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Abstract

We consider the problem of aligning a pair of
databases with jointly Gaussian features. We
consider two algorithms, complete database
alignment via MAP estimation among all
possible database alignments, and partial
alignment via a thresholding approach of log
likelihood ratios. We derive conditions on
mutual information between feature pairs,
identifying the regimes where the algorithms
are guaranteed to perform reliably and those
where they cannot be expected to succeed.

1 Introduction

Consider the following setting: There are a large set
of entities (e,g, users) with some measurable charac-
teristics. Let the measures of these characteristics be
jointly Gaussian, with known statistics. We refer to
these measures as features. Consider two different
sources, each providing a database with lists of features
for these entities. Furthermore, let one these sources
lack proper labeling for features that would allow for
the identification of feature pairs from the two sources
that correspond to the same entity. This might be due
to privacy concerns, if the mentioned features provided
by the source contain sensitive information that ought
to remain anonymous, or it might simply be that a
reliable labeling is not available.

If the correlation between features pairs is sufficiently
strong, then it is possible to exploit this correlation to
identify correspondences between the two databases
and in fact generate a perfect alignment between the
feature lists. Such a capability might be a valuable tool
to recuperate missing information by labeling unla-
beled features or by allowing the junction of measure-
ments coming from distinct sources. However it also
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has serious implications in privacy as it makes anony-
mous data vulnerable to deanonymization attacks [1].

It then becomes critical to understand the limitations
of database alignment and to identify the conditions
that characterize these limitations. This allows us to
assess the feasibility and reliability of alignment proce-
dures as well as the vulnerability of deanonymization
schemes. In this study we investigate the conditions
that guarantee either the achievability of alignment
or its infeasibility. We analyze these conditions for
both partial alignments and as well as for complete
alignments. Cullina et al. have recently analyzed this
problem for the case of discrete random variables, in-
troducing a new correlation measure characterizing the
feasibility of alignment [2]. Takbiri et al. have investi-
gated a related problem where the feature of each user
is Gaussian with characteristic statistics and has cor-
relation with other user features [3]. In this setting an
adversary with perfect knowledge of system statistics
attempts to match features with the characteristic user
statistics. This follows the authors’ previous studies of
the same setting for discrete valued features and with
data obfuscation [4],[5].

The database alignment problem is connected to the
widely studied graph alignment problem. In that
setting, each feature is associated with a pair of
anonymized users. In the simplest case, the feature is
a Bernoulli random variable indicating the presence or
absence of an edge between the users. A recent line of
work has characterized the information theoretic limits
of the graph alignment problem [6, 7, 8]. The problem
of aligning correlated Wigner matrices, in which each
feature is a Gaussian random variable, has served as
a proxy for understanding the effectiveness of graph
alignment algorithms [9].

2 Model

Notation We denote random variables by capital
letters and fixed values by lowercase letters. For a
set S and finite sets T ,U , we denote by ST ×U the set
of matrices with entries in S, rows indexed by T and
columns indexed by U . We mark vectors with arrows
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and write matrices in boldface. Given some matrix
z, we denote its i-th row by zi∗, j-th column by z∗j
and its (i, j)-th entry by zij . We denote the identity
matrix with rows and columns indexed by T by IT .
When the indexing set is clear from context, we will
drop the superscript. We denote the set of integers
from 1 to n by [n].

2.1 General problem formulation

In this model, a database is just a function from a set
of users to some space. The value of the function for
a user u is the database entry for that user. Cullina,
Mittal, and Kiyavash considered database entries in
finite alphabets[2]. In this paper, we consider database
entries that are finite dimensional real vectors sampled
from a gaussian distribution.

We are given two sets of user identifiers, U and V, with
|U| = |V| = n. We express the content of databases by
matrices A ∈ RU×[da] and B ∈ RV×[db], so da and db
are the lengths of feature vectors.

There exists a natural bijective correspondence be-
tween the identifier sets, i.e. each identifier in one set
is related to exactly one identifier in the other set. We
express this correspondence by the bijective matching
M ⊆ U × V.

Let p ~X~Y be the density of jointly gaussian random

variables ~X ∈ Rda and ~Y ∈ Rdb such that ( ~X, ~Y ) ∼
N
(
~µ,Σ

)
.

The density pAB|M is defined as follows. For each
(u, v) ∈ M , (Au∗,Bv∗) ∼ p ~X~Y and these n random
variables are independent:

pAB|M (a,b|m) =
∏

(u,v)∈m

p ~X~Y (au∗,bv∗).

The matching M is uniformly distributed over the n!
bijective matchings between U and V.

The database alignment problem is to recover M from
AB, given knowledge of p ~X~Y .

Observe that the rows of A are i.i.d. and that A is
independent of M . The same is true for B. In other
words, by examining one database, an observer learns
nothing about M .

A pair of databases are illustrated in Figure 1.

Canonical form of covariance We write ~µ =

[
~µa
~µb

]
and Σ =

[
Σa Σab

Σ>ab Σb

]
, so Au∗ ∼ N (~µa,Σa) for each

u ∈ U and Bu∗ ∼ N (~µb,Σb) for each v ∈ V.

Let d′a be the dimension of the support of ~X, i.e. the

MA BU V
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u2

u3...

un

v1

v2
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(0.496, 61.37)

Figure 1: Databases A and B with da = db = 2 and
a matching M between their user identifier sets.

rank of Σa. Let φ : R[da] → Rd′a be an affine trans-
formation that is injective on the support of ~X. If
we apply φ to each row of A, which can be done with-
out knowledge of M , we obtain an equivalent database
alignment problem. Similarly, the database B can be
transformed to obtain an equivalent problem.

For any gaussian database alignment problem, there is
an equivalent problem with ~µ = ~0 and

Σ =

[
I[d] diag(~ρ)

diag(~ρ) I[d]

]
=
⊕
i∈[d]

[
1 ρi
ρi 1

]
where d = min(da, db). Thus the correlation structure

of ( ~X, ~Y ) is completely summarized by the vector ~ρ ∈
Rd. The explicit transformations that put Σ into this
form are described in our supplementary material.

2.2 Correlation measures

Let I ~X~Y , I(Au∗,Bv∗, |(u, v) ∈ M) denote the mu-
tual information between any pair of related identifiers
coming from (u, v) ∈M . Then

I ~X~Y = −1

2
log

det
(
Σ
)

det
(
Σa

)
· det

(
Σb

)
= −1

2

∑
i∈[d]

log
(
1− ρ2

i

)
.

Under the canonical formulation where Σa = Σb = Id

and Σab = diag(~ρ) this becomes

Given any (u, v) ∈M and ( ~X, ~Y ) = (A>u∗,B
>
v∗),

σ2
~X~Y

, Var

(
log

p ~X~Y ( ~X, ~Y )

p ~X( ~X)p~Y (~Y )

)
.

Then σ2
~X~Y

= tr
(
Σ−1

a ΣabΣ−1
b Σ>ab

)
. Furthermore un-

der the canonical formulation where Σa = Σb = Id

and Σab = diag(~ρ) this simplifies to σ2
~X~Y

=
∑
ρ2
i .

These calculations are made explicit in our supplemen-
tary material.

Note that σ ~X~Y is upper bounded by
√

2I ~X~Y . This
can easily be seen in the canonical formulation, where
σ2
~X~Y

=
∑
ρ2
i ≤ −

∑
log(1− ρ2

i ) = 2I ~X~Y .
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3 Results

Our results identify conditions on I ~X~Y and σ ~X~Y , as
defined in Section 2.2.

MAP estimation The algorithm considers all pos-
sible alignments between the two sets and chooses the
most likely one. The log likelihood of an alignment is,
by the independence of correlated feature pairs, equal
to the sum of the log likelihood of each aligned fea-
ture pair. MAP estimation can then be implemented
by computing the joint likelihood for each feature pair
in O(n2d)-time and computing the maximum weight
matching between databases in O(n3)-time using the
Hungarian algorithm.

Theorem 1. (Achievability) If mutual informa-
tion between feature pairs I ~X~Y ≥ 2 log n + ω(1), then
the MAP estimator returns the proper alignment with
probability 1− o(1).

Theorem 2. (Converse) Let d ∈ N such that d ≥
ω(1). Furthermore let Σa = Σb = Id and Σab = ρI.
If I ~X~Y ≤ 2 log n(1−Ω(1)), then any for algorithm, the
probability of returning the proper alignment is o(1).

Binary hypothesis testing The algorithm checks
every possible pair of identifiers and uses a threshold-
based method to decide whether to match the pair
or not. This can be done in O(n2d)-time, which is
the complexity of computing joint likelihoods for each
feature pair.

Theorem 3. (Achievability) If

I ~X~Y ≥ σ ~X~Y ·
√

n

εFN
+ log

n2

εFP
,

then, choosing the threshold such that log(n2/εFP ) ≤
τ ≤ I ~X~Y − σ ~X~Y

√
n/εFN , the binary hypothesis test

gives no more than εFN false negatives and εFP false
positives in expectation.

It follows that the following regimes are achievable:

• I ~X~Y ≥ log(n) + ω(1) εFN ≤ o(n) εFP ≤ o(n)

• I ~X~Y ≥ 2 log(n) + ω(1) εFN ≤ o(n) εFP ≤ o(1)

The next theorem holds for databases with any distri-
bution of feature pairs, i.e. not only Gaussians.

Theorem 4. (Converse) For any binary hypothesis
test, the expected number of false negatives εFN and
false positives εFP is lower bounded as

εFN + εFP ≥
n

2

(
1−

I ~X~Y
log n

)(
1−O

(
1

log n

))
.

It follows that, if I ~X~Y ≤ log n
(
1 − Ω(1)

)
, then any

binary hypothesis test has expected number of errors
εFN + εFP ≥ Ω(n).

4 MAP estimation

Matching algorithm The maximum a posteriori
estimator is the optimal estimator for the exact match-
ing M given F . Given some realization f = (a,b),

m̂(f) = argmax
m

Pr [M = m|F = f ]

= argmax
m

pF|M (f |m)PM (m)

pF(f)

(a)
= argmax

m
pF|M (f |m)

where (a) follows from the fact that M has a uniform
distribution.

4.1 Achievability analysis

We establish a sufficient condition on the mutual infor-
mation IXY between feature pairs to achieve a perfect
alignment. The rest of this section assumes the can-
nonical setting. However, by the equivalence between
the general setting and the canonical setting (as shown
in our supplementary material), the result directly ap-
plies to the general setting.

Our analysis goes as follows: Lemma 4.1 sets an upper
bound on the error probability that a given matching
is more likely than the actual one. This bound is in the
form of a function R whose explicit value remains to be
determined. Lemma 4.2 gives an expression of R that
has a decomposition with terms corresponding to each
cycle of ‘mismatchings’. Finally Lemma 4.3 gives the
explicit expression for each of these cycle-terms and
Lemma 4.4 bounds their product by a function whose
value only depends on the number of mismatchings.
Joining these results gives us the achievability condi-
tion in Theorem 1.

Definition 4.1. Given any pair of bijective matchings
m1,m2 ⊆ U × V, define the event

E(m1,m2) =
{
f : pF|M (f |m1) ≤ pF|M (f |m2)

}
.

Notice that given matching m = M , the MAP esti-
mator fails if and only if there exists some matching
m′ 6= m such that F ∈ E(m,m′).

Definition 4.2. Given any pair of bijective matchings
m1,m2 ⊆ U × V, define the function

R(m1,m2) ,
∫ √

pF|M (f |m1)pF|M (f |m2) df

where the integral is over the whole space R(UtV)×[d].

Lemma 4.1. For any pair of bijective matchings
m1,m2 ⊆ U × V

Pr [F ∈ E(m1,m2)|M = m1] ≤ R(m1,m2)
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Proof. For any θ ≥ 0

Pr[F ∈ E(m1,m2)|M = m1]

= E
[
1

{
pF|M (f |m2)

pF|M (f |m1)
≥ 1

} ∣∣∣M = m1

]
≤
∫ (

pF|M (f |m2)

pF|M (f |m1)

)θ
pF|M (f |m1) df

=

∫
(pF|M (f |m2))θ(pF|M (f |m1))1−θ df

Selecting θ = 1/2 gives the claim.

Definition 4.3. Define shifted identity matrices I(k,+)

and I(k,−) of size k as

I
(k,+)
i,j = 1 {j − i = 1 mod k}

I
(k,−)
i,j = 1 {j − i = −1 mod k} .

We simply write I(+) and I(−) when there is no need
to specify the size of the matrix.

For any ` ∈ N+,

L`(s, t) , sI` − t

2

(
I(`,+) + I(`,−)

)
,

where s, t ∈ R.

Lemma 4.2. Suppose da = db = 1 and Σ =

[
1 ρ
ρ 1

]
.

For bijective matchings m1,m2 ⊆ U × V,

R(m1,m2) =
(
1− ρ2

)n
2
∏
`

[
det L`

(
1− ρ2

2
,
ρ2

2

)]− k`
2

where k` is the number of cycles of length ` of permu-
tation m1 ◦m>2 ⊆ U × U .

Proof. For a matching m ⊆ U × V, let m ∈ {0, 1}U×V
be the indicator matrix for m.

Because da = db = 1, we will treat the databases as
vectors ~A ∈ RU and ~B ∈ RV . Let ~F ∈ RUtV be
the concatenation of ~A and ~B. Observe that Σ−1 =

1
1−ρ2

[
1 −ρ
−ρ 1

]
. Then we can write

p~F |M ((~a,~b)|m) =
1(

2π
√

1− ρ2
)n ·

exp

(
− 1

2(1− ρ2)

[
~a
~b

]> [
IU −ρm
−ρm> IV

] [
~a
~b

])
. (1)

For compactness, call the matrix that appears in (1)
Σ(m). This gives us(

p~F |M
(
~f ;m1

)
p~F |M

(
~f ;m2

)) 1
2

=
1(

2π
√

1− ρ2
)n exp

(
−
~f> [Σ(m1) + Σ(m2)] ~f

4(1− ρ2)

)
.

We obtain R(m1,m2) by integrating this expression
over the whole space:

R(m1,m2) =

∫ √
p~F |M

(
~f ;m1

)
p~F |M

(
~f ;m2

)
df

=

[ (
1− ρ2

)n
det
(

1
2Σ(m1) + 1

2Σ(m2)
)]1/2

. (2)

Observe that

[
I z

z> I

]
=

[
I 0

z> I

] [
I z
0 I− z>z

]
for

any matrix z. Then det

[
I z

z> I

]
= det

(
I − z>z

)
.

Using this relation we have

det

(
1

2
Σ(m1) +

1

2
Σ(m2)

)
= det

[
I −ρ2

(
m1 + m2

)
−ρ2
(
m1 + m2

)>
I

]
= det

(
I− ρ2

4

(
m1 + m2

)>(
m1 + m2

))
= det

((
1− ρ2

2

)
I− ρ2

4

(
m>1 m2 + m>2 m1

))
. (3)

Notice that m>1 m2 ∈ {0, 1}U×U is the permutation
matrix corresponding to permutation π = m1 ◦ m>2
described in the statement of the lemma. Let C
be the set of cycles of π and {`c}c∈C denote their
lengths. Consider the cycle notation of this per-
mutation, i.e. (u1, u2, · · · , u`c)(u′1, · · · , u′`c′ ) · · ·, and
specify an ordering of U based on this expression:
u1, u2, · · · , u`c , u′1, · · · , u′`c′ , · · ·. Given this ordering of

rows and columns, the permutation matrix m>1 m2 has
block diagonal matrix form, with one block for each cy-
cle c ∈ C and every block having the form of a shifted

identity matrix I(`c,+). Then m>2 m1 =
(
m>1 m2

)>
has

the same block diagonal form with the shifted identity

matrices I(`c,−), since I(`c,−) =
(
I(`c,+)

)>
.

The determinant of a block diagonal matrix is equal to
the product of the determinants of each block. Then
we have

det

((
1− ρ2

2

)
I− ρ2

4

(
m>1 m2 + m>2 m1

))
=
∏
c∈C

det

((
1− ρ2

2

)
I− ρ2

4

(
I(`c,+) + I(`c,−)

))
=
∏
c∈C

det

(
L`c

(
1− ρ2

2
,
ρ2

2

))

=
∏
`∈[n]

[
det

(
L`
(

1− ρ2

2
,
ρ2

2

))]k`
,

where k` denotes the number of cycles of length ` in
the permutation π. Combining this with (2) and (3)
gives us the claimed result.
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Lemma 4.3. For any ` ∈ N+,

det
(
L`(s, t)

)
=
∏
j∈[`]

[
s− t · cos

(
j

2π

`

)]
.

In particular

det
(
L1(s, t)

)
= s− t and det

(
L2(s, t)

)
= s2 − t2

Proof. Let ~z k ∈ C` denote a family of vectors such

that for any k ∈ [`], ~z kj = e2πi jk` , where i2 = −1.
Observe that

I(+)~z k = e2πi k` ~z k

I(−)~z k = e−2πi k` ~z k

Vectors ~z k are the eigenvectors of Lk(s, t):

L`(s, t) ~z k =

[
s · I− t

2

(
I(+) + I(−)

)]
~z k

=

[
s− t

2

(
e2πi k` + e−2πi k`

)]
~z k

=

[
s− t · cos

(
2π
k

`

)]
~z k

We compute the determinant by taking the product of
the ` eigenvalues (one for each k ∈ [`]).

Lemma 4.4. For any ` ∈ N \ {0, 1} and s, t ∈ R such
that s > |t|,

det
[
L`(s, t)

]
≥
(
det
[
L2(s, t)

])`/2
Proof. First note that, by Lemma 4.3,

det
[
L2(s, t)

]
= s2 − t2.

We want to bound the determinant of the matrix
L`(s, t), which is equal to the product of its eigen-
values (λj)j∈[`]. The sum of eigenvalues is equal to

the trace of the matrix, which is known, since all di-
agonal elements of L`(s, t) equal s for any ` ≥ 2. So∑
λk = tr

(
L`(s, t)

)
= s`. Furthermore, observe that

all eigenvalues are in the range [s− t, s+ t]. Consider
a sequence formed of two copies of each eigenvalue λi.
This sequence has mean s and has all entries within
the range [s − t, s + t]. Then, as it is proven in our
supplementary material as Lemma B.1,∏

j∈[2`]

λ2
j ≥ (s− t)` (s+ t)

`

Taking the square root of both sides results in the
claim.

Theorem 1. (Achievability) If mutual informa-
tion between feature pairs I ~X~Y ≥ 2 log n + ω(1), then
the MAP estimator returns the proper alignment with
probability 1− o(1).

Proof. Recall the canonical setting where Σa = Σb =
I and Σab = diag(~ρ).

Let Ri(m,m
′) be the value of R(m,m′) when Σ =[

1 ~ρi
~ρi 1

]
. By the union bound

Pr
[
F ∈

⋃
m′ 6=m

E(m,m′)|M = m
]

≤
∑
m′ 6=m

Pr [F ∈ E(m,m′)|M = m]

(a)

≤
∑
m′ 6=m

R(m,m′) =
∑
m′ 6=m

∏
i∈[d]

Ri(m,m
′)

(b)
=

∑
m′ 6=m

∏
i∈[d]

 (
1− ρ2

i

)n
∏
`

[
det
(
L`
(

1− ρ2i
2 ,

ρ2i
4

))]k`


1
2

(c)

≤
∑
m′ 6=m

∏
i∈[d]

[ (
1− ρ2

i

)n
(s− t)|m∩m

′|
(s2 − t2)

1
2 (n−|m∩m′|)

] 1
2

=
∑
m′ 6=m

∏
i∈[d]

(
1− ρ2

i

)n−|m∩m′|
4 ,

where (a) follows from Lemma 4.1, (b) follows from
Lemma 4.2, with k` denoting the number of cycles of
length ` in the permutation m′ ◦m>, and (c) follows

from Lemmas 4.3 and 4.4, with s = 1− ρ2i
2 and t =

ρ2i
2 ,

which gives us s− t = s2 − t2 = 1− ρ2
i .

Given any k ∈ N there are exactly (!k)×
(
n
k

)
different

matchings m′ such that k = n − |m ∩m′|, where (!k)
represents the number of derangements over a set of
size k. We bound (!k)×

(
n
k

)
≤ nk. Thus

Pr
[
F ∈

⋃
m′ 6=m

E(m,m′)|M = m
]

≤
∑
k∈N

nk ·
∏
i∈[d]

(
1− ρ2

i

)k/4
If n

∏
i∈[d]

(
1− ρ2

i

) 1
4 ≤ o(1), then by summing the ge-

ometric series, we see that the above expression is o(1).
Therefore

exp (−IXY ) =
∏
i∈[d]

(
1− ρ2

i

) 1
2 ≤ o(1/n2)

is a sufficient condition for exact recovery under the
canonical setting. Taking the logarithm of both sides
gives us the claimed result.
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5 Converse analysis

We establish a necessary condition on the mutual in-
formation IXY between feature pairs to achieve a per-
fect alignment.

Lemma 5.1. Let d ∈ N such that d = ω(1) as well
as ΣA = ΣB = Id and ΣAB = ρI. Given bijective
matchings m1,m2 ⊂ U×V such that |m1∩m2| = n−2,

Pr[F ∈ E(m1,m2)|M = m1] ≥ (1− ρ2
i )
d(1+o(1)).

Proof. Consider the conditional generating function

ci(θ) = E
[
exp

(
θ log

pF∗i|M (fi|m2)

pF∗i|M (fi|m1)

) ∣∣∣M = m1

]
=

∫ (
pF∗i|M (fi|m2)

pF∗i|M (fi|m1)

)θ
pF∗i|M (fi|m1)dfi

=

∫
(pF∗i|M (fi|m2))θ(pF∗i|M (fi|m1))1−θdfi

The generating function is minimized at θ = 1/2 in
which case we get ci(θ) = Ri(m1,m2).

We evaluate the value of this function using Lemmas
4.2 and 4.3 with s = 1 − ρ2/2 and t = ρ2/2. By

|m1 ∩m2| = n− 2 we get Ri(m1,m2) =
√

1− ρ2.

By Cramér’s Theorem on the asymptotic tightness of
the Chernoff bound (see for example [10]), there is
some ε(d) ≤ o(1) such that

Pr

[
log

pF|M (f |m2)

pF|M (f |m1)
≥ 0

]

= Pr

∑
i∈[d]

log
pF∗i|M (f∗i|m2)

pF∗i|M (f∗i|m1)
≥ 0


≥ exp

(
−d
[
ε− inf

θ
log ci(θ)

])
= exp (d(logRi(m1,m2)− ε)

≥ (Ri(m1,m2))
d(1+o(1))

=
(
1− ρ2

)d(1+o(1))

Lemma 5.2. If ΣA = ΣB = I and ΣAB = ρI, then
given any bijective matchings m1,m2,m3 ∈ U × V

Pr[F ∈ E(m1,m2) ∩ E(m1,m3)|M = m1]

≤
(
1− ρ2

i

) d
2 (n−|m2∩m3|)

.

Proof. We will abbreviate pF|M (·|·) as p(·|·).

For any θ, θ′ > 0 we have

Pr[F ∈ E(m1,m2) ∩ E(m1,m3)|M = m1]

= E
[
1

{
p(f |m2)

p(f |m1)
≥ 1,

p(f |m3)

p(f |m1)
≥ 1

} ∣∣∣M = m1

]
≤
∫ (

p(f |m2)

p(f |m1)

)θ (
p(f |m3)

p(f |m1)

)θ′
p(f |m1)df

=

∫
(p(f |m2))θ(p(f |m3))θ

′
(p(f |m1))1−θ−θ′df .

The choice of θ = θ′ = 1/2 gives the upper bound as
R(m2,m3). We evaluate this function using Lemmas
4.2 and 4.3, which give us the claimed result.

Theorem 2. (Converse) Let d ∈ N such that d ≥
ω(1). Furthermore let Σa = Σb = Id and Σab = ρI.
If I ~X~Y ≤ 2 log n(1−Ω(1)), then any for algorithm, the
probability of returning the proper alignment is o(1).

Proof. Let ME(f,m) , {m′|f ∈ E(m,m′),m′ 6= m}
denote the set of matches that are at least as likely
as m under the database instance f . The MAP algo-
rithm succeeds if and only if ME(F,M) = ∅.

Also define M2(m) ,
{
m′
∣∣|m ∩m′| = n− 2

}
. For

compactness, let X , |ME(f,m) ∩M2(m)|. Clearly
0 ≤ X ≤ |ME(f,m)|.

We apply Chebyshev’s inequality:

Pr[|ME(F,M)| = 0] ≤ Pr[X = 0]

≤ Pr
[
(X − EX)

2 ≥ E2X
]
≤ VarX

E2X

All matchings are equally likely. Therefore, given any
bijective matching m ∈ U × V,

E
∣∣ME2 (F,M)

∣∣ =
∑

m′∈M2(m)

Pr[F ∈ E(m,m′)|M = m]

Let ε1 , Pr[F ∈ E(m,m′)|M = m] given |m ∩m′| =
n − 2. Notice that this probability does not depend
on the choice of m′ ∈M2(m). Then E

∣∣ME2 (F,M)
∣∣ =

|M2(m)| · ε1 =
(
n
2

)
· ε1.

|ME2 (f,m)|2

=
( ∑
m′∈M2(m)

1 {f ∈ E(m,m′)}
)2

=
∑

m′∈M2(m)

1 {E(m,m′)}

+2
∑

{m′,m′′}⊂M2(m)

1 {E(m,m′), E(m,m′′)}

There are 3
(
n
4

)
different ways to choose to matchings

{m′,m′′} ⊂ M2(m) such that |m′ ∩m′′| = n− 4, and
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3
(
n
3

)
ways to choose them such that |m′∩m′′| = n−3.

Notice that 3
(
n
4

)
+3
(
n
3

)
=
(|M2(m)|

2

)
and these partition

are all the choices {m′,m′′} ⊂ M2(m).

When |m′ ∩ m′′| = n − 4, the error events become
independent and we get

Pr[F ∈ E(m,m′) ∩ E(m,m′′)|M = m] = ε2
1.

Let ε2 , Pr[F ∈ E(m,m′) ∩ E(m,m′′)|M = m] given
|m′ ∩m′′| = n− 3.

By the relation z+ 2
(
z
2

)
= z2. For z = |M2(m)| =

(
n
2

)
and

(
z
2

)
= 3
(
n
3

)
+ 3
(
n
4

)
we can write:

E2
∣∣ME2 (F,M)

∣∣ = |M2(m)|2ε2
1

=

(
n

2

)
ε2

1 +

[
6

(
n

3

)
+ 6

(
n

4

)]
ε2

1

E
[
|ME2 (F,M)|2

]
=

(
n

2

)
ε1 + 6

(
n

3

)
ε2 + 6

(
n

4

)
ε2

1

Var
∣∣ME2 (F,M)

∣∣ =

(
n

2

)
(ε1 − ε2

1) + 6

(
n

3

)
(ε2 − ε2

1)

≤
(
n

2

)
ε1 + 6

(
n

3

)
ε2

Plugging these values into the Chernoff bound we get

Pr[|ME(F,M)| = 0] ≤
(
n
2

)
ε1 + 6

(
n
3

)
ε2(

n
2

)2
ε2

1

≤ O
(

1

n2ε1
+

ε2

nε2
1

)
By lemma 5.1 and 5.2 we have ε1 ≥ (1 − ρ2

i )
d(1+o(1))

and ε2 ≤ (1− ρ2
i )

3d/2. Thus ε2
1/ε2 ≥ (1− ρ2)

d
2 (1+o(1)).

If (1− ρ2
i )
d ≥ n−2+Ω(1), then

n2(1− ρ2
i )
d(1+o(1)) ≥ n2+(1+o(1))(−2+Ω(1)) ≥ nΩ(1)

and Pr[|ME(F,M)| = 0] ≤ O(n−Ω(1)) ≤ o(1).

6 Binary hypothesis testing

Matching algorithm We consider an algorithm
that does gives us a ‘matching’ m̂ ⊆ U × V that is
not necessarily bijective, i.e. any entry can have mul-
tiple matches in the other dataset.

Recall that we denote the j-th row of a matrix z by
~zj∗.

Given some a ∈ RU×[d1] and b ∈ RV×[d2] and f =(
a,b

)
the estimated ‘matching’ is given by

m̂(f) =
{

(u, v) ∈ U × V
∣∣∣(~a>u∗,~b>v∗) ∈ Hτ

}
.

Hτ is the log ratio test given by

Hτ =

{
(~x, ~y) ∈ Rd × Rd

∣∣∣ log
p ~X~Y (~x, ~y)

p ~X(~x)p~Y (~y)
≥ τ

}
where p ~X and p~Y denote the probability density func-
tions of feature vectors associated with identifiers in U
and V respectively, and τ ∈ R is some constant to be
determined.

6.1 Achievability analysis

In our analysis we establish upper and lower bounds on
the threshold τ that allow given probability bounds on
false negatives and false positives. The mean and vari-
ance of the log ratio random variable were computed
in Section 2.2. Using these values we get an upper
bound on the probability of false negatives in Lemma
6.1 by the Chebyshev inequality. Lemma 6.2 gives an
upper bound on the number of false positives. Finally,
taking the intersection of the conditions on τ allows us
to derive the achievability result given in Theorem 3.

Lemma 6.1. If τ ≤ I ~X~Y − σ ~X~Y /
√
ε then

Pr
[
(A>u∗,B

>
v∗) /∈ Hτ |(u, v) ∈M

]
≤ ε.

Proof. Let (u, v) ∈ M and ( ~X, ~Y ) = (A>u∗,B
>
v∗).

Given µ = I ~X~Y = E
[
log

p ~X~Y ( ~X,~Y )

p ~X( ~X)p~Y (~Y )

]
= I ~X~Y and

σ2 = σ2
~X~Y

= Var
(

log
p ~X~Y ( ~X,~Y )

p ~X( ~X)p~Y (~Y )

)
, by Chebyshev’s

inequality we get

Pr

[∣∣∣∣∣µ− log
p ~X~Y ( ~X, ~Y )

p ~X( ~X)p~Y (~Y )

∣∣∣∣∣ ≥ σ√
ε

]
≤ ε

This probability is lower bounded by

Pr
[
µ− log

p ~X~Y ( ~X,~Y )

p ~X( ~X)p~Y (~Y )
≥ σ√

ε

]
which is equal to

Pr
[
(A>u∗,B

>
v∗) /∈ Hτ |(u, v) ∈M

]
for τ = µ − σ/

√
ε.

Then this choice of τ , or any smaller value, is a
sufficient condition to bound the error probability by
ε.

Lemma 6.2. Given any τ ∈ R,

Pr
[
(A>u∗,B

>
v∗) ∈ Hτ |(u, v) /∈M

]
≤ e−τ

Proof. Let (u, v) ∈ M and ( ~X, ~Y ) = (A>u∗,B
>
v∗). By

Markov’s inequality we get

Pr

[
log

p ~X~Y ( ~X, ~Y )

p ~X( ~X)p~Y (~Y )
≥ τ

]
≤ e−τ · E

[
p ~X~Y ( ~X, ~Y )

p ~X( ~X)p~Y (~Y )

]
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We calculate the mean:

E

[
p ~X~Y ( ~X, ~Y )

p ~X( ~X)p~Y (~Y )

]

=

∫
~X,~Y

p ~X( ~X)p~Y (~Y ) ·
p ~X~Y ( ~X, ~Y )

p ~X( ~X)p~Y (~Y )
d( ~X, ~Y )

=

∫
~X,~Y

p ~X~Y ( ~X, ~Y )d( ~X, ~Y )

which equals to 1 since p ~X~Y ( ~X, ~Y ) is as a probability
density function.

Proof of Theorem 3 By Lemma 6.1, if τ ≤ I ~X~Y −
σ ~X~Y /

√
ε, then the probability that any correct match

is not included in Hτ is upper bounded by εFN/n.
There are n correct matches in U × V. Then the ex-
pected number of correct matches not included in Hτ ,
i.e. the expected number of false negatives, is upper
bounded by εFN .

By Lemma 6.2, if τ ≥ log
(
n2/εFP

)
, then the prob-

ability that any incorrect match is included in Hτ is
upper bounded by εFP /n

2. There are
(
n
2

)
< n2 in-

correct matches in U × V. Then the expected number
of incorrect matches included in Hτ , i.e. the expected
number of false positives, is upper bounded by εFP .

A choice for τ ∈ R satisfying both conditions exists
if and only if the condition in the theorem statement
holds.

6.2 Converse analysis

We present a converse on the performance of the bi-
nary hypothesis testing algorithm based on Fano’s in-
equality.

Lemma 6.3. For u ∈ U and v ∈ V,

H(Mu,v|Au,Bv) ≥
logn−I ~X~Y

n .

Proof. We have

H(Mu,v|Au,Bv) = H(Mu,v) + I(Au; Bv)

− I(Mu,v; Au)− I(Mu,v; Bv)− I(Au; Bv|Mu,v).

Then I(Mu,v; Au) = I(Mu,v; Bv) = 0 and

I(Au; Bv|Mu,v)

=
n− 1

n
I(Au|(Mu,v = 0); Bv|(Mu,v = 0))

+
1

n
I(Au|(Mu,v = 1); Bv|(Mu,v = 1))

=
n− 1

n
· 0 +

1

n
I ~X~Y .

Finally I(Au; Bv) ≥ 0 and H(Mu,v) = 1
n log n +

n−1
n log n

n−1 ≥
logn
n .

Proof of Theorem 4. Let M̂u,v , 1
{(

Au,Bv

)
∈ Hτ

}
denote the estimation on the relation between iden-
tifiers u and v. We have a correct estimation if
M̂u,v = Mu,v. Define E , 1

{
M̂u,v 6= Mu,v

}
. Then

by Fano’s inequality,

H(Mu,v|Au,Bv) ≤ H(E) + Pr[E = 1],

which gives the upper bound as H(E).

Let ε , Pr[E = 1]. This value can also be expressed
as the expected frequency of false matches, i.e. given
εFN and εFP the expected number of false negatives
and false positives, ε = εFN+εFP

|U×V| = εFN+εFP

n2 .

Let Hb denote the binary entropy function. By Fano’s
inequality, using Lemma 6.3, we have

Hb(ε) ≥ H(Mu,v|Au,Bv) ≥
log n− I ~X~Y

n
(4)

We have

Hb(ε) ≤ −ε log ε+ ε

=
εFN + εFP

n2
(2 log n− log (εFN + εFP ) + 1) .

Combining this with (4) gives us

εFN + εFP ≥
n

2

(
log n− I ~X~Y
2 log n+ 1

)
and the claim follows.
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