
Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix

Problems

Dan Garber Atara Kaplan
Technion - Israel Institute of Technology Technion - Israel Institute of Technology

Abstract

Composite convex optimization problems
which include both a nonsmooth term and a
low-rank promoting term have important ap-
plications in machine learning and signal pro-
cessing, such as when one wishes to recover
an unknown matrix that is simultaneously
low-rank and sparse. However, such prob-
lems are highly challenging to solve in large-
scale: the low-rank promoting term prohibits
e�cient implementations of proximal meth-
ods for composite optimization and even sim-
ple subgradient methods. On the other hand,
methods which are tailored for low-rank op-
timization, such as conditional gradient-type
methods, which are often applied to a smooth
approximation of the nonsmooth objective,
are slow since their runtime scales with both
the large Lipchitz parameter of the smoothed
gradient vector and with 1/✏, where ✏ is the
target accuracy. In this paper we develop ef-
ficient algorithms for stochastic optimization
of a strongly-convex objective which includes
both a nonsmooth term and a low-rank pro-
moting term. In particular, to the best of
our knowledge, we present the first algorithm
that enjoys all following critical properties
for large-scale problems: i) (nearly) opti-
mal sample complexity, ii) each iteration re-
quires only a single low-rank SVD compu-
tation, and iii) overall number of thin-SVD
computations scales only with log 1/✏ (as op-
posed to poly(1/✏) in previous methods). We
also give an algorithm for the closely-related
finite-sum setting. We empirically demon-
strate our results on the problem of recov-
ering a simultaneously low-rank and sparse
matrix.

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

1 Introduction

Our paper is strongly motivated by low-rank and non-
smooth matrix optimization problems which are quite
common in machine learning and signal processing ap-
plications. These include tasks such as low-rank and
sparse covariance matrix estimation, graph denoising
and link prediction [18], analysis of social networks
[20], and subspace clustering [19], to name a few.

Such optimization problems often fit the following very
general optimization model:

min
X2V

f(X) := G(X) +RNS(X) + h(X), (1)

where V is a finite linear space over the reals, G(·) is
convex and smooth, RNS(·) is convex and (generally)
nonsmooth, and h(·) is convex and proximal-friendly
(e.g., it is an indicator function for a convex set or a
convex regularizer). Motivated by large-scale machine
learning settings, we further assume G(·) is stochastic,
i.e., G(X) = E

g⇠D[g(X)], where D is a distribution
over convex and smooth functions, and either given
by a sampling oracle (stochastic setting), or admits a
finite support and given explicitly (finite-sum setting).
Finally, we assume f(·) is strongly-convex (either due
to strong convexity of G(·) or RNS(·)). For instance
the simultaneously low-rank and sparse covariance es-
timation problem [18] can be written as:

min
tr(X)⌧, X⌫0

1

2
kX�Mk2

F

+ �kXk
1

, (2)

where M = YY> +N is a noisy observation of some
low-rank and sparse covariance matrix YY>. Here,
V = S

n

(space of n ⇥ n real symmetric matrices),
G(X) = 1

2

kX�Mk2
F

(which is deterministic in this
simple example), RNS(X) = �kXk

1

, and h(X) is
an indicator function for the trace-bounded positive
semidefinite cone (which both constraints the solution
to be positive semidefinite and promotes low-rank)1.

1A closely related problem to (2) to which all of the
following discussions apply, is when X 2 V = Rm⇥n is not

Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix Problems

The general model (1) is known to be a very di�-
cult optimization problem to solve in large scale, al-
ready in the specific setting of Problem (2). In par-
ticular, many of the traditional first-order convex op-
timization methods used for solving non-smooth opti-
mization problems are not e�ciently applicable to it.
For instance, proximal methods for composite opti-
mization, such as the celebrated FISTA algorithm [1],
do not admit e�cient implementations for composite
problems which include both a non-smooth term and
a low-rank promoting term. When applied to Prob-
lem (2), each iteration of FISTA will require to solve a
problem of the same form as the original problem, and
hence is ine�cient. Another type of well known first-
order methods that are applicable to nonsmooth prob-
lems are deterministic/stochastic subgradient/mirror-
descent methods [16, 3]. However these methods are
also ine�cient for problems such as (2), since each it-
eration requires projecting a point onto the feasible
set, which requires a full-rank SVD computation on
each iteration that is is computationally-prohibitive
for large-scale problems.

Another type of methods, which are often suitable
for large-scale low-rank matrix optimization problems,
and have been studied extensively in this context
in recent years, are Conditional Gradient-type meth-
ods (aka Frank Wolfe-type methods), see for instance
[9, 5, 8, 7, 17, 14, 11, 10, 15, 6]. These type of algo-
rithms, when applied to optimization over a nuclear-
norm ball or over the trace-bounded positive semidefi-
nite cone (as in Problem (2)), avoid expensive full-rank
SVD computations, and only compute a single leading
singular vector pair on each iteration (i.e., rank-one
SVD), and hence are much more scalable. However,
Conditional Gradient methods can usually be applied
only to smooth problems, and so, the non-smooth term
RNS(X) is often replaced with a smooth approxima-
tion R(X). A general theory and framework for gen-
erating such smooth approximation (i.e., replacing the
non-smooth term with a smooth function that is point-
wise close to the original), often referred to as smooth-
ing, is described in [2]. Unfortunately, smoothing a
function often results in a large Lipschitz constant of
the gradient vector of the smoothed function. For ex-
ample, the smooth approximation of the `

1

norm is via
the well known Huber function for which the Lipschitz
constant of the gradient often scales like dim(V)/",
where " is target accuracy to which the problem needs
to be solved. Since the convergence rate of smooth
optimization algorithms such as conditional gradient-
type methods discussed above often scales with �D2/✏,

constrained to be positive semidefinite (or even symmet-
ric), and a low-rank solution is encouraged by constraining
X via a nuclear norm constraint kXk⇤ ⌧ , where k · k⇤ is
the `1 norm applied to the vector of singular values.

where � is the Lipschitz parameter of the gradient and
D is the distance of the initial point to an optimal so-
lution, these methods are often not scalable for nons-
mooth objectives such as Problem (2) and the general
model (1) (even after smoothing them), since typically
all three parameters 1/", D,� can be quite large. In
particular, we note that for strongly-convex functions,
it is possible to obtain (via other types of first-order
methods) rates that depend only logarithmically on
1/✏, D.

Another issue with conditional gradient methods is
that, as opposed to projected subgradient methods,
their analysis does not naturally extend to handle
stochastic objectives (recall that, motivated by ma-
chine learning settings, in the general model (1) we
assume G(·) is stochastic). In particular, a straight-
forward variant of the method for stochastic objectives
results in a highly suboptimal sample complexity [7].
In a recent related work [13], the authors consider a
variant of the conditional gradient method for solving
stochastic optimization problems that cleverly com-
bines the conditional gradient method with Nesterov’s
accelerated method and stochastic sampling to obtain
an algorithm for smooth stochastic convex optimiza-
tion that, in the context of low-rank matrix optimiza-
tion problems, i) requires only 1-SVD computation on
each iteration (as in the standard conditional gradi-
ent method) and ii) enjoys (nearly) optimal sample
complexity (both in the strongly convex case and non-
strongly convex case). In a recent work [7], the tech-
nique of [13] was extended to the finite-sum stochastic
setting and combined with a popular variance reduc-
tion technique [12], resulting in a conditional gradient-
type method for smooth and strongly-convex finite-
sum optimization that i) requires only 1-SVD com-
putation on each iteration, and ii) enjoys a gradient-
oracle complexity of the same flavor as usually ob-
tained via variance-reduction methods [12], greatly im-
proving over naive applications of conditional gradi-
ent methods which do not apply variance reduction.
Unfortunately, both results [13, 7], while greatly im-
proving the first-order oracle complexity of previous
conditional-gradient methods, still require an overall
number of 1-SVD computations that scales like �D/✏.
Hence, when applied to smooth approximations of
nonsmooth problems such as Problems (2), (1), the
overall very large number of thin-SVD computations
needed greatly limits the applicability of these meth-
ods.

The limitations of previous methods in tackling large-
scale low-rank and nonsmooth matrix optimization
problems naturally leads us to the following question.

In the context of low-rank and nonsmooth matrix

Dan Garber, Atara Kaplan

optimization, is it possible to combine all following
three key properties for solving large-scale instances of
Model (1) into a single algorithm?

1. (nearly) optimal sample complexity,

2. use of only low-rank SVD computations,

3. overall number of low-rank SVD computations
scales with log(1/") (not poly(1/✏) as in previous
methods).

In this paper we answer this question in the a�rma-
tive. To better discuss our results we now fully for-
malize the considered model and assumptions.

We consider the following general model:

min
X2V

f(X) := G(X) +R(X) + h(X), (3)

where V is a finite linear space over the reals equipped
with an inner product h·, ·i. Throughout the paper we
let k ·k denote the norm induced by the inner product.

Throughout the paper we consider the following as-
sumptions for model (3).

Assumption 1. • G is stochastic, i.e., G(X) =
E
g⇠D[g(X)], where D is a distribution over func-

tions g : V ! R, given by a sampling oracle.
G is di↵erentiable, and for all g 2 supp(D), g
is �

G

-smooth, and there exists � � 0 such that
� � sup

X2dom(h)

p

E[krG(X)�rg(X)k2].

• R : V ! (�1,1] is deterministic, �
R

-smooth,
and convex,

• G+R is ↵-strongly convex,

• h : V ! (�1,1] is deterministic, non-smooth,
proper, lower semicontinuous and convex.

For simplicity we define � := �
G

+ �
R

. As discussed
above, R(·) can be thought of as a smooth approx-
imation of some nonsmooth term RNS(·) (hence, we
generally expect that �

R

>> �
G

), and h(·) can be
thought of as either an indicator function for a convex
set (e.g., a nuclear-norm ball) or a convex regularizer.

A quick summary of our results and comparison to
previous conditional gradient-type methods for solv-
ing Model (3) in case h(·) is either an indicator for a
nuclear norm ball of radius ⌧ or the set of all positive
semidefinite matrices with trace at most ⌧ , is given in
Table 1.

Our algorithm and novel complexity bounds are based
on a combination of the variance reduction technique
introduced in [12] and the use of, what we refer to in

this work as, a weak-proximal oracle (as opposed to the
standard exact proximal oracle used ubiquitously in
first-order methods), which was introduced in the con-
text of nuclear-norm-constrained optimization in [8],
and further generalized in [17]. In the context of low-
rank matrix optimization problems, implementation of
this weak-proximal oracle requires a SVD computation
of rank at most rank(X⇤) - the rank of the optimal so-
lution X⇤, as opposed to an exact proximal oracle that
requires in general a full-rank SVD computation. Since
for such problems we expect that rank(X⇤) is much
smaller than the dimension, and since the runtime of
low-rank SVD computations (when carried out via fast
iterative methods such as variants of the subspace iter-
ation method or Lanczos-type algorithms) scales nicely
with both the target rank and sparsity of gradients2,
for such problems the weak-proximal oracle admits a
much more e�cient implementation than the standard
proximal oracle.

While both of these algorithmic ingredients are pre-
viously known and studied, it is their particular com-
bination that, quite surprisingly, proves to be key to
obtaining all three complexity bounds listed in our pro-
posed question, simultaneously. In particular, it is im-
portant to note that while the use of a weak proximal
oracle, as we define precisely in the sequel, su�ces to
obtain an algorithm that uses overall only O(log(1/✏)
low-rank SVD computations (currently treating for
simplicity all other parameters as constants), to the
best of our knowledge it does not su�ce in order to
also obtain (nearly) optimal sample complexity. The
reason, at a high-level, is that the weak-proximal ora-
cle is strong enough to guarantee decrease of the loss
function on each iteration (in expectation), but does
not give a stronger type of guarantee, which holds for
the exact proximal oracle, that is crucial for obtain-
ing optimal sample complexity with algorithms such
as Stochastic Gradient Descent [3] and the conditional
gradient-type method of [13] (that indeed rely on ex-
act, or nearly exact, proximal computations). It turns
out that the use of a variance reduction technique
(such as [12]) is key to bypassing this obstacle and
obtaining also (near) optimal sample complexity, on
top of the low SVD complexity. We also give a variant
of our algorithm to the finite-sum setting that obtains
similar improvements.

Finally, while our main motivation comes from low-
rank and nomsmooth matrix optimization problems,
it is important to note that as captured in our gen-
eral Model (3), our results are applicable in a much
wider setting than that of low-rank matrix optimiza-
tion problems. Our method is suitable especially for
stochastic nonsmooth convex problems for which im-

2see for instance discussions in [8].

Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix Problems

Algorithm #Exact #Stochastic SVD #SVD

Gradients Gradients rank Computations

Stochastic Setting
Stochastic Cond. Grad. [7] 0 �2�⌧4

"3
1 �⌧2

"

CGS [13] 0 �2

↵" 1 �⌧2

"

This work (Alg. 1) 0 �2

↵" rank(X⇤) �
↵ ln

�

1
"

�

Finite Sum
STORC [7] ln

�

1
"

� �

�
↵

�2
ln
�

1
"

�

1 �⌧2

"

This work finite sum (Alg. 2) ln
�

1
"

� �2
G�

↵3 ln
�

1
"

�

rank(X⇤) �
↵ ln

�

1
"

�

Table 1: Comparison of complexity bound for conditional gradient-type methods for solving Model (3). X⇤

denotes the unique optimal solution. Table only lists the leading-order terms.

plementing a weak proximal oracle is much more e�-
cient than an exact proximal oracle.

2 Algorithm and Results

Our algorithm for solving Model (3), Algorithm 1, is
given below. We now briefly discuss the main two
building blocks of the algorithm, namely a variance
reduction technique and the use of a weak proximal
oracle.

Our use of the variance reduction technique of [12]
is quite straightforward as observable in Algorithm 1.
Importantly, while [12] applied it to finite-sum opti-
mization, here we apply it to the more general black-
box stochastic setting, and hence the sample-size pa-
rameter k

s

used for the ”snap-shot” gradient r̃g(X
s

)
on epoch s grows from epoch to epoch. This modifi-
cation of the technique is along the lines of [4].

The weak proximal oracle strategy is applied in our al-
gorithm as follows. For a step-size ⌘

t

, a composite op-
timization proximal algorithm, which treats the func-
tion h(·) in proximal fashion and the functions G,R
via a gradient oracle, will compute on each iteration
an update of the form

Vt argmin
V2V

n

 t(V) :=
1

�⌘t
h(V)

+ kV �Xs,t
1

2�⌘t
(r̂g(Xs,t) +rR(Xs,t))k2 +

o

. (4)

For instance, if V = Rm⇥n and h(·) is an in-
dicator function for the nuclear-norm ball {X 2
Rm⇥n | kXk⇤ ⌧}, then computing V

t

in Eq. (4)
amounts to Euclidean projection of the matrix A

t

=
X

s,t

� 1

2�⌘t
(r̂g(X

s,t

) � rR(X
s,t

)) onto the nuclear-
norm ball of radius ⌧ . This projection is carried out
by computing a full-rank SVD of A

t

and projecting
the singular values onto the ⌧ -scaled simplex. Since a
full-rank SVD is required, this operation takes O(m2n)
time (assuming m n), which is prohibitive for very

large m,n.

Our algorithm avoids the computational bottleneck of
full-rank SVD computations by only requiring that V

t

satisfies the inequality:

t

(V
t

)
t

(X⇤), (5)

where X⇤ is the (unique) optimal solution to (3). We
call a procedure for computing such updates - a weak
proximal oracle. In the context discussed above, i.e.,
h(·) is an indicator for the radius-⌧ nuclear-norm ball,
(5) can be satisfied simply by projecting the rank(X⇤)-
approximation of the matrix A

t

onto the nuclear-
norm ball. This only requires to compute the top
rank(X⇤) components in the singular value decom-
position of A

t

, and thus the runtime scales roughly
like O(rank(X⇤) ·nnz(A

t

)) using fast Krylov Subspace
methods (e.g., subspace iteration, Lanczos), which re-
sults in a much more e�cient procedure (see further
detailed discussions in [8, 17]).

Since in many settings of interest, especially in the
context of matrix optimization problems, the compu-
tation of V

t

requires some numeric procedure which
is prone to accuracy issues, or in cases in which X⇤

is not low-rank but only very close to a low-rank ma-
trix (in some norm), we introduce an error-tolerance
parameter � in the proximal computation step in Al-
gorithm 1 which allows to absorb such errors that can
be controlled (e.g., by properly tuning precision of the
thin-SVD computation).

2.1 Outline of main results

Theorem 1 (stochastic setting). Assume that As-
sumption 1 holds. There is an explicit choice for the
parameters in Algorithm 1 for which the total num-
ber of epochs (iterations of the outer-loop) required in
order to find an "-approximated solution in expecta-
tion for Problem (3) is bounded by O

�

ln
�

1

"

��

, the total
number of calls to the weak proximal oracle is bounded

by O
⇣

�

↵

ln
�

1

"

�

⌘

, and the total number of stochastic

Dan Garber, Atara Kaplan

Algorithm 1 Stochastic Variance-Reduced General-
ized Conditional Gradient for Problem (3)

Input: T , {⌘
t

}T�1

t=1

⇢ [0, 1], {k
t

}T�1

t=1

, {k
s

}
s�1

⇢ N,
� � 0.
Initialization: Choose some X

1

2 dom(h) .
for s = 1, 2, ... do
Sample g(1), ..., g(ks) from D.
r̃g(X

s

) = 1

ks

P

ks

i=1

rg(i)(X
s

) {snap-shot gradi-

ent} {in the finite-sum setting we use r̃g(X
s

) =
1

n

P

n

i=1

rg(i)(X
s

)}.
X

s,1

= X
s

for t = 1, 2, ..., T � 1 do
Sample g(1), ..., g(kt) from D.

r̂g(X
s,t

) =
Pkt

i=1(rg

(i)
(Xs,t)�(rg

(i)
(Xs)� ˜rg(Xs)))

kt
.

V
t

= argmin
V2V

t

(V) (see Eq. (4)) {in fact it

su�ces that
t

(V
t

)
t

(X⇤) + � for some op-
timal solution X⇤}.
X

s,t+1

= (1� ⌘
t

)X
s,t

+ ⌘
t

V
t

end for
X

s+1

= X
s,T

end for

gradients sampled is bounded by O
⇣

�

2

↵"

+ �

2
G�

↵

3 ln
�

1

"

�

⌘

.

We note that under Assumption 1, the overall num-
ber of calls to a weak proximal oracle to reach ✏-
approximated solution matches the overall number of
calls to an exact proximal oracle used by the proximal
gradient method for smooth and strongly convex opti-
mization. Also, under Assumption 1, the leading term
in the bound on overall number of stochastic gradients
is optimal (up to constants).

Theorem 2 (finite-sum setting). Assume that As-
sumption 1 holds and that D is an explicitly given
uniform distribution over n functions. There exist an
explicit choice for the parameters in Algorithm 2 (see
appendix) for which the total number of epochs required
in order to find an "-approximated solution in expec-
tation for Problem (3) is bounded by O

�

ln
�

1

"

��

, the
total number of calls to the weak proximal oracle is

bounded by O
⇣

�

↵

ln
�

1

"

�

⌘

, and the total number of gra-

dients computed for any of the n functions in the sup-

port of D is bounded by O
⇣⇣

n+ �

2
G�

↵

3

⌘

ln
�

1

"

�

⌘

.

We see that as is standard in variance-reduced meth-
ods for smooth and strongly convex optimization, the
overall number of gradients decouples between terms
that depend on the smoothness and strong convexity
of the objective (e.g., the condition number �/↵), and
the overall number of functions n.

3 Analysis

Due to lack of space most of the proofs and formal
arguments are deferred to the appendix. Here we out-
line the main steps in proving Theorem 1. The treat-
ment for Theorem 2 is very similar and given in the
appendix.

The following lemma bounds the expected decrease in
function value after a single iteration of the inner-loop
in Algorithm 1. The proof relies on the smoothness
and strong convexity of G + R, the use of the weak-
proximal oracle and the unbiased gradient estimator.

Lemma 1 (expected decrease). Assume that As-
sumption 1 holds. Fix some epoch s of Algo-
rithm 1, and let {X

s,t

}T+1

t=1

, {V
t

}T
t=1

be the iter-
ates generated throughout the epoch, and suppose that

t

(V
t

)
t

(X̃) + � for some fixed feasible solution
X̃. Then, if 2�⌘

t

 ↵, we have that E[f(X
s,t+1

)]
(1� ⌘

t

)E[f(X
s,t

)]+⌘
t

f(X̃)+
�

2
s,t

2�

+�⌘2
t

�, where �
s,t

=
q

E[krG(X
s,t

)� r̂g(X
s,t

)k2].

The following lemma bounds the variance the gradient
estimator used in any iteration of the inner-loop of
Algorithm 1. The proof is based on the smoothness of
functions in the support of D and strong-convexity of
G+R.

Lemma 2 (variance bound). Assume that Assump-
tion 1 holds. Fix some epoch s of Algorithm 1, and
let {X

s,t

}T+1

t=1

be the iterates generated throughout the

epoch. Then, �2

s,t

= E[krG(X
s,t

) � r̂g(X
s,t

)k2]
8�

2
G

↵kt
(E[f(X

s

)] � f(X⇤)) + 8�

2
G

↵kt
(E[f(X

s,t

)] � f(X⇤)) +
2�

2

ks
.

The following theorem, from which Theorem 1 (and
with slight changes also Theorem 2) essentially follows,
bounds the approximation error of Algorithm 1.

Theorem 3. Assume that Assumption 1 holds. Let
{X

s

}
s�1

be a sequence generated by Algorithm 1 with

parameters T = 8�

3↵

ln 8 + 1, ⌘
t

= ↵

2�

, k
s

= 32�

2

↵C0
2s�1

and k
t

= 32�

2
G

↵

2 , where C
0

� h
1

. Then, for all s � 1 it

holds that: E[f(X
s

)]� f(X⇤) C
0

�

1

2

�

s�1

+ 8↵�

7

.

Proof. Let us define h
s

:= E[f(X
s

)] � f(X⇤) for all
s � 1, and h

s,t

:= E[f(X
s,t

)] � f(X⇤) for all s, t � 1.
Fix some epoch s and iteration t of the inner loop.

Using Lemma 1 with X̃ = X⇤, and Lemma 2 we have
that

hs,t+1 (1� ⌘t)hs,t +
1

2�

✓

8�2
G

↵kt
hs +

8�2
G

↵kt
hs,t +

2�2

ks

◆

+ �⌘2t �

=

✓

1� ⌘t +
4�2

G

↵�kt

◆

hs,t +

✓

4�2
G

↵�kt
hs +

�2

�ks
+ �⌘2t �

◆

.

Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix Problems

Plugging k
t

= 16�

2
G

↵�⌘t
we get

h
s,t+1

⇣

1� ⌘
t

+
⌘
t

4

⌘

h
s,t

+

✓

⌘
t

4
h
s

+
�2

�k
s

+ �⌘2
t

�

◆

.

Plugging ⌘
t

= ↵

2�

we get

h
s,t+1

✓

1� 3↵

8�

◆

h
s,t

+

✓

↵

8�
h
s

+
�2

�k
s

+
↵2�

4�

◆

.

Fixing an epoch s and unrolling the recursion for t =
(T � 1) . . . 1 we get

h
s,T

✓

1� 3↵

8�

◆

h
s,T�1

+

✓

↵

8�
h
s

+
�2

�k
s

+
↵2�

4�

◆

✓

1� 3↵

8�

◆

T�1

h
s,1

+

✓

↵

8�
h
s

+
�2

�k
s

+
↵2�

4�

◆

T�1

X

k=1

✓

1� 3↵

8�

◆

T�k�1

=

✓

1� 3↵

8�

◆

T�1

h
s,1

+

✓

1

3
h
s

+
8�2

3↵k
s

+
2↵�

3

◆

1�
✓

1� 3↵

8�

◆

T�1

!

.

h
s,T

= h
s+1

and h
s,1

= h
s

and so

hs+1
✓

1� 3↵
8�

◆T�1

hs

+

✓

1

3
hs +

8�2

3↵ks
+

2↵�
3

◆

1�
✓

1� 3↵
8�

◆T�1
!

=

1

3
+

2

3

✓

1� 3↵
8�

◆T�1
!

hs

+

✓

8�2

3↵ks
+

2↵�
3

◆

1�
✓

1� 3↵
8�

◆T�1
!

✓

1

3
+

2

3
e�

3↵
8� (T�1)

◆

hs

+

✓

8�2

3↵ks
+

2↵�
3

◆

1�
✓

1� 3↵
8�

◆T�1
!

.

Choosing T = 8�

3↵

ln 8 + 1, we get

h
s+1

✓

1

3
+

2

3
e�

3↵
8� (

8�
3↵ ln 8)

◆

h
s

+

✓

8�2

3↵k
s

+
2↵�

3

◆

1�
✓

1� 3↵

8�

◆

8�
3↵ ln 8

!

 5

12
h
s

+
8�2

3↵k
s

+
2↵�

3
.

Finally, plugging the value of k
s

, the result follows
from a simple induction over s (see appendix for com-
plete argument)

4 Applications to Non-smooth

Problems

4.1 Applying our results to non-smooth
problems via smoothing

In order to fit the nonsmooth problems considered in
this section to our smooth model (3), we build on the
smoothing framework introduced in [2], which replaces
the nonsmooth term R(X) with a smooth approxima-
tion.

The following definition is taken from [2].

Definition 1. Let R : V ! (�1,1] be a closed,
proper and convex function and let X ✓ dom(R) be a
closed and convex set. R is (✓, �,K)-smoothable over
X if there exists �

1

and �
2

such that � = �
1

+ �
2

� 0
such that for every µ � 0 there exists a continuously
di↵erentiable function R

µ

: V ! (�1,1] such that:

(a) R(x) � �
1

µ R
µ

(x) R(x) + �
2

µ for every x 2
X.

(b) There exists K � 0 and ✓ � 0 such that

krR
µ

(x)�rR
µ

(y)k
⇣

K + ✓

µ

⌘

kx�yk for every

x, y 2 X.

Formally, now we consider applying our algorithms
to non-smooth optimization problems of the following
form:

min
X2V

f(X) := G(X) +R(X) + h(X), (6)

with the following assumptions.

Assumption 2. We make the same assumptions as
in Assumption 1 with the single di↵erence that now R
need not be smooth, but only (✓, �,K)-smoothable.

We will denote the µ-smooth approximation of R(X)
as R

µ

(X), and its smoothness parameter to be �
R

=
⇣

K + ✓

µ

⌘

.

As in our discussions so far, considering Model (6) es-
pecially in the context of low-rank matrix optimiza-
tion problems (e.g., h(·) is an indicator function for a
nuclear-norm ball), we assume that the optimal so-
lution X⇤ is naturally of low-rank and we want to
rely on SVD computations whose rank does not ex-
ceeds that of X⇤ - the optimal solution to the original
non-smooth problem. However, the rank of SVD com-
putations required by the results developed in previ-
ous sections corresponded to the optimal solution of

Dan Garber, Atara Kaplan

the smoothed problem, i.e., after R(·) is replaced with
a smooth approximation R

µ

(·), which can be higher.
Thus, towards developing an algorithm that relies on
SVD computation with rank at most that of the non-
smooth optimum, we introduce the following modified
definition of a weak-proximal oracle.

Definition 2. We say an Algorithm A is a (�
1

, �
2

)-
weak proximal oracle for Model (6),if for point X 2
dom(h) and step-size ⌘, A(X, ⌘) returns a point V 2
dom(h) such that (V,X, ⌘) (X̃⇤,X, ⌘)+�

1

, where
X̃⇤ is a feasible point satisfying |f(X⇤)� f(X̃⇤)| �

2

,
 (V,X, ⌘) := kV�X+ 1

2�⌘t
(r̂g(X) +rR

µ

(X))k2 +
1

�⌘t
h(V), and R

µ

(·) is the µ-smooth approximation of

R(·).

Henceforth, we consider Algorithm 1 with the single
di↵erence: nowV

t

is the ouput of a (�
1

, �
2

)-weak prox-
imal oracle, as defined in Definition 2. Note that in
the context of low-rank problems and in the ideal case
�
1

= �
2

= 03, the implementation of the oracle in Defi-
nition 2 is exactly the same as the weak proximal oracle
discussed before, i.e., if h(·) is for instance the indi-
cator function for a radius-⌧ nuclear-norm ball, then
implementing the oracle in Definition 2 amounts to a
Euclidean projection of the rank(X⇤)-approximation
of A

t

:= X� 1

2�⌘t
(r̂g(X)+rR

µ

(X)) onto the nuclear-
norm ball. Here, the tolerances �

1

, �
2

allow us to ab-
sorb the error due to the smoothing approximation
and numerical errors in SVD computations.

Corollary 1. Assume that Assumption 2 holds.
Choosing parameters �

1

= 7"

32↵

and µ = 7"

92�

, guar-
antees that the overall number of epochs to reach an
✏-approximated solution in expectation is bounded by
O
�

ln
�

1

"

��

, the total number of calls to the (�
1

, �
2

)-

weak proximal oracle is bounded by O
⇣

�

↵

ln
�

1

"

�

⌘

, and

the total number of stochastic gradients sampled is

bounded by O
⇣

�

2

↵"

+ �

2
G�

↵

3 ln
�

1

"

�

⌘

. 4

4.2 Specific examples

4.2.1 Low-rank and sparse matrix estimation

As discussed in the introduction, this work is largely
motivated by matrix recovery problems, such as the
following low-rank and sparse matrix estimation.

min
kXk⇤⌧

1

2
kX� EM⇠D[M]k2

F

+ �kXk
1

, (7)

where D is an unknown distribution over instances.

3these can be made arbitarily small by the choice of
smoothing parameter and accuracy in SVD computations.

4Recall that in this section � = �G + �R = �G + K +
✓/µ, which will typically scale with 1/✏ (inverse of desired
approximation error). See following examples.

For problem (7) to fit the Model (6), we take G(X) =
E
(M,N)⇠D⇥D

⇥

1

2

hX�M,X�Ni
⇤

. Since M and N
are i.i.d, this is equivalent to

G(X) =
1

2
hEM⇠D[X�M],EN⇠D[X�N]i

=
1

2
hX� EM⇠D[M],X� EM⇠D[M]i

=
1

2
kX� EM⇠D[M]k2

F

.

Smoothing the `
1

-norm has a well known solution, as
shown in [2]. The µ-smooth approximation of kXk

1

is R
µ

(X) =
P

d

j=1

P

m

i=1

H
µ

(X
ij

), with parameters

(1, md

2

, 0), where H
µ

(t) is the one dimensional Huber
function:

H
µ

(t) =

(

t

2

2µ

, |t| µ

|t|� µ

2

, |t| > µ
.

This satisfies R
µ

(X) kXk
1

 R
µ

(X) + mdµ

2

.

4.2.2 Linearly constrained low-rank matrix
estimation

Another example, is the problem of recovering a low-
rank matrix subject to linear constraints, which can
be written in penalized form as:

min
kXk⇤⌧

1

2
kX� EM⇠D[M]k2

F

+max
i2[n]

(hA
i

,Xi � b
i

),

(8)
where D is again an unknown distribution over in-
stances. Here the matrices {A

i

}
i2[n]

and scalars
{b

i

}
i2[n]

can absorb a penalty factor �.

Here, by [2], the µ-smooth approxima-
tion of max

i2[n]

(hA
i

,Xi � b
i

) is R
µ

(X) =

µ log
⇣

P

n

i=1

e
1
µ (hAi,Xi�bi)

⌘

, with parameters

(kAk2, log n, 0), where A : Rm⇥d ! Rn

is a linear transformation with the form
A(X) =

�

tr(AT

1

X), tr(AT

2

X), . . . , tr(AT

n

X)
�>

,
for A

1

, ...,A
n

2 Rm⇥d, and kAk =
max{kA(X)k

2

: kXk
F

= 1}. This satisfies
R

µ

(X) max
i2[n]

(hA
i

,Xi � b
i

) R
µ

(X) + µ log n.

4.2.3 Low-rank matrix sensing with
Elastic-net

Finally, we very briefly discuss a matrix-sensing prob-
lem, where both a nuclear-norm constraint is used to
promote low-rank solutions and the well known elastic-
net regularizer [21] is used to promote sparsity.

min
kXk⇤⌧

E
(A,b)⇠D

1

2
(hA,Xi � b)2

�

+�
1

kXk
1

+�
2

kXk2
F

.

Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix Problems

0 50 100 150 200 250 300 350 400

stochastic gradients

2.5

3

3.5

4

4.5

fu
n
c.

 v
a
lu

e

105

SCG
SCGS
SVRGCG

5 10 15 20 25 30 35 40 45 50

time [sec.]

2.5

3

3.5

4

4.5

5

5.5

6

fu
n
c.

 v
a
lu

e

105

SCG
SCGS
SVRGCG

1000 2000 3000 4000 5000 6000 7000

1-SVD

2.5

3

3.5

4

4.5

5

5.5

fu
n
c
.
v
a
lu

e

10
5

SCG

SCGS

SVRGCG

Figure 1: Comparison between methods with rank(YY>) = 1.

0 10 20 30 40 50 60 70 80

stochastic gradients

1

2

3

4

5

6

7

8

9

10

11

fu
n
c.

 v
a
lu

e

106

SCG
SCGS
SVRGCG

2 4 6 8 10 12

time [sec.]

1

1.5

2

2.5

3

fu
n
c.

 v
a
lu

e

106

SCG
SCGS
SVRGCG

0 200 400 600 800 1000 1200 1400

1-SVD

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

fu
n
c
.
v
a
lu

e

10
6

SCG

SCGS

SVRGCG

Figure 2: Comparison between methods with rank(YY>) = 10.

In this example, G(X) = E
(A,b)⇠D

h

1

2

(hA,Xi � b)2
i

need not be strongly convex as in previous examples,
however the elastic-net regularizer R(X) := �

1

kXk
1

+
�
2

kXk2
F

is strongly convex. The smoothing of in this
example and resulting application of our method goes
along the same lines as our treatment of Problem (7).

5 Experiments

In support of our theory, we present preliminary em-
pirical experiments on the problem of low-rank and
sparse matrix estimation, Problem (7). We com-
pare our Algorithm 1 (SVRGCG) to previous condi-
tional gradient-type stochastic methods including the
Stochastic Conditional Gradient Algorithm (SCG) [7]5

and the Stochastic Conditional Gradient Sliding Al-
gorithm (SCGS) [13]. We use synthetic randomly-
generated data for the experiments. For all ex-
periments the input matrix is of the form M

0

=
EM⇠D[M] = YY> + N, where Y 2 Rd⇥r is a ran-
dom sparse matrix for which each entry is zero w.p.
1 � 1/

p
d and U{1, . . . , 10} w.p. 1/

p
d, N is a d ⇥ d

random matrix with i.i.d. standard Gaussian entries.
We set the dimension to d = 300 and the rank of Y,
r to either 1 or 10. In all experiments we set � = 2,
" = 0.01·kYY>k2

F

(i.e., the approximation error is rel-
ative to magnitude of signal), µ = "/d2 (in accordance
with Corollary 3) , and ⌧ = Tr(YY>). The stochastic
oracle is implemented by taking noisy observations of
M

0

using: M(i) = M
0

+ �Q(i), where each Q(i) is
random with i.i.d. standard Gaussian entries and we
fix � = 5.

5In [7] it appears as Stochastic Frank-Wolfe (SFW).

For all three methods we measure i) the obtained (orig-
inal non-smooth) function value (see (7)) vs. num-
ber of stochastic gradients used, ii) function value vs.
overall runtime (seconds), and iii) function value vs.
overall number of rank-one SVD computations used.
Since the overall running time is highly dependent
on specific implementation, we bring the number of
rank-one SVD computations as an implementation-
independent proxy for the overall runtime. For our
method SVRGCG, we compute the overall number of
rank-one SVD computations by multiplying the num-
ber of SVD factorizations with the rank of the factor-
ization used6. In the first experiment (Figure 1) we
set rank(Y) = 1, and in a second experiment (Figure
2), we set rank(Y) = 10 in which case, our algorithm
SVRGCG uses rank-10 SVD computations. The re-
sults for each experiment are averages of 30 i.i.d. runs.
All three algorithms were implemented using parame-
ters as suggested by theory without attempts to opti-
mize their performance.

In Figures 1,2, it can be seen that our algorithm
SVRGCG clearly outperforms both SCG and SCGS
with respect to all three measures in the two experi-
ments.

6 Acknowledgments

This research was supported by the ISRAEL SCI-
ENCE FOUNDATION (grant No. 1108/18).

6This is reasonable since the runtime for low-rank SVD
typically scales linearly with rank.

Dan Garber, Atara Kaplan

References

[1] Amir Beck and Marc Teboulle. A fast itera-
tive shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sci-
ences, 2(1):183–202, 2009.

[2] Amir Beck and Marc Teboulle. Smoothing and
first order methods: a unified framework. SIAM
Journal on Optimization, 22(2):557–580, 2012.

[3] Sébastien Bubeck et al. Convex optimization:
Algorithms and complexity. Foundations and
Trends R� in Machine Learning, 8(3-4):231–357,
2015.

[4] Roy Frostig, Rong Ge, Sham M Kakade, and
Aaron Sidford. Competing with the empirical
risk minimizer in a single pass. In Conference
on learning theory, pages 728–763, 2015.

[5] Dan Garber. Faster projection-free convex op-
timization over the spectrahedron. In Advances
in Neural Information Processing Systems 29:
Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 874–882, 2016.

[6] Donald Goldfarb, Garud Iyengar, and Chaoxu
Zhou. Linear convergence of stochastic frank
wolfe variants. In Artificial Intelligence and
Statistics, pages 1066–1074, 2017.

[7] Elad Hazan and Haipeng Luo. Variance-reduced
and projection-free stochastic optimization. In-
ternational Conference on Machine Learning,
pages 1263–1271, 2016.

[8] Zeyuan Allen-Zhu, Elad Hazan, Wei Hu and
Yuanzhi Li. Linear convergence of a frank-wolfe
type algorithm over trace norm balls. NIPS, pages
6192–6201, 2017.

[9] Martin Jaggi. Revisiting frank-wolfe: Projection-
free sparse convex optimization. Proceedings of
the 30th International Conference on Machine
Learning, ICML, pages 427–435, 2013.

[10] Gauthier Gidel, Tony Jebara and Simon Lacoste-
Julien. Frank-wolfe algorithms for saddle point
problems. Proceedings of the 20th International
Conference on Artificial Intelligence and Statis-
tics, AISTATS 2017, pages 362–371, 2017.

[11] Gauthier Gidel, Tony Jebara and Simon Lacoste-
Julien. Frank-wolfe splitting via augmented la-
grangian method. International Conference on
Artificial Intelligence and Statistics, AISTATS
2018, pages 1456–1465, 2018.

[12] Rie Johnson and Tong Zhang. Accelerating
stochastic gradient descent using predictive vari-
ance reduction. In Advances in neural informa-
tion processing systems, pages 315–323, 2013.

[13] Guanghui Lan and Yi Zhou. Conditional gradient
sliding for convex optomization. SIAM Journal on
Optimization, 26(2):1379–1409, 2016.

[14] Alp Yurtsever, Olivier Fercoq, Francesco Lo-
catello and Volkan Cevher. A conditional gra-
dient framework for composite convex minimiza-
tion with applications to semidefinite program-
ming. Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, pages
5713–5722, 2018.

[15] Cun Mu, Yuqian Zhang, John Wright, and Don-
ald Goldfarb. Scalable robust matrix recovery:
Frank–wolfe meets proximal methods. SIAM
Journal on Scientific Computing, 38(5):A3291–
A3317, 2016.

[16] Yurii Nesterov. Introductory lectures on convex
optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[17] Dan Garber, Shoham Sabach and Atara Kaplan.
Fast generalized conditional gradient method
with applications to matrix recovery problems.
CoRR, abs/1802.05581, 2018.

[18] Emile Richard, Pierre-Andr‘e Savalle and Nicolas
Vayatis. Estimation of simultaneously sparse and
low rank matrices. Proceedings of the 29th Inter-
national Conference on Machine Learning, 2012.

[19] Yu-Xiang Wang, Huan Xu, and Chenlei Leng.
Provable subspace clustering: When lrr meets
ssc. In Advances in Neural Information Process-
ing Systems, pages 64–72, 2013.

[20] Ke Zhou, Hongyuan Zha, and Le Song. Learn-
ing social infectivity in sparse low-rank networks
using multi-dimensional hawkes processes. In Ar-
tificial Intelligence and Statistics, pages 641–649,
2013.

[21] Hui Zou and Trevor Hastie. Regularization and
variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320, 2005.

	Introduction
	Algorithm and Results
	Outline of main results

	Analysis
	Applications to Non-smooth Problems
	Applying our results to non-smooth problems via smoothing
	Specific examples
	Low-rank and sparse matrix estimation
	Linearly constrained low-rank matrix estimation
	Low-rank matrix sensing with Elastic-net

	Experiments
	Acknowledgments
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Theorem 1

	Finite-Sum Setting and Poof of Theorem 2
	Proof of Corollary 1
	Convergence Rates for Nonsmooth Examples

