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A Experimental details

A.1 MDPs

The MDPs used in this study are W ×H grid worlds,
meaning that the state space is S = {si,j}W,Hi,j=1 ∪
{sterm}. sterm is a special state, to which an agent is
moved with probability 0.01 after each action, ensur-
ing finite length of the experiments considered. There
is one initial state placed in the centre of the grid,
S1 = {sdW/2e,dH/2e}. There are four possible ac-
tions {L,R,U,D}, each of them has an associated de-
sired effect, namely L(si,j) = si−1,j , R(si,j) = si+1,j ,
D(si,j) = si,j−1, U(si,j) = si,j+1. Some transitions
are invalid, as they would lead to leaving the state
space, thus we define

z(si,j , a) =

{
a(si,j) if a(si,j) ∈ S

si,j otherwise

The transition dynamics are defined as:

T (a, si,j) =


z(si,j , a) with probability 1− η,
z(si,j , L) with probability η/4,
z(si,j , R) with probability η/4,
z(si,j , U) with probability η/4,
z(si,j , D) with probability η/4,

where η = 0.1 is the transition noise.

Rewards are associated with some states, and are fully
deterministic.

Some states are terminal, which cause the episode to
end, and bring the agent back to the initial state.

We considered partial, and fully observable versions of
these environments. In the fully observable environ-
ments, the agent is given the state index as an obser-
vation, while in the partially observable environments
a concatenated sequence of (2k+ 1)× (2k+ 1) objects,

namely ok(si,j) is represented as

(o(si−k,j−k), ..., o(si−k,j), ..., o(si−k,j+k), ...,

o(si−k+1,j−k), ..., o(si−k+1,j), ..., o(si−k+1,j+k), ...,

...

o(si+k,j−k), ..., o(si+k,j), ..., o(si+k,j+k))

where o(s) is wall if s /∈ S and a pair
(reward value(s), is terminating(s)) otherwise. For ex-
ample, if the state provides reward 10 and is terminat-
ing, then it will be observed as (10, True).

In all partially observable experiments, we use obser-
vations which are concatenations of 9×9 squares of vi-
sion, centered in an agent position. We experimented
with visual extents ranging from 5×5 to full observabil-
ity and found that this does not effect the qualitative
results of the paper, thus the choice of the particular
visual extent is not crucial.

A.2 Distribution over MDPs

In all experiments where we sample multiple MDPs we
use the following procedure:

1. We create S as described in the previous section.

2. For each sij ∈ S, starting in the upper left corner
and traversing first horizontally and then verti-
cally:

(a) With probability pw we remove sij from S,
which we call putting a wall in; if we modified
a state, we go back to step 2 and continue the
loop.

(b) With probability p+10 we put a reward of +10
in sij and make it terminal; if we modified a
state, we go back to step 2 and continue the
loop.

(c) With probability p+5 we put a reward of +5
in sij and make it terminal; if we modified a
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Figure 7: Example 20×20 grid world MDP, with ini-
tial state coloured blue, terminal states coloured green,
and rewards on various states. Black squares are walls.

state, we go back to step 2 and continue the
loop.

(d) With probability p−1 we put a reward of -1
in sij ; if we modified a state, we go back to
step 2 and continue the loop.

(e) With probability p−5 we put a reward of -5
in sij and make it terminal; if we modified a
state, we go back to step 2 and continue the
loop.

(f) With probability p−10 we put a reward of -10
in sij and make it terminal; if we modified a
state, we go back to step 2 and continue the
loop.

3. We check if there exists a path between the initial
state and the +10 state, and if this is not true, we
repeat the process.

Unless otherwise stated in the text, we use W = H =
20, 1

10pw = p+10 = 1
2p+5 = 1

10p−1 = p−5 = p−10 =
0.01.

A.3 Actor Critic

We use a basic actor critic method, where we sample
one full episode under the student policy, τ ∼ πθ, and
then update the parameters according to either the
single sample Monte Carlo estimated return:

∇θ log πθ(at|τt)[
∑
t

γt−1rt − Vθ(st)]

or, in the TD(1) case, with bootstrapped estimates

∇θ log πθ(at|τt)[rt + γVθ(st+1)− Vθ(st)].

In all experiments we used γ = 0.99, but we obtained
qualitatively similar results with other values too (γ =
0.95 and γ = 0.999).

After each update we use the same Monte Carlo or TD
value to fit the baseline function, using the L2 loss:

∇θ(Vθ(st)− γt−1rt)2

or
∇θ(Vθ(st)− (rt + γVθ(st+1))2

in the case of TD learning, where Vθ(st+1) is treated as
a constant. All Vs are initialised to 0s. The learning
rate used is 0.1.

A.4 Q-Learning

We use the standard Q-Learning update rule of

Q(at, st) := (1−λ)Q(at, st) +λ(rt + γmax
a

Q(a, st+1))

applied after each visited state. All Qs are initialised
to 0s. The learning rate was set to λ = 0.01. The
policy was trained for 30k iterations.

When treating the Q-Learned policy as a teacher, de-
pending on the temperature T reported (by default 0)
it was either a greedy policy (if the temperature is 0)

π̂(a|s) = 1 iff Q(a, s) = max
b∈A

Q(b, s)

π(a|s) = π̂(a|s)∑
b∈A π̂(b|s)

or a Boltzman policy computed as:

π(a|s) = exp(Q(a,s)/T )∑
b∈A exp(Q(b,s)/T )

A.5 Policy parametrisation during
distillation

Policies are represented as logits of each action, for
each unique observation. Consequently for each obser-
vation o, and for action space A the policy for Actor

Critic is parameterised as πθ(a|o) =
exp(θa,o)∑
b∈A exp(θb,o)

.

Similarly, value functions are represented simply as
one float per observation: Vπθ (o) = θVo , and Q-values
Qπθ (a, o) = θQa,o.

B Extended figures

We include extended versions of various figures. Fig. 8
is an extended version of Fig. 5 including experiments
with an A2C teacher.
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Figure 8: Learning curves obtained from averaging 1k training runs on randomly generated MDP grid worlds.
The gradual decrease in reward when distilling from a sub-optimal Q-Learning teacher with distillation methods
that enforce full policy cloning comes from the fact that the teacher is purely deterministic – while being closer
to it initially helps, once the student replicates all the wrong state decisions perfectly its reward start to decrease.
Extended version of Fig. 5 including A2C teacher.

Fig.9 is an extended version of Fig. 6, including more
sizes of the corridor environment.

Fig.10 is an extended version of Fig. 4, including ad-
ditional agents.

C Proofs for Section 3 (Policy
distillations)

Theorem 1. Let us assume that g(θ) = Eπθ [∇θ`(τ |θ)]
is differentiable and there does not exist ατ ∈ R such
that ∇θ`(τ |θ) = ατ∇πθ(τ) almost everywhere. Then
g(θ) is not a gradient vector field of any function.

Proof. If gradient of some f is differentiable then f ’s
Hessian exists and is a symmetric matrix:

∂

∂x

(
∂

∂y
f(x, y)

)
=

∂

∂y

(
∂

∂x
f(x, y)

)
.

Consequently, if some function is a gradient vector
field, then its Jacobian has to be symmetric. We will
show that for g this is not true in general, by focusing
on two arbitrary indices ij and ji. We use notation
f [i] to denote the ith output of the multivariate func-
tion f . Using the log derivative trick we obtain that

∂
∂θj

g(θ)[i] equals

∂
∂θj

Eπθ
[
∂
∂θi

log πθ(τ)`(τ, θ)
]

= Eπθ
[
∂
∂θj

log πθ(τ) ∂
∂θi

log πθ(τ)`(τ, θ)
]

+ Eπθ
[
∂
∂θj

[ ∂
∂θi

log πθ(τ)`(τ, θ)]
]

= Eπθ
[
∂
∂θj

log πθ(τ) ∂
∂θi

log πθ(τ)`(τ, θ)
]

+ Eπθ
[

∂
∂θiθj

log πθ(τ)`(τ, θ)
]

+ Eπθ
[
∂
∂θi

log πθ(τ) ∂
∂θj

`(τ, θ)
]

thus ∂
∂θi
g(θ)[j]− ∂

∂θj
g(θ)[i] equals

Eπθ
[
∂
∂θj

log πθ(τ) ∂
∂θi
`(τ, θ)− ∂

∂θi
log πθ(τ) ∂

∂θj
`(τ, θ)

]
=

∫
τ

[
∂
∂θj

πθ(τ) ∂
∂θi
`(τ, θ)− ∂

∂θi
πθ(τ) ∂

∂θj
`(τ, θ)

]
dτ

In general this term is zero iff ∇`(τ, θ) = ατ∇πθ(τ)
almost everywhere, which can not be true due to as-
sumptions. Consequently, g(θ) is not a gradient vector
field of any function.

Proposition 1. Using an update rule of the form

Eπθ [
∑|τ |
t=1∇θ`(π(τt), πθ(τt))] for a strongly stochas-

tic4 student policy, with episodic finite state-space
MDPs and tabular policies, provides convergence to
the teacher policy over all reachable states for the loss
function `, provided the optimiser used can minimise

4Meaning that each for each action a, parameters θ and
state s, πθ(s)[a] > 0.
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Figure 9: Results of distilling the optimal teacher and adversarial (minimising reward) teacher in the chain-
structured MDP. Extended version of Fig. 6.

`(a, b) wrt. b, for any a in the domain of `, and `(a, b)
reaches minimum at `(a, a).

Proof. Because of strong stochasticity of πθ, the distri-
bution of states visited under this policy covers entire
state space S = (s1, . . . , sN ) reachable from the initial
state. We use notation `iθ := `(π(si), πθ(si)). Conse-
quently the update

g(θ) := Eπθ [
|τ |∑
t=1

∇θ`(π(τt), πθ(τt))]

can be rewritten as

g(θ) =
[
pθ(s1)∇θ1`1θ . . . pθ(sN )∇θN `Nθ

]T
,

where pθ(s) is the probability of agent being in state
s when following policy πθ and we use the indepen-
dence of parametrisation of the policy in each state
(which comes from the tabular assumption – θi is the
parametrisation of policy in state si).

Let us denote by g∗(θ) gradient of a an expected loss

under teacher policy

g∗(θ) : = ∇θ[Eπ
|τ |∑
t=1

`(π(τt), πθ(τt))]

= Eπ∇θ[
|τ |∑
t=1

`(π(τt), πθ(τt))]

=
[
p(s1)∇θ1`1θ . . . p(sN )∇θN `Nθ

]T
.

where again p(s) is the probability of sampling state s
under π.

It is easy to notice that these two update directions
have a non-negative cosine:

〈g(θ), g∗(θ)〉 =

N∑
i=1

p(si)pθ(si)‖∇θi`iθ‖2 ≥ 0.

Furthermore, because for all s, p(s) ≥ 0, pθ(s) > 0,
the cosine is zero if and only if for each state si either
‖∇θi`iθ‖2 = 0 (teacher and student policies match) or
p(si) = 0 (state is not reachable by π). This means
that for every state, reachable by π, the correspond-
ing update rule coming from g(θ) is guaranteed to be
stricly descending as long as it is not in the minimum.
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Figure 10: Learning curves averaged over 1k random MDPs with |A| actions, out of which 4 are movement
actions and the remaining ones do not affect the movement of the agent, but simply make exploration hard.
Plots show the failure mode of the intrinsic reward only based distillation, and how their expected version fixes
it. Extended version of Fig. 4

Due to assumptions about `(a, ·) having a unique min-
imum and optimiser being able to find it, we obtain
that πθ(si) will converge to π(si) for each si ∈ S where
p(si) > 0.

Consequently we have shown, that the update direc-
tion is a strict descent direction wrt. expected loss
under the teacher policy and thus student policy con-
verges to the teacher one over all reachable states.

Using Monte Carlo estimates for the g(θ) estimation
can be analysed analogously to how Stochastic Gradi-
ent Descent generalises Gradient Descent.

Oscillation example Consider a game with seven
states, {s0, sL, sR, sLL, sLR, sRL, sRR}. We start at s0
and in the first step we decide whether to go to sL or
sR. If we chose to go to sL, in step 2 we chose whether
to go to sLL or to sLR. Similarly, if we are in sR
after round 1, in step 2 we have a choice whether to go
to sRL or sRR. The only rewards are r(L, sL) = −1,
r(R, sL) = −2, and r(R, sR) = −3. In the game we use
a policy πθ depending on two parameters θx and θy as
follows. In the first step we go to sR with probability
eθx

1+eθx
and to sL with probability 1

1+eθx
. In step 2

we have two branchings again, if we are in sL with

probalility eθy

1+eθy
we go to sLL, and with probability

1
1+eθy

we go to sLR. Similarly, if we are in sR we go

with probalility eθy

1+eθy
to sRL, and with probability

1
1+eθy

we go to sRR. We choose a penalty function

` = `(θy) = 4 eθy

1+eθy
− 4, living in the state sR, when

we are in sL in step 2, ` is zero. Equivalently one can
think of it being a distillation cost with an information
potential loss, `(π(s)‖πθ(s)) = 4

∑
a π(a|s)πθ(a|s)− 4

where the teacher π(R|sL) = 1. We have an update

rule {
ẋ = ∂

∂θx
Eπθ [

∑|τ |
t=1 rt]

ẏ = ∂
∂θy

Eπθ [
∑|τ |
t=1 rt]−

eθx

1+eθx
`′(θy) ẋ = eθx (eθy−1)

(1+eθx )2(1+eθy )

ẏ = eθy (1+3eθx )

(1+eθx )(1+eθy )2
− 4 eθxeθy

(1+eθx )(1+eθy )2 ẋ = eθx (eθy−1)
(1+eθx )2(1+eθy )

ẏ = eθy (1−eθx )
(1+eθx )(1+eθy )2

.

This system of equations has a first integral
H(θx, θy) = eθx + e−θx + eθy + e−θy (with integrat-

ing factor eθxeθy

(1+eθx )2(1+eθy )2
). Note, that H(θx, θy) =

4 + θx
2 + θy

2 + O(θx
3, θy

3), therefore the fixed point
θ = (0, 0) is a center. Therefore, with each policy up-
date the values θ stay on the same closed curve and
they keep changing in a cyclic manner, never converg-
ing.

Theorem 2. In order to recover the gradient vector
field property for 1-step on-policy distillation updates
with any loss `(π(τt)‖πθ(τt)), one can add an extra re-
ward term r̂t = −`(π(τt+1)‖πθ(τt+1)). Analogously if

the loss is of the form Ea∼πθ ˆ̀(π(τt)) then the correc-

tion is of form −ˆ̀(π(τt+1)).

Proof. Consider the following loss L(θ) = Eπθ [`(τ, θ)]
and its gradient:

∇θL(θ) = ∇θ
∫
τ

πθ(τ |θ) [`(τ, θ)] dτ

=

∫
τ

∇θ(πθ(τ |θ) [`(τ, θ)])dτ

=

∫
τ

[∇θπθ(τ |θ)]`(τ, θ) + πθ(τ |θ)[∇θ`(τ, θ)]dτ

using the log-derivative trick ∇θf(x) =
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f(x)∇θ log f(x) and the above equation we get

∇θL(θ) =

∫
τ

[πθ(τ |θ)∇θ log πθ(τ |θ)]`(τ, θ)+

πθ(τ |θ)[∇θ`(τ, θ)]dτ

=

∫
τ

[πθ(τ |θ)∇θ log πθ(τ |θ)]`(τ, θ)dτ+∫
τ

πθ(τ |θ)[∇θ`(τ, θ)]dτ

= Eπθ(τ |θ)∇θ log πθ(τ |θ)`(τ, θ)+
Eπθ(τ |θ)∇θ`(τ, θ)

Consequently, we obtain that the valid gradient of the
loss considered is composed of two expectations, one
being the equivalent of a RL target, but with ` being
a negation of the reward, and one which is exactly the
auxiliary cost of interest. Consequently if we add the
reward at time t equal to minus loss at time t + 1 we
will recover proper gradient vector field.

For the case of a loss of the form Ea∼πθ ˆ̀(π(τt)) this
proof is analogous – simply the correction is not on a
state-action pair level, rather a pure state level.

Cross entropy minima Let us fix a distribution
p(a|s), and consider a minima of H×(p‖q) and H×(q‖p)
wrt. q. It is easy to see that the minimum of H×(p‖q)
is given by p, as by the definition of divergence, the
minimum of KL×(p‖q) is given by p, and KL×(p‖q) =
H×(p‖q) + H(p), but for a fixed p, H(p) is a constant,
thus it does not affect the minima. For H×(q‖p) we
will show that the minimum is given by the dirac delta
distribution in the most probable action a∗ in p, de-
noted as q∗. For simplicity, assuming that this is a
unique action, meaning that ∀a 6=a∗p(a|s) < p(a∗|s),
then for any q 6= q∗

H×(q‖p) = −
∑
a

q(a|s) log p(a|s)

> −[
∑
a

q(a|s)] max
b

log p(b|s)

= −[1] log p(a∗|s) = H×(q∗‖p)

Figure 11: Comparison of various cross-entropies so-
lutions when matching the distribution over finitely
many actions.

KL and mean/mode seeking While both
KL(q‖p) and KL(p‖q) have the same minimum in
the space of all distributions, they differ once one
constrains the space we are looking over. To be more
precise we have that

arg min
q

KL(q‖p) = arg min
q

KL(p‖q) = p

but at the same time there exists C ⊂ P where P is
the space of all distributions such that

arg min
q∈C

KL(q‖p) 6= arg min
q∈C

KL(p‖q) 6= p

The simplest example is the mixture of multiple Gaus-

Figure 12: Comparison of various KL variant solutions
when matching the distribution over a mixture of 4
Gaussians, using from 1 (upper left) to 4 (lower right)
Gaussians. Note how mode seeking KL (green) picks
Gaussians to match, while ignoring others, and mean
seeking (red) instead puts its Gaussians in between
peaks of the original distribution.

sians, which we try to fit with just a single Gaussian.
The typical cost of KL(p‖q) will match the mean of the
distribution (thus the name of mean seeking), while
KL(q‖p) will cover one of the Gaussians from the mix-
ture, while ignoring the others (thus mode seeking),
see Fig. 12 and Fig. 13.

In practice, we are often in this regime, since the
teacher and student policies can have different capac-
ities, architectures and priors, thus making perfect
replication impossible. Therefore, the choice of di-
rection of KL will affect if the agent prefers to just
match one, very probable mode (action/behaviour),
or if we prefer the agent to look for an averaged ac-
tion/behaviour.
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Figure 13: Visualisation of the value of KL (left) and
reverse KL (right) parameterised by the location of
the mean of two Gaussians, computed with respect to
the mixture of 4 Gaussians from Fig. 12. One can see
how mean seeking KL prefers to put means in -1 and 1
while the mode seeking attains the minimum for every
possible pair, matching means of the original mixture.

D Proofs for Section 4 (Policy
distillation from Actor-Critic)

Proposition 2. For S1 being a distribution over ini-
tial states, if we have ∀s ∈ S `(θ∗, s) ≤ H(π(s)) then
Es∼S1 [Vπθ∗ (s)] ≥ Es∼S1 [Vπ(s)].

Proof. Lets assume that the inequality does not hold,
meaning that the following teacher’s policy gives
higher return. This means, that there exists a state
s∗, where Vπ(s∗) > Vπθ∗ (s∗) but the policies differ,
meaning that π(s∗) 6= πθ∗(s

∗). However, if Vπ(s∗) >
Vπθ∗ (s∗) then `(θ, s∗) = H×(π(s∗)‖πθ(s∗)), and due
to the assumption `(θ, s∗) ≤ H(π(s∗)) for every state,
leads to π(s∗) = πθ∗(s

∗) (as cross entropy is equal to
entropy of the first argument only when the argument
are the same), which is a contradiction.

Proposition 3. Assume that we are given the
true value Vπ of the teacher policy π, for a
finite state size MDP, then optimising using
Eπθ [

∑
t∇ log πθ(at|τt)[r(at, τt) + Vπ(τt+1)]]. con-

verges to a policy with Es∼S1Vπθ (s) ≥ Es∼S1Vπ(s) for
S1 being the distribution of initial states.

Proof. First, notice that for all initial states, the up-
date rule provided basically solves the bandit problem,
where the value of each action is a sum of an actual re-
ward and the value of the teacher (implying following
the teacher policy afterwards). In the worst case sce-
nario it will simply find a distribution matching the
teacher’s, as it is going to optimise for the reward
in the first step, and then fall back to the teacher’s
policy. Consequently, after enough updates, the pol-
icy πθ will learn to take actions which do not have
smaller values than those of the teacher if one was to

follow the teacher policy afterwards. Now, using in-
ductive reasoning, if πθ is already defining a distribu-
tion over states visited up to n steps from the initial
state which are guaranteed to produce values larger
than the teacher, and if we were to follow teacher pol-
icy afterwards, then the update will also correct states
in distance n+1. Given that we assumed that it is a fi-
nite state size MDP and updates to different states are
independent, then the whole process has to eventually
converge.

Proposition 4. Let us assume the teacher is an opti-
mal policy for the given MDP, then for each action
at that would lead to a deviation from the optimal
path, it will get an immediate penalty, meaning that
rVt < rt, while following any of the optimal paths leads
to rVt = rt.

Proof. It is easy to notice, that if an agent executes
an action at which is on the optimal path, we have
Vπ(τt+1) = Vπ(τt), and thus rVt = Vπ(τt+1)− Vπ(τt) +
rt = 0 + rt = rt. If, on the other hand, it is not on
the optimal path, then there exists ε > 0 such that
Vπ(τt+1) = Vπ(τt)− ε so rVt = Vπ(τt+1)−Vπ(τt)+rt =
−ε+ rt < rt


