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Appendix

A Naïve AME solutions

In this section we present the complete outline of the
two straightforward (but inefficient) solution to the
AME problem (described in Section 3) for all units.

AME Solution 1 (quadratic in n, linear in p):
For all treatment units t, we (i) iterate over all control
units c, (ii) find the vector ✓tc ∈ {0,1}p where ✓tcj = 1
if t and c match on covariate j and 0 otherwise, (iii)
find the control unit(s) with the highest value of ✓T

tcw,
and (iv) return them as the main matched group for
the treatment unit t. Repeat the same procedure for
each control unit c. Note that the CATE for each unit
is computed based on its main matched group which
means that the outcome of each unit can contribute to
the computation of CATEs for multiple units. This
algorithm is polynomial in both n and p, however,
the quadratic time complexity in n also makes this
approach impractical for large datasets (for instance,
when we have more than a million units with half
being treatment units).

AME Solution 2 (order n logn, exponential in p:)
This approach solves the AME problem simultaneously
for all treatment and control units for a fixed weight
vector w. First, (i) enumerate every ✓ ∈ {0, 1}p (which
serves as an indicator for a subset of covariates), (ii)
order the ✓’s according to ✓T

w, (iii) call GroupedMR
for every ✓ in the predetermined order, (iv) the first
time each unit is matched during a GroupedMR proce-
dure, mark that unit with a ‘done’ flag, and record its
corresponding main matched group and compute the
CATE for each treatment and control unit using its
main matched group. Each unit’s outcome will be used
to estimate CATEs for every auxiliary group that it is a
member of, as before. Although this approach can use
an efficient ‘group by’ function (e.g., an implementation
using bit-vectors or database/SQL queries as discussed
by Wang et al. (2017)), which can be implemented
in O(n logn) time by sorting the units, iterating over
all possible vectors ✓ ∈ {0,1}p makes this approach
unsuitable for practical purposes (exponential in p).

B Proof of Proposition 4.1

Proposition 4.1 If for a superset r of a newly pro-
cessed set s where �s� = k and �r� = k + 1, all subsets s′
of r of size k have been processed (i.e. r is eligible to
be active after s is processed), then r is included in the
set Z returned by GenerateNewActiveSets.

Proof. Suppose all subsets of r of size k are already
processed and belong to �

k. Let f be the covariate
in r � s. Clearly, f would appear in �

k, since at least
one subset s′ ≠ s of r of size k would contain f , and
s′ ∈ �k. Further all covariates in r, including f and
those in s will have support at least k in �

k. To see
this, note that there are k + 1 subsets of r of size k,
and each covariate in r appears in exactly k of them.
Hence f ∈ ⌦, which the set of high support covariates.
Further, the ‘if’ condition to check minimum support
for all covariates in s is also satisfied. In addition, the
final ‘if’ condition to eliminate false positives is satisfied
too by assumption (that all subsets of r are already
processed). Therefore r will be included in Z returned
by the procedure.

C Proof of Theorem 4.2

Theorem 4.2 (Correctness) The DAME algorithm
solves the AME problem.

Proof. Consider any treatment unit t. Let s be the set
of covariates in its main matched group returned in
DAME (the while loop in DAME runs as long as there is
a treated unit and the stopping criteria have not been
met, and the GroupedMR returns the main matched
group for every unit when it is matched for the first
time). Let ✓s be the indicator vector of s (see Eq. 1).
Since the GroupedMR procedure returns a main matched
group only if it is a valid matched group containing at
least one treated and one control unit (see Algorithm 2),
and since all units in the matched group on s have the
same value of covariates in J � s, there exists a unit `
with T` = 0 and x` ○ ✓s = xt ○ ✓s.

Hence it remains to show that the covariate set s in the
main matched group for t corresponds to the maximum
weight ✓T

w over all ✓ for which there is a valid matched
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group. Assume that there exists another covariate-set
r such that ✓T

r w > ✓T
s w, there exists a unit `′ with

T`′ = 0 and x`′ ○ ✓r = xt ○ ✓r, and gives the maximum
weight ✓T

r w over all such r. Then,

(i) r cannot be a (strict) subset of s, since DAME en-
sures that all subsets are processed before a super-
set is processed to satisfy the downward closure
property in Proposition 3.1.

(ii) r cannot be a (strict) superset of s. Recall that ✓s,j
is 1 for covariates j that are not in s (analogously
for r). If r is a strict superset of s, then we would
have ✓T

r w ≤ ✓T
s w, which violates the assumption

that ✓T
r w > ✓T

s w for non-negative weights.

Given (i) and (ii), r and s must be incomparable (there
exist covariates in both r � s and s � r). Suppose
the active set s was chosen in iteration h. If r was
processed in an earlier iteration h′ < h, since r forms
a valid matched group for t, it would give the main
matched group for t, violating the assumption that s
was chosen by DAME to form the main matched group
for t, rather than r.

Next, we argue that r must be active at the start of
iteration h, and will be chosen as the best covariate set
in iteration h, leading to a contradiction.

Note that we start with all singleton sets as active sets
in ⇤(0) = {{1},�,{p}} in the DAME algorithm. Con-
sider any singleton subset r0 ⊆ r (comprising a single
covariate in r). Due to the downward closure property
in Proposition 3.1, ✓T

r0w ≥ ✓T
r w > ✓T

s w. Hence all of
the singleton subsets of r will be processed in earlier
iterations h′ < h, and will belong to the set of processed
covariate sets �(h−1).
Repeating the above argument, consider any subset
r′ ⊆ r. It holds that ✓T

r′w ≥ ✓T
r w > ✓T

s w. All subsets
r′ of r will be processed in earlier iterations h′ < h
starting with the singleton subsets of r. In particular,
all subsets of size �r�− 1 will belong to �(h−1). As soon
as the last of those subsets is processed, the procedure
GenerateNewActiveSets will include r in the set of
active sets in a previous iteration h′ < h. Hence if r is
not processed in an earlier iteration, it must be active
at the start of iteration h, leading to a contradiction.

Hence for all treatment units t, the covariate-set r
giving the maximum value of ✓T

r w will be used to form
the main matched group of t, showing the correctness
of the DAME algorithm.

D Details of Breaking the Cycle of
Drugs and Crime Study

D.1 Details About Survey

A survey was conducted in Alabama, Florida, and
Washington regarding the program’s effectiveness, with
high quality data for over 380 individuals. These data
(and this type of data generally) can be a powerful tool
in the war against opioids, and our ability to draw in-
terpretable, trustworthy conclusions from it depends on
our ability to construct high-quality matches. For the
survey, participants were chosen to receive screening
shortly after arrest and participate in a drug interven-
tion under supervision. Similar defendants before the
start of the BTC program were selected as the control
group. Features are listed in Table 2.

D.2 Order of Dropping Covariates

For both DAME and FLAME we used ridge regression as
the machine learning method for the Full-AME prob-
lem, calculating variable importance as the difference
in mean squared error before and after dropping the
variable. The order in which DAME and FLAME pro-
cess covariates could be different. Table 3 shows the
order in which the dynamic versions of the two algo-
rithms process the covariates. The first covariate that
the two algorithms process is identical: “Have problem
getting along with father in life” but the two diverge
afterwards. At the second round, DAME processes the
covariate “Have an automobile.” On the other hand,
at that same second round, FLAME processes “Have
serious depression or anxiety in past 30 days”, which
now is dropped along with “Have problem getting along
with father in life.” What is important is that DAME

is able to construct matched groups by only dropping
subsets of what FLAME drops as early as the second
and third iteration of the algorithm.

Figure 4: Number Matched: Number of units matched per
covariates for the BTC data
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Table 2: Features for BTC data.

Feature
1. Live with anyone with an alcohol problem
2. Have trouble understanding in life
3. Live with anyone using non prescription drugs
4. Have problem getting along with father in life
5. Have an automobile
6. Have drivers license
7. Have serious depression or anxiety in past 30 days
8. Have serious anxiety in life
9. SSI benefit last 6 months
10. Have serious depression in life

Table 3: Order in which features were processed for DAME and FLAME. The feature numbers correspond to the feature
numbers in Table 2. The number in the parenthesis corresponds to the number of units matched for the first time at that
round. Before any covariates are dropped, 287 individuals are matched on all features, which is 75% of the data.

DAME FLAME
1st 4: problem with father (15 new units matched) 4 (7 units)
2nd 5: have an automobile (9 units) 4,7 (25 units)
3rd 7: have serious depression (24 units) 4,7,9 (9 units)
4th 4,7 (3 units) 4,7,9,1 (7 units)
5th 5,7 (1 unit) 4,7,9,1,8 (12 units)
6th 4,5 (7 units) 4,7,9,1,8,10 (6 units)
7th 4,5,7 (0 units) 4,7,9,1,8,10,6 (5 units)
8th 9 (8 units) 4,7,9,1,8,10,6,5 (11 units)
9th 4,9 (0 units) 4,7,9,1,8,10,6,5,2 (5 units)⋮

196th 1,2,4,5 (1 unit)

Figure 5: Histogram of estimated CATE by DAME. For
individuals where the CATE is negative, it means that
BTC was estimated to reduce crime.

D.3 Match Quality for FLAME and DAME

We compare the quality of matches in the BTC data
between FLAME and DAME in terms of the number of

covariates used to match within the groups. Many of
the units matched exactly on all covariates and thus
were matched by both algorithms at the first round. In
fact 75% of the data are matched on all covariates. This
is important, because exact matching alone yields the
highest quality CATE estimates for most of the data;
if we had used a classical propensity score matching
technique, we may not have noticed this important
aspect of the data.

For the remaining units that do not have exact matches
on all covariates, DAME matches on more covariates
than FLAME. In Figure 4 we see that DAME matched
many more units on 9 out of the 10 variables than
FLAME; FLAME cannot match the same data on so
many variables.

D.4 CATEs from BTC analysis

We plot a histogram of the estimated CATEs for BTC
in Figure 5. The program does not seem to provide
uniform protection from future arrests, but does seem
to protect some individuals. The majority of people
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Figure 6: Comparison between DAME and SVM-based
method

are estimated to experience little to no effect from the
program.

D.5 A Comparison of DAME with SVM-Based
Method Minimax Surrogate Loss

We can use DAME as a tool to check the performance
of a black box machine learning approach. We chose a
recent method that predicts whether treatment effects
are positive, negative, or neutral, using a support vec-
tor machine formulation (Goh and Rudin, 2018). We
ran DAME on the BTC dataset and saved the CATE for
each treatment and control unit that were matched.
Units with a positive CATE (outcome on treatment
unit minus outcome on control unit) are considered
to have a negative treatment effect, meaning that the
program increased the probability of crime. Units with
a negative CATE analogously had a positive predicted
treatment effect. We also implemented the SVM ap-
proach and recorded a prediction of positive, negative,
or neutral treatment effect for each unit. Figure 6 plots
the CATEs for all the units that were matched exactly

by DAME and colors them according to the output of
the SVM. Since the distribution of some covariates is
unbalanced, the number of matched groups is small
with most units belonging to large groups.

Figure 6 shows that DAME and the SVM approach agree
on the direction of the treatment effect for most of the
matched units: Most positive CATEs corresponded to
negative treatment effects from the SVM. Only two
points have a mismatch between DAME and SVM: the
left-most green (neutral) labeled and blue (negative)
labeled points.

The easiest way to explain the discrepancy between
the two methods is that DAME is a matching method,
not a statistical model and so does not smooth CATEs.
CATEs are sometimes computed using a very small
number of units, so it is possible that the SVM simply
smoothed out the treatment effect estimates so that
there was a different predicted treatment effect on
some of the units. To evaluate this hypothesis, we
computed the Hamming distance between the special
group’s units (this is the group where DAME and the
SVM disagree) with units in other groups to investigate.

In Figure 6, the units within the leftmost blue (nega-
tive) labeled matched group were much closer to other
blue (negative) labeled matched groups than to green
(neutral) or red (positive) labeled groups, suggesting
that smoothing the estimates after running DAME would
likely make them consistent with the SVM results.
The units within the leftmost green (neutral) labeled
matched group are not closer to other green (neutral)
labeled matched groups than other colors, suggest-
ing that neither SVM nor DAME have information to
properly identify the causal effect for this group. We
similarly investigated the blue (negative) labeled group
for which CATE= 0.5 and again, the covariate values
of its units were closer in Hamming distance to other
blue (negative) labeled groups than to other points.
Thus, additional smoothing of the CATEs from the
matched groups could likely yield estimated positive
and negative treatment effects similar to those of the
SVMs.
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