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1 Proofs of Main Results

1.1 Proof of Proposition 1

Proof. This proof is based upon the technical results in Fan et al. [2017].
When both variable j and k are ordinal, by definition and Theorem 1 in Fan et al. [2017] we have
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where L1, Lo are constants and M is defined in Assumption 2. Therefore for some constant C
independent of (n,d), we have
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Similarly, when variable j is ordinal and variable k is continuous, Theorem 2 in Fan et al. [2017]
implies
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where L3 is a constant. Therefore for some constant C' independent of (n,d), we have
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When both variable j and k are continuous, Liu et al. [2012] proves that
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Combining all three cases implies the desired result.

1.2 Proof of Theorem 1

We first introduce a Corollary proved by Fan et al. [2017]:

Corollary 1. Under the same condition in Proposition 1, it holds that
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Proof of Theorem 1. By definition, we have

1 A 2 2 1 «T > a* * *
5P RB — e[ B+ X|Blli < ;8RB — e[ 87 + |71

Rearranging terms and applying duality bound 27y < ||&||s||y||1 We have
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Corollary 1 together with Assumption 3 implies that Hftﬁ* —égl|oo < CM,

grater than 1 — d~'. Now choose A = 20M,, log(d) e get
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which further implies
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By Assumption 4, we get
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Together with (1.1), it holds that
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1.3 Proof of Theorem 2

Before we prove the main theorem, we firstly introduce and prove the following lemmas:
Lemma 1. Under Assumption 1 and 2, when both X;; and Xj;;, are ordinal, it holds that
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where <7 M;(vj;) and W, are defined in the proof.
When X;; is ordinal and Xj;, is continuous, it holds that
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where \7M;(v;) and ¥; are defined in the proof.
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Proof. Case 1: When both X;; and X;; are ordinal, let v, = (7ji, ®;, @) € RNiNkFNi+Ni
where 7 = (i, 7P 7Ny and @5 = (@(AD), . e(a)) vj = 1,... 1. Define
the function
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Consider the estimator of vj,
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where
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For notation simplicity, we write
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where X; denotes the i** sample and X is an independent copy X;.
By the property of Héjek projection of U-statistics, we have
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Since the sign function and X ](p ) are bounded, by the central limit theorem we get
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where W3, = E(é}jk) - 0(jk))(§2-(jk) — 0U*)T_ On the other hand, we have by definition
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By Lemma 2 of Fan et al. [2017], 88];2’“ is bounded and well defined at wvj;. In addition, we can

show that
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which is also bounded and well defined, and similarly for = 2*(v;3). This implies that the gradient

of Mj;, at vjj, denoted by VM, (vji), is bounded and well defined. This completes the proof by
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applying the delta method.
Case 2: When X;; is ordinal and Xj; is continuous. Let v; = (Tj,‘I)j)T € R2N; | where T =
(T;;), . ,T;]ivj)).. Define
Mj(tl, ce ,th,xl, ce ,.’IJN].) = Z F_l(tp, (I)_l(:(}p)>.
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where
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Similarly, we write
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The Hajek projection of U-statistics gives
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Since the sign function and X (p)

j are bounded, by the central limit theorem we get
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where ¥; = E(é\i(j) - 0(3'))((/9?) — 0UNT . Therefore, it holds that

V(R — 55) = @Mm) ~ My(wy)).

Similar to the previous case, it can be shown that VA;(v;) is bounded and well defined. This
completes the proof by applying the delta method.
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Lemma 2. Under Assumption 1 - 4, it holds that
G -7 B~ v) = 0p a2
Proof of Lemma 2. The Proof of Theorem 1 implies that
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Lemma 3. Under Assumption 1 - 4, with probability greater than 1 —d =1, we have ||w — w*||; <

(C'+ M,,)s* log(d) " and (@ — w*)T Rgo (0 — w*) < (C' + Mn)Qs*M, where C’ > 0 is a constant.
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Proof of Lemma 3. By definition, we know ||w||; < [Jw*|[; = ||w}]||;. This together with ||(w —
w*))y|l1 > ||wk |1 — ||Wy||1 implies that |[(w — w*))y |1 > ||(W — w*))yc||1. In addition, we have
(@ —w*))[[L < 2[[(w — w”))sl]:-
On the other hand, by Corollary 1 and Assumption 3 we have
|Ro1 — -ﬁ22w*”00 = Hﬁm - IN{2222_21221H00
= ||1N321 R §222521)221||m

< ||Ra1 — Zotlloo + 1[(B22 — Ra2) (235 Zo1)l oo (1.3)
< IR = B|max + l[w*|[1]|R22 — Roollmax
< (20 + )y 29D

n

By choosing A = 7M1/ lo%d), (1.3) implies that || Raz (@ — w*)||oe < ||R21 — Raow*||ec + || R21 —
Ryy@||s0 < 2(C + 7M,) lo9(d) “Therefore we get
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This completes the proof. ]

Lemma 4. With probability greater than 1—d !, we have (5—v*)T R(8—3") < (C’+Mn)Mn%‘q(d),
where C’ > 0 is a constant.

Proof. By Cauchy-Schiwartz inequality and Cholesky decomposition, write R= LLT, we have
(5 —v")"R(B - B =[5 —v")"LL"(B - "))
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Thus Theorem 1 and Lemma 3 imply the desired result. O
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Proof of Theorem 2. By definition, we have
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By the proof of Theorem 1 and Lemma 3, we can show that
(1) < op(1).
In addition, Lemma 4 implies that (2) = op(1). On the other hand,
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By Corollary 1 and Theorem 1, we know /n||(R — R)Bol|es < Mpn+/log(d)(s* % + 1) with
probability greater than 1 — d~!. Together with Lemma 4 we can show that

(3) < or(1).
For I5, we have
Iy = v/n|v*" (R - R)(Bo — B")| + v/n|v*" R(Bo — B7)]-
(4) (5)

By Theorem 1 and Corollary 1, we can show that (4) < /n||R — ﬁ||max||§ — B*|l1 = op(1), and
(5) < 1|8 = B7[1[| R21 — Roow™ o = 0p(1). R
The bounds above imply that /n|S(8By) — S(B8*)| = op(1). This together with the normality of R
implied by Lemma 1, consistency of ¢ and the assumption that o* > K implies the desired result

by applying Slutsky’s theorem.

Note that in our case, we can estimate o* by the plug-in estimator ¢ = ’(/;T&;’I/J\, where & =
%Z?ZI(EB\ - ek)(Ea —er)?, and (E)]k can be written as a function of é\gjk)(or 52-(j)) that
depends on the function Mj(.) (orM;(.)), the type of X;;, X and possibly the number of levels
if at least one of the two is ordinal. This estimator is consistent by Theorem 1 and Lemma 3. [J

2 Building confidence interval using the pseudo-score function

Without loss of generality, suppose we want to build a confidence interval for § = ﬁlk. Consider a
one-step type estimator:
0:=6—5(8)Q:.

The following Corollary shows that 0 is consistent and asymptotic normal:



Corollary 2. Suppose Assumption 1 - 5 hold. If M2s*log(d)/+/n = o(1) and ¢* > K for some
constant K, then we have
V(0 —0%)/(Q3,0%%) =4 N(0,1).

Therefore, a (1 — ) x 100% confidence interval of 6* is given by

[0— & (1 — a/2)005Y2/v/n, 0+ (1 — a/2)0152/v/n).

2.1 Proof of Corollary 2

Proof. Tt suffices to show that /n|(0—6%)/(c*1/2Q%,)+v*T (RB* —ey,) /o*1/2| = 0p(1). By definition,
we have
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By Corollary 1 and Lemma 3, we can show that
|Io| < [[o* = B|[[|RB — ekl < oz(1).
For I, we have

1] < Vn|6 - 6)/% — v R(B - B7)| + Vnlv*" (R— R)(B - B°)].

/
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Here (2) < /n||R — I/i||max||ﬁ— B*||1 = op(1) by Corollary 1 and Theorem 1. In addition, we can
show that
(1) S Vnl|B = B [[1[IT|| oo,
where T = [1/QF; — (fin — w*Tﬁgl), Ry — w*ﬁgz]. Theorem 1, the proof of Lemma 3 and the
fact that
11/9%; — (Ri1 — w Roy)| < |Ri1 — S11| + [w (Ro1 — )|

imply that (1) = op(1).

In addition, the proof of Theorem 2 implies that \/ﬁﬁT(ﬁﬁ — e1,)/0*1/?| = Op(1). Therefore the
consistency of Qy; and the fact that Q3; > 1 imply that \I3]/o*1/2 = op(1).

This completes the proof.



3 Additional Simulation Details

3.1 RBE and EMLE method

For the rank-based estimator in Fan et al. [2017], due to the existence of multiple levels, the single
level p; for Xj; is chosen such that the data above or below this level are balanced as much as
possible, i.e.,

Aj = argmin | Z(]l(Xij > k) - ]I(Xij < k))|

The RBE estimator in method (1) in the main text is defined as R(p 7)o ordinal-by-ordinal
entry and similarly for ordinal-by-continuous entry, which is often the best estimator among the
class of base estimators in practice. The EMLE method is an extension to the direct estimation
method Suggala et al. [2017] for ordinal graphical model, where the direct estimation for an ordinal-
ny-continuous entry is given by

n
ik = a_rlggii}l(ll_{/uE[A i ooy 9201 s )
For estimating the latent precision matrix, we compare the proposed estimator with the corre-
sponding modified SCIO estimator by plugging in the RBE and EMLE estimates. For instance,
the modified SCIO estimator with RBE is given by Q) = argmmﬁ{ BT RrprfB — er B+ \ellBl1}s
where Qk is the kth column of the estimated precision matrix. For all considered methods, the
tuning parameter \ is taken as A\, = argmin,, <5 Hﬁk — Ql|1, where A is a reasonable grid.
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