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A Proof of EIWAL

The key step in proving Theorem 1 for EIWAL is using a
martingale concentration bound for
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where Z
1

, Z
2

, · · · is a martingale difference sequence for
any pair f, g 2 H

T

. Instead of using Azuma’s inequality
as in [Beygelzimer et al., 2009], we rely on a Berstein-like
inequality for martingales Freedman [1975]).

The following result is adapted from Lemma 3 of Kakade
and Tewari [2009], which is derived from Freedman [1975]).
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Proof. We use Lemma 3 in Kakade and Tewari [2009]. First,
observe that variables Z
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A union bound over Z
t

and �Z
t

concludes the proof.

Given Lemma 4 above, we can adapt Lemma 3 of [Beygelz-
imer et al., 2009] to using the Berstein-like inequality.
Specifically, let us define
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Then we have the following high-probability statement for
the risk of the hypothesis h

T

returned by EIWAL after T
rounds.

Lemma 5. Given any hypothesis class H, for all � > 0,
for all T � 3 and all f, g 2 H

T

, with probability at least
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Proof. Apply Lemma 4 to time T � 3 and any pair f, g 2
H
T

, with error probability �/(T 2|H|2) for round T . A union
bound over T � 3 and (f, g) gives, with probability at least
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Next, according to Proposition 2 of Cesa-Bianchi and Gen-
tile [2008], with probability at least 1� �, for all T � 3,
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Combining (8) and (9), we get with probability at least
1� 2�, for all T � 3,
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as claimed.

The next lemma gives a label complexity bound for EIWAL.
Lemma 6. Given any hypothesis class H, and distribution
D, with ✓(D,H) = ✓, for all � > 0, for all T � 3, with
probably at least 1� �, we have
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where K
`

is a constant that depends on `.

Proof. From Theorem 11 of Beygelzimer et al. [2009], for
t � 3,
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Combining with (13) completes the proof.

B Proofs of ORIWAL

Proof of Theorem 2. We first expand the bound in Theo-
rem 1 and get rid of
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In order to prove Corollary 3 we need the following standard
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This concludes the proof.

C Two Natural Baselines for Region-Based
Active Learning

In Section C.1 and Section C.2 below, we analyze two natu-
ral extensions of the IWAL algorithm to the region-based set-
ting, called NAIVE-IWAL and RIWAL, that use the composite
hypothesis set H

[n]

in two different ways. In Section C.3,
we then discuss the advantage of RIWAL over NAIVE-IWAL.

The two region-based baselines NAIVE-IWAL and RIWAL
can use either IWAL or EIWAL as their underlying subrou-
tines. To avoid clutter in the notation and to simplify the
presentation, we proceed with the original version of IWAL,
but a similar (though more involved) analysis can be carried
out for the enhanced version EIWAL.

C.1 NAIVE-IWAL

NAIVE-IWAL consists of simply running the IWAL algorithm
with the composite hypothesis set H

[n]

. This algorithm will
find a model in this set without explicitly taking into account
the structure of the set. Despite its simplicity, NAIVE-IWAL
admits theoretical guarantees, since the guarantees from
the classical IWAL (see Equation (2) and Equation (3)) di-
rectly apply. In particular, when H

k

s have the same num-
ber of hypotheses across k, the complexity terms in these
bounds are multiplied by a factor of

p
n. This is because
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|n. Thus, as the number of re-
gions increases, the complexity term in the bound increases,
while the generalization error of the best in class R(h⇤

)

decreases.

C.2 RIWAL

RIWAL consists of running n separate IWAL algorithms in-
dependently for each region. It works exactly in the same
way as ORIWAL, except that it simply passes on all points
to the subroutines, that is ↵

k

= 1 for all k 2 [n]. Given
T
k

, which is the number of samples falling into region X
k

,
RIWAL admits the same generalization error guarantees as
that of ORIWAL (Theorem 2). Both results are derived from
IWAL for a single region, along with a union bound over n
regions. We can also apply a multiplicative Chernoff bound
to the empirical quantities T

k

to obtain a learning guarantee
that only depends on T . The result is in fact a special case
of Corollary 3, and is obtained by simply replacing therein
q
k

with p
k

.

C.3 Comparing NAIVE-IWAL and RIWAL

Even though NAIVE-IWAL and RIWAL learn from the same
hypothesis set H

[n]

, and essentially use the same policy
(the disagreement-based policy of IWAL) for requesting la-
bels, the two algorithms are not equivalent. In fact, the
two algorithms deliver final hypotheses with comparable
generalization error after T rounds but, as we will show
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momentarily, NAIVE-IWAL request more labels than RIWAL
in expectation.

The following definitions will be useful. Let bR
k,t

(h) and
bR
t

(h) denote the importance weighted empirical error of
any hypothesis h after t rounds on region X

k

and over all
regions, respectively:

bR
k,t

(h) =

P

t

s=1

1

xs2Xk

Qs

ps
`(h(x

s

), y
s

)

P

t

s=1

1

xs2Xk

,

bR
t

(h) =

P

t

s=1

Qs

ps
`(h(x

s

), y
s

)

t
.

Let bh
k,t

and bh
t

be the respective weighted empirical risk
minimizers:

bh
k,t

= argmin

h2Hk

bR
k,t

(h), bh
t

= argmin

h2H[n]

bR
t

(h) .

Similar to Equation (1), we have bh
t

=

P

n

k=1

1

x2Xk
bh
k,t

.

Recall that for NAIVE-IWAL and RIWAL, the probability of
requesting label y

t

depends on the “disagreement” among
their version spaces on x

t

. A larger version space implies a
larger disagreement value, and therefore a larger probability
of requesting the label. Thus, at a high level, NAIVE-IWAL
requests more labels than RIWAL because the version space
of NAIVE-IWAL is larger than that of RIWAL. More precisely,
assume for now that NAIVE-IWAL and RIWAL have been
requesting the same labels up to time t� 1, thus for any h
and k, bR

k,t

(h) has the same value under either algorithm,
and the region-specific empirical risk minimizer is bh

k,t

. At
time t, assume without loss of generality, that the unlabeled
x
t

lies in region X
1

. Given a slack term �, the version
space is defined as the set of hypotheses whose importance
weighted empirical error is �-close to the minimal empirical
error. Assume there exists a hypothesis h

1

2 H
1

such that

�  bR
1,t

(h
1

)� bR
1,t

(

bh
1,t

) 
"

t
P

t

s=1

1

xs2X1

#

�.

Since �  bR
1,t

(h
1

)� bR
1,t

(

bh
1,t

), h
1

will not be included in
the current version space of IWAL

1

, which is the subroutine
associated with X

1

under the RIWAL algorithm. However,
the version space of NAIVE-IWAL will include the hypoth-
esis that takes the value of h

1

on region X
1

. To see why,
let

h0
=

X

k2[n],k 6=1

1

x2Xk
bh
kt

+ 1

x2X1h1

,

that is, the hypothesis that takes the value of the region-
specific weighted empirical risk minimizers (bh

k,t

) on region
X

k

, and takes the value of h
1

on region X
1

. Since

bR(h0
)� bR(

bh
t

)

=

"

P

t

s=1

1

xs2X1

t

#

�

bR
1,t

(h
1

)� bR
1,t

(

bh
1,t

)

�

 �,

h0 will be included in the version space of NAIVE-IWAL
under the slack term �, even though h

1

is not included in
the version space of RIWAL on region X

1

under the same
slack term. This suggests that NAIVE-IWAL is less efficient
at shrinking the version space, and as a result it requests
more labels.

We formalize this idea with Lemma 8 and Theorem 9.
Lemma 8 relates the region-specific disagreement coeffi-
cients ✓(D

k

,H
k

) to the overall disagreement coefficient
✓(D,H

[n]

). Theorem 9 compares the learning guarantees
of NAIVE-IWAL and RIWAL under certain assumptions.
Lemma 8. The generalized disagreement coefficient
✓(D,H

[n]

) satisfies ✓(D,H
[n]

) 
P

n

k=1

✓(D
k

,H
k

).

Proof. Denote h⇤
= argmin

h2H[n]
R(h), and h⇤

k

=

argmin

h2Hk
R

k

(h). For simplicity, we denote by D
k

=

D|X
k

the conditional distribution of x on X
k

. Recall that
h⇤

=

P

n

k=1

1

x2Xkh
⇤
k

. Extending the definitions in Sec-
tion 3, we define

⇢
k

(f, g) = E
x⇠Dk

max

y

|`(f(x), y)� `(g(x), y)|.

Given the hypothesis set H
k

and any real r > 0, define

B
k

(f, r) =
�

g 2 H
k

: ⇢
k

(f, g)  r
 

.

For a set of non-negative values � = {�
1

, . . . ,�
n

} , let

G
�

(h⇤, r) =
n

n

X

k=1

1

x2Xkgk : gk 2 B
k

(h⇤
k

,�
k

r)
o

.

We first show that, for any � satisfying
P

n

k=1

p
k

�
k

 1,
G

�

(h⇤, r) ✓ B(h⇤, r). Let g =

P

n

k=1

1

x2Xkgk, where
g
k

2 B
k

(h⇤
k

,�
k

r). Then,

⇢ (h⇤, g)

= E
x⇠D

max

y

|`(h⇤
(x), y)� `(g(x), y)|

=

n

X

k=1

p
k

E
x⇠Dk

max

y

|`(h⇤
k

(x), y)� `(g
k

(x), y)|


n

X

k=1

p
k

�
k

r  r.

Thus,

(

[
� :

Pn
k=1 pk�k1

G
�

(h⇤, r)

)

✓ B(h⇤, r). On the

other hand, if there exits a hypothesis h such that

h 2 B(h⇤, r)
/

(

[
� :

Pn
k=1 pk�k1

G
�

(h⇤, r)

)

,

let h =

P

n

k=1

1

x2Xkhk

. Then,

⇢(h⇤, h) =

n

X

k=1

p
k

⇢
k

(h⇤
k

, h
k

)  r )
n

X

k=1

p
k

⇢
k

(h⇤
k

, h
k

)

r
 1.
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Obviously, h
k

2 B
k

(h⇤
k

, ⇢
k

(h⇤
k

, h
k

)). Thus, let � =

{⇢1(h
⇤
1 ,h1)

r

, . . . ,
⇢p(h

⇤
n,hn)

r

}, then
P

n

k=1

p
k

�
k

 1, and
h 2 G

�

(h⇤, r) by definition. We have a contradiction.
Therefore,

(

[
� :

Pn
k=1 pk�k1

G
�

(h⇤, r)

)

= B(h⇤, r) .

Given the equivalence above, for any k 2 [n],

H
k

\B(h⇤, r) = H
k

\ {[
� :

Pn
k=1 pk�k1

G
�

(h⇤, r)}
= H

k

\ {[
�k1/pkBk

(h⇤
k

,�
k

r)} (14)
= B

k

(h⇤
k

, r/p
k

) . (15)

Equation (14) holds by the definition of G
�

(h⇤, r). Putting
everything together, we have for any r � 0,

E
x⇠D

sup

h2B(h

⇤
,r)

sup

y

|`(h(x), y)� `(h⇤
(x), y)|

=

n

X

k=1

p
k

E
x⇠Dk

sup

h2B(h

⇤
,r)

sup

y

|`(h(x), y)� `(h⇤
(x), y)|

=

n

X

k=1

p
k

E
x⇠Dk

sup

y,hk2Bk(h
⇤
k,

r
pk

)

|`(h
k

(x), y)� `(h⇤
k

(x), y)|

(16)


n

X

k=1

p
k

✓(D
k

,H
k

)r/p
k

(17)

=

⇣

n

X

k=1

✓(D|X
k

,H
k

)

⌘

r.

Equation (16) holds due to the equivalence in (15), and
inequality (17) holds by the definition of ✓(D

k

,H
k

).

Finally, recall the definition of ✓(D,H
[n]

):

✓(D,H) = inf

n

✓ : 8r � 0,

E
x⇠D

sup

h2B(h

⇤
,r)

sup

y

|`(h(x), y)� `(h⇤
(x), y)|  ✓r

o

.

Therefore ✓(D,H
[n]

) 
P

n

k=1

✓(D
k

,H
k

), which conclues
the proof.

In fact, one can show that there exist r, D and H
k

such that
equality is achieved in Lemma 8, thus the upper bound is
tight.

Combining Lemma 8 with the learning guarantee of IWAL,
we obtain the following result for the case when |H

k

| is the
same across all regions X

k

.
Theorem 9. Assume |H

k

| is the same across all regions
X

k

, k 2 [n], and assume the same holds for ✓(D
k

,H
k

).
Then, the hypothesis returned by NAIVE-IWAL and RIWAL
admit comparable generalization error guarantees, but on
average NAIVE-IWAL would request up to n times more
labels than RIWAL.

Proof. Let N = |H
1

|, and ✓
1

= ✓(D
1

,H
1

), so that
|H

[n]

| = Nn and, from Lemma 8, ✓(D,H
[n]

)  n✓
1

. Ac-
cording to the learning guarantee of IWAL, with probability
at least 1� �, NAIVE-IWAL satisfies

R(hNAIVE-IWAL
T

)  R(h⇤
) +O

⇣

r

ln(TN2n/�)

T

⌘

, (18)

⌧ NAIVE-IWAL
T

 4n✓
1

K
`

h

R(h⇤
)T +O(

p

T ln(TN2n/�))
i

.

(19)

Meanwhile according to Theorem 2, with probability at least
1� �, RIWAL satisfies

R(hRIWAL
T

)

 R(h⇤
) +

n

X

k=1

p
k

O
⇣

s

ln(T |N |2n/�)
T
k

⌘

, (20)

⌧ RIWAL
T


n

X

k=1

4✓
1

K
`

h

R
k

(h⇤
)Tp

k

+O(

p

2Tp
k

ln(2TN2n/�)
i

= 4✓
1

K
`

h

R(h⇤
)T +

n

X

k=1

O(

p

2Tp
k

ln(2TN2n/�)
i

.

(21)

Replacing T
k

with Tp
k

+ O(

p
T ) in the RHS of (20) we

obtain

R(hRIWAL
T

)  R(h⇤
) +O

⇣

r

n ln(T |N |2n/�)
T

⌘

. (22)

Comparing the upper bound on the generalization error of
RIWAL (22) to that of NAIVE-IWAL (18), we conclude that
the two algorithms admit comparable learning guarantees.

On the other hand, comparing the proportion of labels re-
quested per round, we have

⌧ NAIVE-IWAL
T

/T  4n✓
1

K
`

R(h⇤
) +O

✓

1p
T

◆

,

⌧ RIWAL
T

/T  4✓
1

K
`

R(h⇤
) +O

✓

1p
T

◆

.

Thus, NAIVE-IWAL may request up to n times more labels
than RIWAL.

D More Experimental Results

In this section, we provide results for all the datasets de-
scribed in Table 1 in the main body of the paper.

Figures 3 show for 10 disjoint regions the misclassification
error rate by three region-based algorithms, ORIWAL, RI-
WAL, and RPASSIVE, against number of labels requested (on
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log

10

scale), for all datasets. ORIWAL displays a consistent
advantage over RIWAL and RPASSIVE.

Figures 4 and Figure 5 compares, for 10 and 20 disjoint
regions respectively, the misclassification error rate of our
algorithm, ORIWAL, to that of non region-based IWAL, and
to non region-based passive learning PASSIVE. IWAL per-
forms comparably to PASSIVE and stops improving early
on, while ORIWAL significantly outperforms PASSIVE and
continues to reduce the error rate while requesting more
labels.

Figures 6 show the misclassification error rate by ORIWAL
using 10 regions and 20 regions, respectively, against num-
ber of labels requested (on log

10

scale), for all datasets.
With randomly generated regions, it is unclear whether more
regions would be helpful, as sometimes 20 regions admit
higher misclassification error compared to 10 regions, given
the same amount of requested labels. This observation
leads to the following questions: How should the regions
be chosen? How would the partitioning method affect the
performance of ORIWAL? These are interesting directions
for future work.
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Figure 3: Misclassification loss of ORIWAL, RIWAL, and RPASSIVE on hold out test data vs. number of labels requested
(log

10

scale). The input space has 10 regions.
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Figure 4: Misclassification loss of non region-based IWAL, non region-based passive learning PASSIVE, and ORIWAL (ours)
on hold out test data vs. number of labels requested (log

10

scale). The input space has 10 regions.
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Figure 5: Misclassification loss of non region-based IWAL, non region-based passive learning PASSIVE, and ORIWAL (ours)
on hold out test data vs. number of labels requested (log

10

scale). The input space has 20 regions.
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Figure 6: Misclassification loss of ORIWAL, using 10 regions, vs. 20 regions, on hold out test data vs. number of labels
requested (log

10

scale).
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