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8.1 Proofs

8.1.1 Proof of Lemma 1

Proof. We use law of iterated expectation to prove the con-
clusion. We first compute
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8.1.2 Proof of Lemma 2

Proof. We still use law of iterated expectation to prove the
conclusion and it is basically very similar to the proof of
Lemma 1.
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8.1.3 Proof of Theorem 1

Proof. For some j, we know that x
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From Bennett’s Inequality, we can bound Equation (8):
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8.1.4 Proof of Theorem 2
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From Equation (11), we know:
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8.1.5 Proof of Corollary 1
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From the proof of Theorem 2, we know the result of Corol-
lary 1 holds.

8.2 More comparison of experimental results

In order to get more informative comparisons, we sum-
marize the results from Figure 3 in the following tables.
Prec@1 and Prec@5 of MovieLens with d = 50 are
shown in Table 1 and 2 respectively. From the results, we
can see that Sampling-MIPS algorithm outperforms PCA-
MIPS, LSH-MIPS and Diamond-MSIPS consistently on

this dataset. Prec@1 and Prec@5 of Netflix with d = 50

are shown in Table 3 and 4 respectively. Note that the
speedup of PCA-tree method depends on the depth of the
PCA tree, which is corresponding to the number of can-
didates in each leaf node. A deeper PCA tree leads to a
higher speedup with a tradeoff of a lower precision. The
maximum depth in our experiment is too small to generate
a point with a speedup greater than 5. This is the reason that
in Table 3 and 4, there are no results shown for PCA-MIPS.
But we can see from Figure 3 that with the current maxi-
mum depth chosen, the precision of PCA-MIPS is drasti-
cally reduced to almost 0 when speedup is less than 5. So
with a bigger maximum depth, the result of PCA-MIPS will
get even worst.

Table 1: Result of prec@1 for MovieLens (d = 50)

Speedup (prec@1) 5 10 20

Sampling-MIPS 99.95% 99.65% 65%
Diamond 68.35% 42.25% 25.85%
PCA 0.15% 0.00% 0.00%
LSH 4.75% 18.9% 0.05%

Table 2: Result of prec@5 for MovieLens (d = 50)

Speedup (prec@5) 5 10 20

Sampling-MIPS 87.38% 72% 13%
Diamond 11.65% 5.41% 1.52%
PCA 0.00% 0.00% 0.00%
LSH 9.73% 4.81% 0.00%

Table 3: Result of prec@1 for Netflix (d = 50)

Speedup (prec@1) 5 10 20

Sampling-MIPS 97.30% 77.15% 29.80%
Diamond 51.85% 31.4% 15.2%
PCA NA NA NA
LSH 23% 1.05% NA%

Table 4: Result of prec@5 for Netflix (d = 50)

Speedup (prec@5) 5 10 20

Sampling-MIPS 58.87% 28.7% 7.98%
Diamond 14.47% 7.26% 3.29%
PCA NA NA NA
LSH 9.25% 0.29% NA%
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8.3 Extension to Maximum All-pair Dot-product
(MAD) Search

8.3.1 Proposed algorithm for MAD Search

Our Sampling-MIPS algorithm can also be extended to
solve the Maximum All-pair Dot-product (MAD) search
problem. Instead of finding the maximum inner prod-
uct for a specific query, MAD aims to find the maxi-
mum inner product over a set of m queries and n vec-
tors in the database. More specifically, given two groups
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find the index pairs (i, j) 2 {1, . . . ,m} ⇥ {1, . . . , n} who
have the maximum or top-K dot products. When m = 1,
MAD problem reduces to the MIPS problem. MAD is also
used in many recommender systems when we aim to find
the best (user, item) among all the possible pairs.

We can use the same idea in Sampling-MIPS to solve the
MAD problem. The only difference is the sampling pro-
cedure. In MIPS problem, we first sample t, then sam-
ple j conditioned on t. In MAD problem, we simply add
one more step. We still sample t first, but then we sam-
ple i and j independently. We use a m-by-d matrix W =
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Here, the distribution for sampling (i, j) is very similar to
the distribution for sampling j in MIPS problem.

Similarly, alias table for sampling j can be constructed in
pre-processing phase. In query-dependent phase, we only
need to construct alias table for sampling t and i. Details
are shown in Algorithm 5. The time complexity of each
step of is also shown in Algorithm 5. The total time com-
plexity is O(md + B + Cd), while the naive time com-
plexity is O(mnd). We expect this algorithm to perform as
well as it does in MIPS problem. The theoretical guarantee
of this sampling MAD algorithm can also be proved in a
similar manner as Sampling-MIPS.
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8.3.2 Mathematical analysis of Sampling-MAD

We also have the similar theoretical results for MAD prob-
lem. We omit the proofs since they are very similar to
Lemma 1, 2, Theorem 1, 2 and Corollary 1 for the MIPS
case.
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Lemma 3, we have
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T

I

h

J

has the maximum
inner product, N in the theorem above can be replaced by
mn. That means that sample size B = O(

1

⇤

log(mn))
is sufficient for identifying the maximum inner product in
MAD problem and ⇤ < 1 here.

Theorem 4. Assume w
it

h
jt

� 0, for all (i, j, t) 2
{1, . . . ,m} ⇥ {1, . . . , n} ⇥ {1, . . . , d} and w

T

i

h

j

iid⇠
Exp(�). In Sampling-MAD algorithm, if we take C = B,
where C means we calculate inner products of indexes with
top-C scores, then when B � ⇢

↵

mn, where ↵ 2 (0, 1

2

) and
⇢ 2 (0, ↵d(n�1)

(d+1)n

),

P (not identifying maximum inner product)  O

✓
1

(mn)⇢

◆
.

Therefore, the overall time complexity of Sampling-MAD is
O(md+B +Bd) = O(md+ ⇢

↵

(d+ 1)mn) < O(mnd).

Corollary 2. Assume w
it

h
jt

� 0, for all (i, j, t) 2
{1, . . . ,m} ⇥ {1, . . . , n} ⇥ {1, . . . , d}. If F is a continu-

ous, non-negative, heavy-tailed distribution, wT

i

h

j

iid⇠ F
and E[(w

T

i

h

j

)

2

] < 1, then when B � ⇢

↵

mn, where

↵ 2 (0, 1) and ⇢ 2 (0, ↵d(n�1)

(d+1)n

), take C = B in Sampling-
MIPS algorithm, we have

P (not identifying maximum inner product)  O

✓
1

(mn)⇢

◆
.


