≤ 2CH .

Therefore the sequence of random variables {∆l,h}l≥1,1≤h≤H is a martingale difference sequence (Definition 4) with
respect to the filtration {Gl,h}l≥1,0≤h≤H , with |∆l,h| ≤ LD+ 2CH for all l ≥ 1 and 1 ≤ h ≤ H . Thus, by Lemma 8, for
any τ ≥ 1 and 0 < δ ≤ 1, we have with probability at least 1− δ,

τ∑
l=1

H∑
h=1

∆l,h ≤

√√√√2 ln(1/δ)

τ∑
l=1

H∑
h=1

(LD + 2CH)2 = (LD + 2CH)
√

2τH ln(1/δ). (25)

Now consider the case when M? is random. Then we define H̃l−1 := Hl−1 ∪ M? and G̃l,h := Gl,h ∪ M?. Then
{∆l,h}l≥1,1≤h≤H is a martingale difference sequence with respect to the filtration {G̃l,h}l≥1,0≤h≤H , and hence (25) holds
in this case also.

B.2 Analysis of GP-UCRL in Kernelized MDPs

Recall that at each episode l ≥ 1, GP-UCRL constructs confidence sets CR,l and CP,l as

CR,l =
{
f : Z → R

∣∣ |f(z)− µR,l−1(z)| ≤ βR,lσR,l−1(z)∀z ∈ Z
}
,

CP,l =
{
f : Z → Rm

∣∣ ‖f(z)− µP,l−1(z)‖2 ≤ βP,l ‖σP,l−1(z)‖2 ∀z ∈ Z
}
,

(26)

where µR,0(z) = 0, σ2
R,0(z) = kR(z, z) and for each l ≥ 1,

µR,l(z) = kR,l(z)
T (KR,l +HI)−1Rl,

σ2
R,l(z) = kR(z, z)− kR,l(z)T (KR,l +HI)−1kR,l(z).

(27)

Here H is the number of periods, I is the (lH) × (lH) identity matrix, Rl = [r1,1, . . . , rl,H ]T is the vector of rewards
observed at Zl = {zj,k}1≤j≤l,1≤k≤H = {z1,1, . . . , zl,H}, the set of all state-action pairs available at the end of episode
l. kR,l(z) = [kR(z1,1, z), . . . , kR(zl,H , z)]

T is the vector kernel evaluations between z and elements of the set Zl and
KR,l = [kR(u, v)]u,v∈Zl

is the kernel matrix computed at Zl. Further µP,l(z) = [µP,l−1(z, 1), . . . , µP,l−1(z,m)]T and
σP,l(z) = [σP,l−1(z, 1), . . . , σP,l−1(z,m)]T , where µP,0(z, i) = 0, σP,0(z, i) = kP

(
(z, i), (z, i)

)
and for each l ≥ 1,

µP,l(z, i) = kP,l(z, i)
T (KP,l +mHI)−1Sl,

σ2
P,l

(
(z, i))

)
= kP ((z, i), (z, i))− kP,l(z, i)T (KP,l +mHI)−1kP,l(z, i).

(28)

Here m is the dimension of the state space, H is the number of periods, I is the (mlH) × (mlH) identity matrix, Sl =
[sT1,2, . . . , s

T
l,H+1]T denotes the vector of state transitions at Zl = {z1,1, . . . , zl,H}, the set of all state-action pairs available

at the end of episode l. kP,l(z, i) =
[
kP
(
(z1,1, 1), (z, i)

)
, . . . , kP

(
(zl,H ,m), (z, i)

)]T
is the vector of kernel evaluations

between (z, i) and elements of the set Z̃l =
{

(zj,k, i)
}

1≤j≤l,1≤k≤H,1≤i≤m =
{

(z1,1, 1), . . . , (zl,H ,m)
}

and KP,l =[
kP (u, v)

]
u,v∈Z̃l

is the kernel matrix computed at Z̃l. Here for any 0 < δ ≤ 1, BR, BP , σR, σP > 0, βR,l := BR +
σR√
H

√
2
(

ln(3/δ) + γ(l−1)H(kR, λR,Z)
)

and βP,l := BP +
σP√
mH

√
2
(

ln(3/δ) + γm(l−1)H(kP , λP , Z̃)
)

are properly

chosen confidence widths of CR,l and CP,l respectively.

Lemma 10 (Concentration of mean reward and mean transition functions) Let M? = {S,A, R?, P?, H} be an MDP
with period H , state space S ⊂ Rm and action space A ⊂ Rn. Let the mean reward function R? be a member of the
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RKHS HkR(Z) corresponding to the kernel kR : Z × Z → R, where Z := S × A and let the noise variables εR,l,h be
conditionally σR-sub-Gaussian (6). Let the mean transition function P ? be a member of the RKHSHkP (Z̃) corresponding
to the kernel kP : ˜Z × Z → R, where Z̃ := Z×{1, . . . ,m} and let the noise variables εP,l,h be conditionally component-
wise independent and σP -sub-Gaussian (7). Further let

∥∥R?∥∥kR ≤ BR and
∥∥P ?∥∥kP ≤ BP . Then, for any 0 < δ ≤ 1, the

following holds:

P
[
∀z ∈ Z,∀l ≥ 1,

∣∣R?(z)− µR,l−1(z)
∣∣ ≤ βR,l σR,l−1(z)

]
≥ 1− δ/3, (29)

P
[
∀z ∈ Z,∀l ≥ 1,

∥∥P ?(z)− µP,l−1(z)
∥∥

2
≤ βP,l ‖σP,l−1(z)‖2

]
≥ 1− δ/3, (30)

Proof First fix any 0 < δ ≤ 1. Now for all l ≥ 1 and 1 ≤ h ≤ H + 1, let us define Zl,h−1 = {zj,k}1≤j≤l−1,1≤k≤H ∪
{zl,k}1≤k≤h−1 = {z1,1, . . . , z1,H , . . . , zl,1, . . . , zl,h−1} as the set of all state-action pairs available till period h − 1 of
episode l. Further, let Rl,h−1 = [r1,1, . . . , r1,H , . . . , rl,1, . . . , rl,h−1]T denotes the vector of rewards observed at Zl,h−1.
See that Zl,0 = Zl−1,H and Rl,0 = Rl−1,H for all l ≥ 2. Also R1,0 = 0 and Z1,0 = ∅. Now we define, for all z ∈ Z ,
l ≥ 1 and 1 ≤ h ≤ H + 1, the following:

µR,l,h−1(z) = kR,l,h−1(z)T (KR,l,h−1 +HI)−1Rl,h−1,

σ2
R,l,h−1(z) = kR(z, z)− kR,l,h−1(z)T (KR,l,h−1 +HI)−1kR,l,h−1(z),

(31)

where kR,l,h−1(z) = [kR(z1,1, z), . . . , kR(z1,H , z), . . . , kR(zl,1, z), . . . , kR(zl,h−1, z)]
T is the vector kernel evaluations

between z and elements of the set Zl,h−1, KR,l,h−1 = [kR(z, z′)]z,z′∈Zl,h−1
is the kernel matrix computed at Zl,h−1.

See that µR,l,0(z) = µR,l−1,H(z), and σR,l,0(z) = σR,l−1,H(z) for all l ≥ 2 and z ∈ Z . Also µR,1,0(z) = 0 and
σR,1,0 = kR(z, z) for all z ∈ Z .

At the state-action pair zl,h, the reward observed is rl,h = R?(zl,h) + εR,l,h. Here, by our hypothesis, the mean reward
function R? ∈ HkR(Z) and the noise sequence {εR,l,h}l≥1,1≤h≤H is conditionally σR-sub-Gaussian. Now Lemma 5
implies that, with probability at least 1− δ/3, uniformly over all z ∈ Z , l ≥ 1 and 1 ≤ h ≤ H ,

∣∣R?(z)− µR,l,h−1(z)
∣∣ ≤ (∥∥R?∥∥kR +

σR√
H

√√√√√2
(

ln(3/δ) +
1

2

(l,h−1)∑
(j,k)=(1,1)

ln
(
1 +H−1σ2

R,j,k−1(zj,k)
)))

σR,l,h−1(z).

Again, from Lemma 1, we have

1

2

(l,h−1)∑
(j,k)=(1,1)

ln
(
1 +H−1σ2

R,j,k−1(zj,k)
)
≤ γ(l−1)H+h−1(kR,Z),

where γt(kR,Z) denotes the maximum information gain about an f ∼ GPZ(0, kR) after t noisy observations with iid
Gaussian noise N (0, H). Therefore, with probability at least 1− δ/3, uniformly over all z ∈ Z , l ≥ 1 and 1 ≤ h ≤ H ,

∣∣R?(z)− µR,l,h−1(z)
∣∣ ≤ (BR +

σR√
H

√
2
(

ln(3/δ) + γ(l−1)H+h−1(kR,Z)
))
σR,l,h−1(z), (32)

since by our hypothesis
∥∥R?∥∥kR ≤ BR. Now see that µR,l,0 = µR,l−1 and σR,l,0 = σR,l−1 and βR,l = BR +

σR√
H

√
2
(

ln(3/δ) + γ(l−1)H(kR, λR,Z)
)

for every l ≥ 1. Hence (29) follows by using (32) with h = 1.

Further for all l ≥ 1 and 1 ≤ h ≤ H + 1, let Sl,h = [sT1,2, . . . , s
T
1,H+1, . . . , s

T
l,2, . . . , s

T
l,h]T denotes the vector of state

transitions at Zl,h−1 = {z1,1, . . . , z1,H , . . . , zl,1, . . . , zl,h−1}, where every state sj,h = [sj,h(1), . . . , sj,h(m)]T , 1 ≤ j ≤
l, 1 ≤ h ≤ H+ 1, is an m - dimensional vector. Further for all l ≥ 1, 1 ≤ h ≤ H and 1 ≤ b ≤ m+ 1, define the following
set:

Z̃l,h,b−1 =
{

(zj,k, i)
}

1≤j≤l−1,1≤k≤H,1≤i≤m ∪
{

(zl,k, i)
}

1≤k≤h−1,1≤i≤m ∪
{

(zl,h, i)
}

1≤i≤b−1

=
{
Zl,h−1 × {1, . . . ,m}

}
∪
{
{zl,h} × {1, . . . , b− 1}

}
=

{
(z1,1, 1), . . . , (z1,1,m), . . . , (zl,h−1, 1), . . . , (zl,h−1,m), (zl,h, 1), . . . , (zl,h, b− 1)

}
,
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and the following vector

Sl,h,b−1 = [STl,h, sl,h+1(1), . . . , sl,h+1(b− 1)]T

= [sT1,2, . . . , s
T
1,H+1, . . . , s

T
l,2, . . . , s

T
l,h, sl,h+1(1), . . . , sl,h+1(b− 1)]T

= [s1,2(1), . . . , s1,2(m), . . . , sl,h(1), . . . , sl,h(m), sl,h+1(1), . . . , sl,h+1(b− 1)]T .

See that Zl,h,0 = Zl,h−1,m and Sl,h,0 = Sl,h−1,m for all l ≥ 1 and 2 ≤ h ≤ H . Further Zl,1,0 = Zl−1,H,m and
Sl,1,0 = Sl−1,H,m for all l ≥ 2. Also Z1,1,0 = 0 and S1,1,0 = 0. Now we define, for all z ∈ Z , 1 ≤ i ≤ m, l ≥ 1 and
1 ≤ h ≤ H + 1, the following:

µP,l,h,b−1(z, i) = kP,l,h,b−1(z, i)T (KP,l,h,b−1 +mHI)−1Sl,h,b−1,

σ2
P,l,h,b−1(z, i) = kP

(
(z, i), (z, i)

)
− kP,l,h,b−1(z, i)T (KP,l,h,b−1 +mHI)−1kP,l,h,b−1(z, i),

(33)

where kP,l,h,b−1(z, i) =
[
kP
(
(z1,1, 1), (z, i)

)
, . . . , kP

(
(zl,h, b − 1), (z, i)

)]T
is the vector of kernel evaluations between

(z, i) and elements of the set Z̃l,h,b−1, KP,l,h,b−1 =
[
kP (z, z′)

]
z,z′∈Z̃l,h,b−1

is the kernel matrix computed at Z̃l,h,b−1.
See that µP,l,h,0 = µP,l,h−1,m and σP,l,h,0 = σP,l,h−1,m for all l ≥ 1 and 2 ≤ h ≤ H . Further, µP,l,1,0 = µP,l−1,H,m and
σP,l,1,0 = σP,l−1,H,m for all l ≥ 2. Also µP,1,1,0(z, i) = 0 and σP,1,1,0 = kP

(
(z, i), (z, i)

)
for all z ∈ Z and 1 ≤ i ≤ m.

At the state-action pair zl,h, the MDP transitions to the state sl,h+1, where sl,h+1(i) = P ?(zl,h, i) + εP,l,h(i), 1 ≤ i ≤ m.
Thus, we can view sl,h+1(i) as a noisy observation of P ? at the query (zl,h, i) ∈ Z̃ . Here, by our hypothesis, the mean
transition function P ? ∈ Hk̃P (Z̃) and the noise sequence {εP,l,h(i)}l≥1,1≤h≤H,1≤i≤m is conditionally σP -sub-Gaussian.
Now Lemma 5 implies that, with probability at least 1 − δ/3, uniformly over all z ∈ Z , 1 ≤ i ≤ m, l ≥ 1, 1 ≤ h ≤ H
and 1 ≤ b ≤ m:

∣∣P ?(z, i)− µP,l,h,b−1(z, i)
∣∣ ≤ (∥∥P ?∥∥kP +

σP√
mH

√√√√√2
(

ln(3/δ) +
1

2

(l,h,b−1)∑
(j,k,q)=(1,1,1)

ln
(

1 +
σ2
P,j,k,q−1(zj,k, q)

mH

)))
σP,l,h,b−1(z, i).

Again, from Lemma 1, we have

1

2

(l,h,b−1)∑
(j,k,q)=(1,1,1)

ln
(

1 +
σ2
P,j,k,q−1(zj,k, q)

mH

)
≤ γm(l−1)H+m(h−1)+b−1(kP , Z̃),

where γt(kP , Z̃) denotes the maximum information gain about an f ∼ GPZ̃(0, kP ) after t noisy observations with iid
Gaussian noise N (0,mH). Therefore, with probability at least 1 − δ/3, uniformly over all z ∈ Z , 1 ≤ i ≤ m, l ≥ 1,
1 ≤ h ≤ H and 1 ≤ b ≤ m,∣∣P ?(z, i)− µP,l,h,b−1(z, i)

∣∣ ≤ (BP +
σP√
mH

√
2
(

ln(3/δ) + γm(l−1)H+m(h−1)+b−1(kP , Z̃)
))
σP,l,h,b−1(z, i), (34)

since by our hypothesis
∥∥P ?∥∥kP ≤ BP . Now see that µP,l,1,0 = µP,l−1 and σP,l,1,0 = σP,l−1 for every l ≥ 1. Hence

using (34) for h = 1 and b = 1, see that, with probability at least 1− δ/3, uniformly over all z ∈ Z , 1 ≤ i ≤ m, and l ≥ 1,∣∣P ?(z, i)− µP,l−1(z, i)
∣∣ ≤ (BP +

σP√
mH

√
2
(

ln(3/δ) + γm(l−1)H(kP , Z̃)
))
σP,l−1(z, i).

Now recall that βP,l = BP +
σP√
mH

√
2
(

ln(3/δ) + γm(l−1)H(kP , λP , Z̃)
)
, P ?(z) = [P ?(z, 1), . . . , P ?(z,m)]T ,

µP,l−1(z) = [µP,l−1(z, 1), . . . , µP,l−1(z,m)]T and σP,l−1(z) = [σP,l−1(z, 1), . . . , σP,l−1(z,m)]T . Then, with proba-
bility at least 1− δ/3, uniformly over all z ∈ Z and l ≥ 1,

∥∥P ?(z)− µP,l−1(z)
∥∥

2
≤

√√√√ m∑
i=1

β2
P,lσ

2
P,l−1(z, i) = βP,l

√√√√ m∑
i=1

σ2
P,l−1(z, i) = βP,l ‖σP,l−1(z)‖2 ,

and hence (30) follows.
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Lemma 11 (Sum of predictive variances upper bounded by Maximum Information Gain) Let σR,l and σP,l be de-
fined as in 27 and 28 respectively and let the kernels kR and kP satisfy kR(z, z) ≤ 1 and kP ((z, i), (z, i)) ≤ 1 for
all z ∈ Z and 1 ≤ i ≤ m. Then for any τ ≥ 1,

τ∑
l=1

H∑
h=1

σR,l−1(zl,h) ≤
√

2eτH2γτH(kR,Z) (35)

τ∑
l=1

H∑
h=1

‖σP,l−1(zl,h)‖2 ≤
√

2emτH2γmτH(kP , Z̃), (36)

where γt(kR,Z) denotes the maximum information gain about an f ∼ GPZ(0, kR) after t noisy observations with iid
Gaussian noise N (0, H) and γt(kP , Z̃) denotes the maximum information gain about an f ∼ GPZ̃(0, kP ) after t noisy
observations with iid Gaussian noise N (0,mH).

Proof Note that σR,l−1(z) = σR,l,0(z), where σR,l,0(z) is defined in (31). Now from (15), see that σ2
R,l,0(z) ≤ (1 +

1/H)σ2
R,l,1(z) ≤ (1 + 1/H)2σ2

R,l,2(z) ≤ · · · ≤ (1 + 1/H)H−1σ2
R,l,H−1(z), i.e. σ2

R,l,0(z) ≤ (1 + 1/H)h−1σ2
R,l,h−1(z)

for all z ∈ Z and 1 ≤ h ≤ H . This implies

τ∑
l=1

H∑
h=1

σ2
R,l−1(zl,h) =

τ∑
l=1

H∑
h=1

σ2
R,l,0(zl,h) ≤

τ∑
l=1

H∑
h=1

(1 + 1/H)h−1σ2
R,l,h−1(zl,h)

≤ (1 + 1/H)H−1
τ∑
l=1

H∑
h=1

σ2
R,l,h−1(zl,h)

≤ (1 + 1/H)H−1(2H + 1)γτH(kR,Z)

≤ 2eHγτH(kR,Z), (37)

where the second last inequality follows from (16) and last inequality is due to the fact that (1 + 1/α)α ≤ e and (1 +
1/α)−1(2α+ 1) ≤ 2α for all α > 0. Further by Cauchy-Schwartz inequality

τ∑
l=1

H∑
h=1

σR,l−1(zl,h) ≤

√√√√τH

τ∑
l=1

H∑
h=1

σ2
R,l−1(zl,h). (38)

Now (35) follows by combining (37) and (38).

Similarly Note that σP,l−1(z, i) = σP,l,1,0(z, i), where σP,l,1,0(z, i) is defined in (33). Now from (15), see that
σ2
P,l,1,0(z, i) ≤ (1 + 1/mH)m(h−1)+b−1σ2

P,l,h,b−1(z, i) for all z ∈ Z , 1 ≤ i ≤ m, 1 ≤ h ≤ H and 1 ≤ b ≤ m.
This implies

τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l−1(zl,h, b) =

τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l,1,0(zl,h, b) ≤

τ∑
l=1

H∑
h=1

m∑
b=1

(1 + 1/mH)m(h−1)+b−1σ2
P,l,h,b−1(zl,h, b)

≤ (1 + 1/mH)m(H−1)+m−1
τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l,h,b−1(zl,h, b)

≤ (1 + 1/mH)mH−1(2mH + 1)γmτH(kP , Z̃)

≤ 2emHγmτH(kP , Z̃), (39)

where the second last inequality follows from (16) and last inequality is due to the fact that (1 + 1/α)α ≤ e and (1 +
1/α)−1(2α+ 1) ≤ 2α for all α > 0. Further by Cauchy-Schwartz inequality

τ∑
l=1

H∑
h=1

‖σP,l−1(zl,h)‖2 ≤

√√√√τH

τ∑
l=1

H∑
h=1

‖σP,l−1(zl,h)‖22 =

√√√√τH

τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l−1(zl,h, b). (40)

Now (36) follows by combining (39) and (40).
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B.2.1 Frequentist Regret Bound for GP-UCRL in Kernelized MDPs: Proof of Theorem 1

Note that at every episode l, GP-UCRL (Algorithm 1) selects the policy πl such that

VMl
πl,1

(sl,1) = max
π

max
M∈Ml

VMπ,1(sl,1), (41)

where sl,1 is the initial state,Ml is the family of MDPs constructed by GP-UCRL andMl is the most optimistic realization
fromMl. Further see that the mean reward function R? of the unknown MDP M? lies in the RKHSHkR(Z). Thus for all
z ∈ Z , ∣∣R?(z)∣∣ =

∣∣〈R?, kR(z, ·)〉kR
∣∣ ≤ ∥∥R?∥∥kR kR(z, z) ≤ BR, (42)

where the first equality is due to the reproducing property of RKHS, the first inequality is the Cauchy-Schwartz inequality
and the final inequality is due to hypothesis that

∥∥R?∥∥kR ≤ BR and kR(z, z) ≤ 1 for all z ∈ Z . Now, (42), Lemma 7 and
Lemma 9 together imply that for any 0 < δ ≤ 1 and τ ≥ 1 , with probability at least 1− δ/3,

τ∑
l=1

(
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
)
≤

τ∑
l=1

H∑
h=1

( ∣∣RMl
(zl,h)−R?(zl,h)

∣∣+ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

)
+(LD + 2BRH)

√
2τH ln(3/δ). (43)

Now for each l ≥ 1, we define the following events:

ER,l :=
{
∀z ∈ Z,

∣∣R?(z)− µR,l−1(z)
∣∣ ≤ βR,lσR,l−1(z)

}
,

EP,l :=
{
∀z ∈ Z,

∥∥P ?(z)− µP,l−1(z)
∥∥

2
≤ βP,l ‖σP,l−1(z)‖2

}
.

By construction of the set of MDPsMl in Algorithm 1, it follows that when both the events ER,l and EP,l hold for all
l ≥ 1, the unknown MDP M? lies inMl for all l ≥ 1. Thus (41) implies VMl

πl,1
(sl,1) ≥ VM?

π?,1
(sl,1) for all l ≥ 1. This in

turn implies, for every episode l ≥ 1,

VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1) ≤ VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1). (44)

Further when ER,l holds for all l ≥ 1, then∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ≤ ∣∣RMl
(zl,h)− µR,l−1(zl,h)

∣∣+
∣∣R?(zl,h)− µR,l−1(zl,h)

∣∣ ≤ 2βR,l σR,l−1(zl,h), (45)

since the mean reward function RMl
lies in the confidence set CR,l (26). Similarly when EP,l holds for all l ≥ 1,∥∥PMl

(zl,h)− P ?(zl,h)
∥∥

2
≤
∥∥PMl

(zl,h)− µP,l−1(zl,h)
∥∥

2
+
∥∥P ?(zl,h)− µP,l−1(zl,h)

∥∥
2
≤ 2βP,l ‖σP,l−1(zl,h)‖2 ,

(46)
since the mean transition function PMl

lies in the confidence set CP,l (26).

Now combining (43), (44), (45) and (46), when both the events ER,l and EP,l hold for all l ≥ 1, then with probability at
least 1− δ/3,

τ∑
l=1

(
VM?
π?,1

(sl,1)−VM?
πl,1

(sl,1)
)
≤ 2

τ∑
l=1

H∑
h=1

(
βR,lσR,l−1(zl,h)+LMl

βP,l ‖σP,l−1(zl,h)‖2
)
+(LD+2BRH)

√
2τH ln(3/δ).

Now Lemma 10 implies that P [∀l ≥ 1, ER,l] ≥ 1− δ/3 and P [∀l ≥ 1, EP,l] ≥ 1− δ/3. Hence, by a union bound, for any
τ ≥ 1, with probability at least 1− δ,

τ∑
l=1

(
VM?
π?,1

(sl,1)−VM?
πl,1

(sl,1)
)
≤ 2βR,τ

τ∑
l=1

H∑
h=1

σR,l−1(zl,h)+2LβP,τ

τ∑
l=1

H∑
h=1

‖σP,l−1(zl,h)‖2+(LD+2BRH)
√

2τH ln(3/δ).

(47)
Here we have used the fact that both βR,l and βP,l are non-decreasing with the number of episodes l and that
LMl

≤ L by construction of Ml (and since Ml ∈ Ml). Now from Lemma 11, we have
∑τ
l=1

∑H
h=1 σR,l−1(zl,h) ≤
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√
2eτH2γτH(kR,Z) and

∑τ
l=1

∑H
h=1 ‖σP,l−1(zl,h)‖2 ≤

√
2emτH2γmτH(kP , Z̃). Therefore with probability at least

1− δ, the cumulative regret of GP-UCRL after τ episodes, i.e. after T = τH timesteps is

Regret(T ) =

τ∑
l=1

(
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
)

≤ 2βR,τ
√

2eHγT (kR,Z)T + 2LβP,τ

√
2emHγmT (kP , Z̃)T + (LD + 2BRH)

√
2T ln(3/δ),

where βR,τ = BR +
σR√
H

√
2
(

ln(3/δ) + γ(τ−1)H(kR,Z)
)

and βP,τ = BP +
σP√
mH

√
2
(

ln(3/δ) + γm(τ−1)H(kP , Z̃)
)
.

Now the result follows by defining γT (R) := γT (kR,Z) and γmT (P ) := γmT (kP , Z̃).

B.3 Bayes Regret of PSRL under RKHS Priors: Proof of Theorem 2

Φ ≡ (ΦR,ΦP ) is the distribution of the unknown MDP M? = {S,A, R?, P?, H}, where ΦR and ΦP are specified by
distributions over real valued functions on Z and Z̃ respectively with a sub-Gaussian noise model in the sense that

• The reward distribution isR? : S×A → R, with meanR? ∈ HkR(Z),
∥∥R?∥∥kR ≤ BR and additive σR-sub-Gaussian

noise.

• The transition distribution is P? : S × A → S , with mean P ? ∈ Hk̃P
(Z̃),

∥∥P ?∥∥kP ≤ BP and component-wise
additive and independent σP -sub-Gaussian noise.

At the start of episode l, PSRL samples an MDP Ml from Φl, where Φl ≡ (ΦR,l,ΦP,l) is the corresponding posterior
distribution conditioned on the history of observations Hl−1 := {sj,k, aj,k, rj,k}1≤j≤l−1,1≤k≤H . Therefore, conditioned
onHl−1, bothM? andMl are identically distributed. Hence for any σ(Hl−1) measurable function g, E

[
g(M?)

∣∣ Hl−1

]
=

E
[
g(Ml)

∣∣ Hl−1

]
and hence by the tower property,

E [g(M?)] = E [g(Ml)] . (48)

See that, conditioned on Hl−1, the respective optimal policies π? and πl of M? and Ml are identically distributed. Since
sl,1 is deterministic, (48) implies that E

[
VM?
π?,1

(sl,1)
]

= E
[
VMl
πl,1

(sl,1)
]
. Hence for every episode l ≥ 1,

E
[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]

= E
[
VM?
π?,1

(sl,1)− VMl
πl,1

(sl,1)
]

+ E
[
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
]

= E
[
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
]
. (49)

Now, from Lemma 7, for any τ ≥ 1,

E

[
τ∑
l=1

[
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
]]
≤ E

[
τ∑
l=1

H∑
h=1

[ ∣∣RMl
(zl,h)−R?(zl,h)

∣∣+ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

+ ∆l,h

]]
,

(50)
where zl,h := (sl,h, al,h) and ∆l,h := Es′∼P?(zl,h)

[
VMl

πl,h+1(s′) − VM?

πl,h+1(s′)
]
−
(
VMl

πl,h+1(sl,h+1) − VM?

πl,h+1(sl,h+1)
)

.

From (24), see that E
[
∆l,h

∣∣ Gl,h−1,M?,Ml

]
= 0, where Gl,h−1 := Hl−1 ∪ {sl,k, al,k, rl,k, sl,k+1}1≤k≤h−1 denotes the

history of all observations till episode l and period h− 1. Now by tower property E [∆l,h] = 0, l ≥ 1, 1 ≤ h ≤ H . Hence,
combining (49) and (50), for any τ ≥ 1,

E

[
τ∑
l=1

[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]]
≤ E

[
τ∑
l=1

H∑
h=1

[ ∣∣RMl
(zl,h)−R?(zl,h)

∣∣+ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

]]
. (51)

Now fix any 0 < δ ≤ 1 and for each l ≥ 1, define two events E? :=
{
R? ∈ CR,l, P ? ∈ CP,l ∀l ≥ 1

}
and EM :=

{
RMl

∈
CR,l, PMl

∈ CP,l ∀l ≥ 1
}

, where CR,l, CP,l, l ≥ 1 are the confidence sets constructed by GP-UCRL as defined in (26).
Now from Lemma 10, P [E?] ≥ 1 − 2δ/3 and hence by (48) P [EM ] ≥ 1 − 2δ/3. Further define E := E? ∩ EM and by
union bound, see that

P [Ec] ≤ P [Ec?] + P [EcM ] ≤ 4δ/3. (52)
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(51) and (52) together imply,

E

[
τ∑
l=1

[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]]

≤ E

[
τ∑
l=1

H∑
h=1

[ ∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ∣∣ E]
+E

[
LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

] ∣∣ E]+ 8δBRτH/3, (53)

where we have used that VM?
π?,1

(sl,1)−VM?
πl,1

(sl,1) ≤ 2BRH , since
∣∣R?(z)∣∣ ≤ BR for all z ∈ Z . Now from Lemma 10 and

construction of CR,l, l ≥ 1,

E

[
τ∑
l=1

H∑
h=1

∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ∣∣ E] ≤
τ∑
l=1

H∑
h=1

2βR,lσR,l−1(zl,h)

≤ 2βR,τ

τ∑
l=1

H∑
h=1

σR,l−1(zl,h) (54)

≤ 2βR,τ
√

2eτH2γτH(kR,Z), (55)

where the last step follows from Lemma 11. Now form (48), E [LMl
] = E [L?] and therefore E

[
LMl

∣∣ E] ≤
E [LMl

] /P [E] ≤ E [L?] /(1− 4δ/3). Similarly from Lemma 10 and construction of CP,l, l ≥ 1,

E

[
τ∑
l=1

H∑
h=1

LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

∣∣ E] ≤
τ∑
l=1

H∑
h=1

E
[
LMl

∣∣ E] 2βP,l ‖σP,l−1(zl,h)‖2

≤ E [L?]

1− 4δ/3
2βP,τ

τ∑
l=1

H∑
h=1

‖σP,l−1(zl,h)‖2

≤ E [L?]

1− 4δ/3
2βP,τ

√
2emτH2γmτH(kP , Z̃), , (56)

where the last step follows from Lemma 11. Combining (53), (55) and (56), for any 0 < δ ≤ 1 and τ ≥ 1,

E

[
τ∑
l=1

[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]]
≤ 2βR,τ

√
2eτH2γτH(kR,Z) +

E [L?]

1− 4δ/3
2βP,τ

√
2emτH2γmτH(kP , Z̃)

+8δBRτH/3,

where βR,τ = BR +
σR√
H

√
2
(

ln(3/δ) + γ(τ−1)H(kR,Z)
)

and βP,τ = BP +
σP√
mH

√
2
(

ln(3/δ) + γm(τ−1)H(kP , Z̃)
)
.

See that the left hand side of the above is independent of δ. Now using δ = 1/τH , the Bayes regret of PSRL after τ
episodes, i.e. after T = τH timesteps is

E [Regret(T )] =

τ∑
l=1

E
[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]

≤ 2αR,τ
√

2eHγT (kR,Z)T + 3E [L?]αP,τ

√
2emHγmT (kP , Z̃)T + 3BR,

since 1/(1 − 4/3τH) ≤ 3/2 as τ ≥ 2, H ≥ 2. Here αR,τ := BR +
σR√
H

√
2
(

ln(3T ) + γ(τ−1)H(kR,Z)
)
, αP,τ =

BP +
σP√
mH

√
2
(

ln(3T ) + γm(τ−1)H(kP , Z̃)
)
. Now the result follows by defining γT (R) := γT (kR,Z) and γmT (P ) :=

γmT (kP , Z̃).

C BAYES REGRET UNDER GAUSSIAN PROCESS PRIORS

In this section, we develop the Bayesian RL analogue of Gaussian process bandits, i.e., learning under the assumption that
MDP dynamics and reward behavior are sampled according to Gaussian process priors.
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Regularity and Noise assumptions Each of our results in this section will assume that the mean reward function R?
and the mean transition function P ? are randomly sampled from from Gaussian processes GPZ(0, kR) and GPZ̃(0, kP ),
respectively, whereZ := S×A and Z̃ := Z×{1, . . . ,m}. Further, we will assume the noise sequences {εR,l,h}l≥1,1≤h≤H
are iid Gaussian N (0, λR) and {εP,l,h}l≥1,1≤h≤H are iid Gaussian N (0, λP I). Note that the same GP priors and noise
models were used to design our algorithms (see Section 3.1). Thus, in this case the algorithm is assumed to have exact
knowledge of the data generating process (the ‘fully Bayesian’ setup).

Further, in order to achieve non-trivial regret for continuous state/action MDPs, we need the following smoothness as-
sumptions similar to those made by Srinivas et al. [2009] on the kernels. We assume that S ⊆ [0, c1]m and A ⊆ [0, c2]n

are compact and convex, and that the kernels kR and kP satisfy10 the following high probability bounds on the derivatives
of GP sample paths R? and P ?, respectively:

P
[

sup
z∈Z

∣∣∂R?(z)/∂zj∣∣ > LR

]
≤ aRe−(LR/bR)2 (57)

holds for all 1 ≤ j ≤ m+ n and for any LR > 0 corresponding to some aR, bR > 0, and

P
[

sup
z∈Z

∣∣∂P ?(z, i)/∂zj∣∣ > LP

]
≤ aP e−(LP /bP )2 (58)

holds for al 1 ≤ j ≤ m+ n, 1 ≤ i ≤ m and for any LP > 0 corresponding to some aP , bP > 0. Also we assume that

P
[

sup
z∈Z

∣∣R?(z)∣∣ > L

]
< ae−(L/b)2 , (59)

holds for any L ≥ 0 for some corresponding a, b > 011.

Choice of confidence sets for GP-UCRL For any fixed 0 < δ ≤ 1, at the beginning of each episode l, GP-UCRL
construct the confidence set CR,l as

CR,l =
{
f : |f(z)− µR,l−1([z]l)| ≤ βR,lσR,l−1([z]l) + 1/l2,∀z

}
, (60)

where µR,l−1(z), σR,l−1(z) are defined as in (2) and βR,l :=
√

2 ln
(
|Sl| |Al|π2l2/δ

)
. Here (Sl)l≥1

and (Al)l≥1 are suitable discretizations of state space S and action space A respectively, [z]l :=
([s]l, [a]l), where [s]l is the closest point in Sl to s and [a]l is the closest point in Al to a. Also

|Sl| = max
{(

2c1ml
2bR

√
ln
(
6(m+ n)aR/δ

))m
,
(

2c1ml
2bP

√
ln
(
6m(m+ n)aP /δ

))m}
and |Al| =

max
{(

2c2nl
2bR

√
ln
(
6(m+ n)aR/δ

))n
,
(

2c2nl
2bP

√
ln
(
6m(m+ n)aP /δ

))n}
.

Similarly GP-UCRL construct the confidence set CP,l as

CP,l =
{
f : ‖f(z)− µP,l−1([z]l)‖2 ≤ βP,l ‖σP,l−1([z]l)‖2 +

√
m

l2
,∀z
}
, (61)

where βP,l :=
√

2 ln
(
|Sl| |Al|mπ2l2/δ

)
, µP,l(z) := [µP,l−1(z, 1), . . . , µP,l−1(z,m)]T and σP,l(z) :=

[σP,l−1(z, 1), . . . , σP,l−1(z,m)]T with µP,l−1(z, i) and σP,l−1(z, i) be defined as in (3)

Theorem 3 (Bayesian regret bound for GP-UCRL under GP prior) Let M? = {S,A, R?, P?, H} be an MDP with
period H , state space S ⊆ [0, c1]m and action space A ⊆ [0, c2]n, m,n ∈ N, c1, c2 > 0. Let S and A be compact
and convex. Let the mean reward function R? be a sample from GPZ(0, kR), where Z := S × A and let the noise

10This assumption holds for stationary kernels k(z, z′) ≡ k(z − z′) that are four times differentiable, such as SE and Matérn kernels
with ν ≥ 2.

11This is a mild assumption on the kernel kR, since R?(z) is Gaussian and thus has exponential tails.
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variables εR,l,h be iid Gaussian N (0, λR). Let the mean transition function P ? be a sample from GPZ̃(0, kP ) , where
Z̃ := Z ×{1, . . . ,m} and let the noise variables εP,l,h be iid GaussianN (0, λP I). Further let the kernel kR satisfy (57),
(59) and the kernel kP satisfy (58). Also let kR(z, z) ≤ 1, kP ((z, i), (z, i)) ≤ 1 for all z ∈ Z and 1 ≤ i ≤ m. Then for
any 0 ≤ δ ≤ 1, GP-UCRL, with confidence sets (60) and (61), enjoys, with probability at least 1− δ, the regret bound

Regret(T ) ≤ 2βR,τ exp
(
γH−1(R)

)√
(2λR + 1)γT (R)T + 2LβP,τ exp

(
γmH−1(P )

)√
(2λP + 1)γmT (P )T

+(L
√
m+ 1)Hπ2/3 + (LD + 2CH)

√
2T ln(6/δ),

where C := b
√

ln(6a/δ), βR,l :=
√

2 ln
(
|Sl| |Al|π2l2/δ

)
and βP,l :=

√
2 ln

(
|Sl| |Al|mπ2l2/δ

)
.

Theorem 4 (Bayes regret of PSRL under GP prior) Let M? be an MDP as in Theorem 3 and Φ be a (known) prior
distibution over MDPs M?. Then the Bayes regret of PSRL (Algorithm 2) satisfies

E [Regret(T )] ≤ 2αR,τ exp
(
γH−1(R)

)√
(2λR + 1)γT (R)T + 3 E [L?]αP,τ exp

(
γmH−1(P )

)√
(2λP + 1)γmT (P )T

+3C + (1 +
√
mE [L?])π

2H,

where C = E
[
supz∈Z

∣∣R?(z)∣∣], αR,τ :=
√

2 ln
(
|Sτ | |Aτ |π2τ2T

)
and αP,τ :=

√
2 ln

(
|Sτ | |Aτ |mπ2τ2T

)
.

C.1 Detail Analysis

Here the state space S ⊆ [0, c1]m and the action space A ⊆ [0, c2]n for c1, c2 > 0. Both S and A are assumed to be
compact and convex. Then at every round l, we can construct (by Lemma 15 of Desautels et al. [2014]) two discretization
sets Sl and Al of S and A respectively, with respective sizes Sl and Al, such that for all s ∈ S and a ∈ A, the following
holds:

‖s− [s]l‖1 ≤ c1m/ |Sl|1/m ,

‖a− [a]l‖1 ≤ c2n/ |Al|1/n ,

where [s]l := argmins′∈Sl ‖s− s
′‖1, is the closest point in Sl to s and [a]l := argmina′∈Al

‖a− a′‖1 is the closest point
in Al to a (in the sense of 1-norm). Now for any s ∈ S and a ∈ A, we define z := [sT , aT ]T and correspondingly
[z]l :=

[
[s]Tl , [a]Tl

]T
. Further define Z := S × A := {z = [sT , aT ]T : s ∈ S, a ∈ A} and Zl := Sl × Al := {z =

[sT , aT ]T : s ∈ Sl, a ∈ Al}. See that z, [z]l ∈ Rm+n and Z,Zl ⊂ Rm+n.

Lemma 12 (Samples from GPs are Lipschitz) Let S ⊆ [0, c1]m and A ⊆ [0, c2]n be compact and convex, m,n ∈
N, c1, c2 > 0. Let R? be a sample from GPZ(0, kR), where Z := S × A, P ? be a sample from GPZ̃(0, kP ), where
Z̃ := Z × {1, . . . ,m}. Further let the kernels kR and kP satisfy (57) and (58) respectively. Then, for any 0 < δ ≤ 1, the
following holds:

P
[
∀z ∈ Z,∀l ≥ 1

∣∣R?(z)−R?([z]l)∣∣ ≤ 1/l2
]
≥ 1− δ/6, (62)

P
[
∀z ∈ Z,∀1 ≤ i ≤ m,∀l ≥ 1

∣∣P ?(z, i)− P ?([z]l, i)∣∣ ≤ 1/l2
]
≥ 1− δ/6. (63)

Proof From (57), recall the assumption on kernel kR:

P
[

sup
z∈Z

∣∣∂R?(z)/∂zj∣∣ > LR

]
≤ aRe−(LR/bR)2 , 1 ≤ j ≤ m+ n,

holds for any LR > 0 for some corresponding aR, bR > 0. Now using union bound,

P
[
∀1 ≤ j ≤ m+ n sup

z∈Z

∣∣∂R?(z)/∂zj∣∣ ≤ LR] ≥ 1− (m+ n)aRe
−(LR/bR)2 .

From Mean-Value Theorem, this implies that with probability at least 1− (m+ n)aRe
−(LR/bR)2 ,

∀z, z′ ∈ Z,
∣∣R?(z)−R?(z′)∣∣ ≤ LR ‖z − z′‖1 .
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Therefore, with probability at least 1− (m+ n)aRe
−(LR/bR)2 ,

∀l ≥ 1,∀z ∈ Z,
∣∣R?(z)−R?([z]l)∣∣ ≤ LR ‖z − [z]l‖1

= LR
(
‖s− [s]l‖1 + ‖a− [a]l‖1

)
≤ LR

(
c1m/ |Sl|1/m + c2n/ |Al|1/n

)
.

Now for any 0 < δ ≤ 1 choose LR = bR

√
ln
(
6(m+ n)aR/δ

)
. Then with probability at least 1− δ/6,

∀l ≥ 1,∀z ∈ Z,
∣∣R?(z)−R?([z]l)∣∣ ≤ bR√ln(6(m+ n)aR/δ

)(
c1m/ |Sl|1/m + c2n/ |Al|1/n

)
. (64)

Similarly from (58), recall the assumption on kernel kP :

P
[

sup
z∈Z

∣∣∂P ?(z, i)/∂zj∣∣ > LP

]
≤ aP e−(LP /bP )2 , 1 ≤ j ≤ m+ n, 1 ≤ i ≤ m,

holds for any LP > 0 for some corresponding aP , bP > 0. Now using union bound,

P
[
∀1 ≤ j ≤ m+ n, ∀1 ≤ i ≤ m sup

z∈Z

∣∣∂P ?(z, i)/∂zj∣∣ ≤ LP] ≥ 1−m(m+ n)aP e
−(LP /bP )2 .

Now from Mean-Value Theorem, this implies that with probability at least 1−m(m+ n)aP e
−(LP /bP )2 ,

∀z, z′ ∈ Z,∀1 ≤ i ≤ m,
∣∣P ?(z, i)− P ?(z′, i)∣∣ ≤ LP ‖z − z′‖1 .

Therefore, with probability at least 1−m(m+ n)aP e
−(LP /bP )2 , we have

∀l ≥ 1,∀z ∈ Z,∀1 ≤ i ≤ m,
∣∣P ?(z, i)− P ?([z]l, i)∣∣ ≤ LP ‖z − [z]l‖1

= LP
(
‖s− [s]l‖1 + ‖a− [a]l‖1

)
≤ LP

(
c1m/ |Sl|1/m + c2n/ |Al|1/n

)
.

Now choose LP = bP

√
ln
(
6m(m+ n)aP /δ

)
. Then with probability at least 1− δ/6,

∀l ≥ 1,∀z ∈ Z,∀1 ≤ i ≤ m,
∣∣P ?(z, i)− P ?([z]l, i)∣∣ ≤ bP√ln(6m(m+ n)aP /δ

)(
c1m/ |Sl|1/m + c2n/ |Al|1/n

)
.

(65)

Now by using |Sl| = max
{(

2c1ml
2bR

√
ln
(
6(m+ n)aR/δ

))m
,
(

2c1ml
2bP

√
ln
(
6m(m+ n)aP /δ

))m}
and

|Al| = max
{(

2c2nl
2bR

√
ln
(
6(m+ n)aR/δ

))n
,
(

2c2nl
2bP

√
ln
(
6m(m+ n)aP /δ

))n}
in (64) and (65), we get 62

and 63 respectively.

Now recall that at each episode l ≥ 1, GP-UCRL constructs confidence sets CR,l and CP,l as

CR,l =
{
f : Z → R

∣∣ ∀z ∈ Z, |f(z)− µR,l−1([z]l)| ≤ βR,lσR,l−1([z]l) + 1/l2
}
,

CP,l =
{
f : Z → Rm

∣∣ ∀z ∈ Z, ‖f(z)− µP,l−1([z]l)‖2 ≤ βP,l ‖σP,l−1([z]l)‖2 +
√
m/l2

}
,

(66)

where µR,0(z) = 0, σ2
R,0(z) = kR(z, z) and for each l ≥ 1,

µR,l(z) = kR,l(z)
T (KR,l + λRI)−1Rl,

σ2
R,l(z) = kR(z, z)− kR,l(z)T (KR,l + λRI)−1kR,l(z).

(67)

Here I is the (lH) × (lH) identity matrix, Rl = [r1,1, . . . , rl,H ]T is the vector of rewards observed at Zl =
{zj,k}1≤j≤l,1≤k≤H = {z1,1, . . . , zl,H}, the set of all state-action pairs available at the end of episode l. kR,l(z) =
[kR(z1,1, z), . . . , kR(zl,H , z)]

T is the vector kernel evaluations between z and elements of the set Zl and KR,l =
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[kR(u, v)]u,v∈Zl
is the kernel matrix computed at Zl. Further µP,l(z) = [µP,l−1(z, 1), . . . , µP,l−1(z,m)]T and σP,l(z) =

[σP,l−1(z, 1), . . . , σP,l−1(z,m)]T , where µP,0(z, i) = 0, σP,0(z, i) = kP
(
(z, i), (z, i)

)
and for each l ≥ 1,

µP,l(z, i) = kP,l(z, i)
T (KP,l + λP I)−1Sl,

σ2
P,l

(
(z, i))

)
= kP ((z, i), (z, i))− kP,l(z, i)T (KP,l + λP I)−1kP,l(z, i).

(68)

Here I is the (mlH) × (mlH) identity matrix, Sl = [sT1,2, . . . , s
T
l,H+1]T denotes the vector of state transi-

tions at Zl = {z1,1, . . . , zl,H}, the set of all state-action pairs available at the end of episode l. kP,l(z, i) =[
kP
(
(z1,1, 1), (z, i)

)
, . . . , kP

(
(zl,H ,m), (z, i)

)]T
is the vector of kernel evaluations between (z, i) and elements of the

set Z̃l =
{

(zj,k, i)
}

1≤j≤l,1≤k≤H,1≤i≤m =
{

(z1,1, 1), . . . , (zl,H ,m)
}

and KP,l =
[
kP (u, v)

]
u,v∈Z̃l

is the kernel matrix

computed at Z̃l. Here for any 0 < δ ≤ 1 , βR,l :=
√

2 ln
(
|Sl| |Al|π2l2/δ

)
and βP,l :=

√
2 ln

(
|Sl| |Al|mπ2l2/δ

)
are properly chosen confidence parameters of CR,l and CP,l respectively, where both |Sl| and |Al| are approximately

O
((
l2 ln(1/δ)

)d)
with d = max{m,n}.

Lemma 13 (Posterior Concentration of Gaussian Processes) Let M? = {S,A, R?, P?, H} be an MDP with period H ,
state space S ⊆ [0, c1]m and action space A ⊆ [0, c2]n, m,n ∈ N, c1, c2 > 0. Let S and A be compact and convex. Let
the mean reward function R? be a sample from GPZ(0, kR), where Z := S × A and let the noise variables εR,l,h be iid
Gaussian N (0, λR). Let the mean transition function P ? be a sample from GPZ̃(0, kP ) , where Z̃ := Z × {1, . . . ,m}
and let the noise variables εP,l,h be iid Gaussian N (0, λP I). Further let the kernels kR and kP satisfy (57) and (58)
respectively. Then, for any 0 < δ ≤ 1, the following holds:

P
[
∀z ∈ Z,∀l ≥ 1,

∣∣R?(z)− µR,l−1([z]l)
∣∣ ≤ βR,l σR,l−1([z]l) + 1/l2

]
≥ 1− δ/3, (69)

P
[
∀z ∈ Z,∀l ≥ 1,

∥∥P ?(z)− µP,l−1([z]l)
∥∥

2
≤ βP,l ‖σP,l−1([z]l)‖2 +

√
m/l2

]
≥ 1− δ/3, (70)

Proof Note that conditioned on Hl−1 := {sj,k, aj,k, rj,k, sj,k+1}1≤j≤l−1,1≤k≤H , R?(z) ∼ N
(
µR,l−1(z), σ2

R,l−1(z)
)
. If

a ∼ N (0, 1), c ≥ 0, then P [|a| ≥ c] ≤ exp(−c2/2). Using this Gaussian concentration inequality and a union bound over
all l ≥ 1 and all z ∈ Zl, with probability at least 1− δ/6, we have

∀l ≥ 1,∀z ∈ Zl,
∣∣R?(z)− µR,l−1(z)

∣∣ ≤ βR,lσR,l−1(z). (71)

Now as [z]l ∈ Zl, using union bound in (62) and (71), we have with probability at least 1− δ/3,

∀l ≥ 1,∀z ∈ Z,
∣∣R?(z)− µR,l−1([z]l)

∣∣ ≤ βR,lσR,l−1([z]l) + 1/l2.

Similarly, conditioned on Hl−1, P ?(z, i) ∼ N
(
µR,l−1(z, i), σ2

P,l−1(z, i)
)

for all z ∈ Z and 1 ≤ i ≤ m. Then using the
Gaussian concentration inequality and a union bound over all l ≥ 1, all z ∈ Zl and all i = 1, . . . ,m, with probability at
least 1− δ/6, we have

∀l ≥ 1,∀z ∈ Zl,∀1 ≤ i ≤ m,
∣∣P ?(z, i)− µP,l−1(z, i)

∣∣ ≤ βP,lσP,l−1(z, i). (72)

Now as [z]l ∈ Zl, using union bound with (63) and (72), we have with probability at least 1− δ/3,

∀l ≥ 1,∀z ∈ Z,∀1 ≤ i ≤ m,
∣∣P ?(z, i)− µP,l−1([z]l, i)

∣∣ ≤ βP,lσP,l−1([z]l, i) + 1/l2.

Now Recall that P ?(z) = [P ?(z, 1), . . . , P ?(z,m)]T , µP,l−1(z) = [µP,l(z, 1), . . . , µP,l−1(z,m)]T and σP,l−1(z) =
[σP,l(z, 1), . . . , σ̃P,l−1(z,m)]T . Then with probability at least 1− δ/3, for all l ≥ 1 and for all z ∈ Z ,

∥∥P ?(z)− µP,l−1([z]l)
∥∥

2
≤

√√√√ m∑
i=1

(
βP,lσP,l−1([z]l, i) +

1

l2

)2

≤

√√√√ m∑
i=1

β2
P,lσ

2
P,l−1([z]l, i) +

√√√√ m∑
i=1

1

l4

= βP,l ‖σP,l−1([z]l)‖2 +

√
m

l2
.
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Lemma 14 (Sum of predictive variances upper bounded by Maximum Information Gain) Let σR,l and σP,l be de-
fined as in 67 and 68 respectively and let the kernels kR and kP satisfy kR(z, z) ≤ 1 and kP ((z, i), (z, i)) ≤ 1 for
all z ∈ Z and 1 ≤ i ≤ m. Then, for any τ ≥ 1,

τ∑
l=1

H∑
h=1

σR,l−1([zl,h]l) ≤ exp
(
γH−1(kR,Z)

)√
(2λR + 1)τHγτH(kR,Z) (73)

τ∑
l=1

H∑
h=1

‖σP,l−1([zl,h]l)‖2 ≤ exp
(
γmH−1(kP , Z̃)

)√
(2λP + 1)τHγmτH(kP , Z̃), (74)

where γt(kR,Z) denotes the maximum information gain about an f ∼ GPZ(0, kR) after t noisy observations with iid
Gaussian noise N (0, λR) and γt(kP , Z̃) denotes the maximum information gain about an f ∼ GPZ̃(0, kP ) after t noisy
observations with iid Gaussian noise N (0, λP ).

Proof Note that σR,l−1(z) = σR,l,0(z), where σR,l,0(z) is defined in (31). From Lemma 3,
σR,l,0(z)

σR,l,h−1(z)
≤

exp
(
γh−1(kR,Z)

)
for all z ∈ Z and 1 ≤ h ≤ H . This implies

τ∑
l=1

H∑
h=1

σ2
R,l−1([zl,h]l) =

τ∑
l=1

H∑
h=1

σ2
R,l,0([zl,h]l) ≤

τ∑
l=1

H∑
h=1

exp
(
2γh−1(kR,X )

)
σ2
R,l,h−1([zl,h]l)

≤ exp
(
2γH−1(kR,Z)

) τ∑
l=1

H∑
h=1

σ2
R,l,h−1([zl,h]l)

≤ exp
(
2γH−1(kR,Z)

)
(2λR + 1)γτH(kR,Z), (75)

where the second last inequality follows from (16). Further by Cauchy-Schwartz inequality

τ∑
l=1

H∑
h=1

σR,l−1([zl,h]l) ≤

√√√√τH

τ∑
l=1

H∑
h=1

σ2
R,l−1([zl,h]l). (76)

Now (73) follows by combining (75) and (76).

Similarly Note that σP,l−1(z, i) = σP,l,1,0(z, i), where σP,l,1,0(z, i) is defined in (33). Now from Lemma 3, we have
σP,l,1,0(z, i)

σP,l,h,b−1(z, i)
≤ exp

(
γm(h−1)+b−1(kP , λP , Z̃)

)
for all z ∈ Z , 1 ≤ i ≤ m, 1 ≤ h ≤ H and 1 ≤ b ≤ m. This implies

τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l−1([zl,h]l, b) =

τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l,1,0([zl,h]l, b)

≤
τ∑
l=1

H∑
h=1

m∑
b=1

exp
(
2γm(h−1)+b−1(kP , Z̃)

)
σ2
P,l,h,b−1([zl,h]l, b)

≤ exp
(
2γm(H−1)+m−1(kP , Z̃)

) τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l,h,b−1([zl,h]l, b)

≤ exp
(
2γmH−1(kP , Z̃)

)
(2λP + 1)γmτH(kP , Z̃), (77)

where the second last inequality follows from (16). Further by the Cauchy-Schwartz inequality

τ∑
l=1

H∑
h=1

‖σP,l−1([zl,h]l)‖2 ≤

√√√√τH

τ∑
l=1

H∑
h=1

‖σP,l−1([zl,h]l)‖22 =

√√√√τH

τ∑
l=1

H∑
h=1

m∑
b=1

σ2
P,l−1([zl,h]l, b). (78)

Now (74) follows by combining (77) and (78).
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C.2 Bayesian Regret Bound for GP-UCRL under GP prior: Proof of Theorem 3

Note that at every episode l, GP-UCRL (Algorithm 1) selects the policy πl such that

VMl
πl,1

(sl,1) = max
π

max
M∈Ml

VMπ,1(sl,1) (79)

where sl,1 is the initial state,Ml is the family of MDPs constructed by GP-UCRL andMl is the most optimistic realization
fromMl. Further from 59

P
[

sup
z∈Z

∣∣R?(z)∣∣ > L

]
< ae−(L/b)2 ,

holds for any L ≥ 0 for some corresponding a, b > 0. Thus for any 0 < δ ≤ 1, setting L = b
√

ln(6a/δ), with probability
at least 1− δ/6, for all z ∈ Z ∣∣R?(z)∣∣ ≤ b√ln(6a/δ). (80)

Now (80), Lemma 7 and Lemma 9 together with an union bound imply that for any τ ≥ 1 , with probability at least 1−δ/3,

τ∑
l=1

(
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
)
≤

τ∑
l=1

H∑
h=1

( ∣∣RMl
(zl,h)−R?(zl,h)

∣∣+ LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

)
+(LD + 2CH)

√
2τH ln(6/δ), (81)

where C := b
√

ln(6a/δ). Now for each l ≥ 1, we define the following events:

ER,l := {∀z ∈ Z,
∣∣R?(z)− µR,l−1([z]l)

∣∣ ≤ βR,l σR,l−1([z]l) + 1/l2},
EP,l := {∀z ∈ Z,

∣∣P ?(z)− µP,l−1([z]l)
∣∣ ≤ βP,l ‖σP,l−1([z]l)‖2 +

√
m/l2}.

By construction of the set of MDPsMl in Algorithm 1, it follows that when both the events ER,l and EP,l hold for all
l ≥ 1, the unknown MDP M? lies inMl for all l ≥ 1. Thus (79) implies VMl

πl,1
(sl,1) ≥ VM?

π?,1
(sl,1) for all l ≥ 1. This in

turn implies, for every episode l ≥ 1,

VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1) ≤ VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1). (82)

Further when ER,l holds for all l ≥ 1, then∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ≤ ∣∣RMl
(zl,h)− µR,l−1([zl,h]l)

∣∣+
∣∣R?(zl,h)− µR,l−1([zl,h]l)

∣∣ ≤ 2βR,lσR,l−1([zl,h]l) + 2/l2,
(83)

since the mean reward function RMl
lies in the confidence set CR,l as defined in (66). Similarly when EP,l holds for all

l ≥ 1, ∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2
≤

∥∥PMl
(zl,h)− µP,l−1([zl,h]l)

∥∥
2

+
∥∥P ?(zl,h)− µP,l−1([zl,h]l)

∥∥
2

(84)

≤ 2βP,l ‖σP,l−1([zl,h]l)‖2 + 2
√
m/l2, (85)

since the mean transition function PMl
lies in the confidence set CP,l as defined in (66). Now combining (81), (82), (83)

and (84), when both the events ER,l and EP,l hold for all l ≥ 1, then with probability at least 1− δ/3,

τ∑
l=1

(
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
)
≤ 2

τ∑
l=1

H∑
h=1

(
βR,lσR,l−1([zl,h]l) + 1/l2 + LMl

βP,l ‖σP,l−1([zl,h]l)‖2 + LMl

√
m/l2

)
+(LD + 2CH)

√
2τH ln(6/δ).

Now Lemma 13 implies that P [∀l ≥ 1, ER,l] ≥ 1− δ/3 and P [∀l ≥ 1, EP,l] ≥ 1− δ/3. Hence, by a union bound, for any
τ ≥ 1, with probability at least 1− δ,

τ∑
l=1

(
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
)
≤ 2βR,τ

τ∑
l=1

H∑
h=1

σR,l−1([zl,h]l) + 2LβP,τ

τ∑
l=1

H∑
h=1

‖σP,l−1([zl,h]l)‖2

+(L
√
m+ 1)Hπ2/3 + (LD + 2CH)

√
2τH ln(6/δ). (86)
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Here we have used the fact that both βR,l and βP,l are non-decreasing with the number of episodes l,
∑τ
l=1 1/l2 ≤

π2/6 and that LMl
≤ L by construction of Ml (and since Ml ∈ Ml). Now from Lemma 14, we have∑τ

l=1

∑H
h=1 σR,l−1([zl,h]l) ≤ exp

(
γH−1(kR,Z)

)√
(2λR + 1)τHγτH(kR,Z) and

∑τ
l=1

∑H
h=1 ‖σP,l−1([zl,h]l)‖2 ≤

exp
(
γmH−1(kP , Z̃)

)√
(2λP + 1)τHγmτH(kP , Z̃). Therefore with probability at least 1 − δ, the cumulative regret of

GP-UCRL after τ episodes, i.e. after T = τH timesteps is

Regret(T ) =

τ∑
l=1

(
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
)

≤ 2βR,τ exp
(
γH−1(kR,Z)

)√
(2λR + 1)γT (kR,Z)T

+2LβP,τ exp
(
γmH−1(kP , Z̃)

)√
(2λP + 1)γmT (kP , Z̃)T

+(L
√
m+ 1)Hπ2/3 + (LD + 2CH)

√
2T ln(6/δ),

where C := b
√

ln(6a/δ), βR,τ :=
√

2 ln
(
|Sτ | |Aτ |π2τ2/δ

)
and βP,τ :=

√
2 ln

(
|Sτ | |Aτ |mπ2τ2/δ

)
. Now the result

follows by defining γT (R) := γT (kR,Z) and γmT (P ) := γmT (kP , Z̃).

C.3 Bayes Regret of PSRL under GP prior: Proof of Theorem 4

Φ ≡ (ΦR,ΦP ) is the distribution of the unknown MDP M? = {S,A, R?, P?, H}, where ΦR and ΦP are specified by GP
priors GPZ(0, kR) are GPZ̃(0, kP ) respectively with a Gaussian noise model in the sense that

• The reward distribution is R? : S ×A → R, with mean R? ∼ GPZ(0, kR), and additive N (0, λR) Gaussian noise.

• The transition distribution is P? : S × A → S, with mean P ? ∼ GPZ̃(0, k̃P ), and component-wise additive and
independent N (0, λR) Gaussian noise.

Conditioned on the history of observations Hl−1 := {sj,k, aj,k, rj,k}1≤j≤l−1,1≤k≤H both M? and Ml are identically
distributed with Φl ≡ (ΦR,l,ΦP,l), where ΦR,l and ΦP,l are specified by GP posteriors GPZ(µR,l−1, kR,l−1) and
GPZ̃(µP,l−1, kP,l−1) respectively.

In this case we use the confidence sets CR,l and CP,l as given in 66 and define an eventE := E?∩EM , whereE? :=
{
R? ∈

CR,l, P ? ∈ CP,l ∀l ≥ 1
}

and EM :=
{
RMl

∈ CR,l, PMl
∈ CP,l ∀l ≥ 1

}
. Now from Lemma 13, P [E?] ≥ 1 − 2δ/3 and

hence P [E] ≥ 1− 4δ/3 similarly as in the proof of Theorem 2. Further (51) implies

E

[
τ∑
l=1

[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]]

≤ E

[
τ∑
l=1

H∑
h=1

[ ∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ∣∣ E]
+E

[
LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

] ∣∣ E]+ 8δCτH/3, (87)

where we have used that E
[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]
≤ 2CH , where C = E

[
supz∈Z

∣∣R?(z)∣∣]. From Lemma 13 and
construction of CR,l, l ≥ 1,

E

[
τ∑
l=1

H∑
h=1

∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ∣∣ E] ≤
τ∑
l=1

H∑
h=1

(
2βR,lσR,l−1([zl,h]l) + 2/l2

)
≤ 2βR,τ exp

(
γH−1(kR,Z)

)√
(2λR + 1)τHγτH(kR,Z) +

π2H

3
,(88)

where the last step follows from Lemma 14. Similarly from Lemma 13 and construction of CP,l, l ≥ 1,

E

[
τ∑
l=1

H∑
h=1

LMl

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

∣∣ E]

≤
τ∑
l=1

H∑
h=1

E
[
LMl

∣∣ E] (2βP,l ‖σP,l−1([zl,h]l)‖2 + 2
√
m/l2

)
.

≤ E [L?]

1− 4δ/3

(
2βP,τ exp

(
γmH−1(kP , Z̃)

)√
(2λP + 1)τHγmτH(kP , Z̃) +

√
mπ2H/3

)
, (89)
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where the last step follows from Lemma 14 and from the proof of Theorem 2. Combining (87), (88) and (89), for any
0 < δ ≤ 1 and τ ≥ 1,

E

[
τ∑
l=1

[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]]

≤ 2βR,τ exp
(
γH−1(kR,Z)

)√
(2λR + 1)τHγτH(kR, λR,Z)

+2βP,τ
E [L?]

1− 4δ/3
exp

(
γmH−1(kP , Z̃)

)√
(2λP + 1)τHγmτH(kP , Z̃)

+8δCτH/3 +

(
1 + E[L?]

1−4δ/3

√
m
)
π2H

3
,

where βR,τ :=
√

2 ln
(
|Sτ | |Aτ |π2τ2/δ

)
and βP,τ :=

√
2 ln

(
|Sτ | |Aτ |mπ2τ2/δ

)
. See that the left hand side is inde-

pendent of δ. Now using δ = 1/τH , the Bayes regret of PSRL after τ episodes, i.e. after T = τH timesteps is

E [Regret(τ)] =

τ∑
l=1

E
[
VM?
π?,1

(sl,1)− VM?
πl,1

(sl,1)
]

≤ 2αR,τ exp
(
γH−1(kR,Z)

)√
(2λR + 1)γT (kR,Z)T

+3 E [L?]αP,τ exp
(
γmH−1(kP , Z̃)

)√
(2λP + 1)γmT (kP , Z̃)T + 3C + (1 +

√
mE [L?])π

2H,

since 1/(1 − 4/3τH) ≤ 3/2 as τ ≥ 2, H ≥ 2. Here C = E
[
supz∈Z

∣∣R?(z)∣∣], αR,τ :=
√

2 ln
(
|Sτ | |Aτ |π2τ2T

)
,

αP,τ :=
√

2 ln
(
|Sτ | |Aτ |mπ2τ2T

)
. Now the result follows by defining γT (R) := γT (kR,Z) and γmT (P ) :=

γmT (kP , Z̃).
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