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Abstract

We derive the optimal (0, δ)-differentially pri-
vate query-output independent noise-adding
mechanism for single real-valued query
function under a general cost-minimization
framework. Under a mild technical condi-
tion, we show that the optimal noise prob-
ability distribution is a uniform distribution
with a probability mass at the origin. We ex-
plicitly derive the optimal noise distribution
for general `p cost functions, including `1 (for
noise magnitude) and `2 (for noise power)
cost functions, and show that the probabil-
ity concentration on the origin occurs when
δ > p

p+1 . Our result demonstrates an im-
provement over the existing Gaussian mech-
anisms by a factor of two and three for (0, δ)-
differential privacy in the high privacy regime
in the context of minimizing the noise mag-
nitude and noise power, and the gain is more
pronounced in the low privacy regime. Our
result is consistent with the existing result for
(0, δ)-differential privacy in the discrete set-
ting, and identifies a probability concentra-
tion phenomenon in the continuous setting.

1 Introduction

Differential privacy, introduced by Dwork et al.
(2006b), is a framework to quantify to what extent
individual privacy in a statistical dataset is preserved
while releasing useful aggregate information about the
dataset. Differential privacy provides strong privacy
guarantees by requiring the near-indistinguishability
of whether an individual is in the dataset or not based
on the released information. For more motivation and
background of differential privacy, we refer the readers
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to the survey by Dwork (2008) and the book by Dwork
and Roth (2014).

The classic differential privacy is called ε-differential
privacy, which imposes an upper bound eε on the mul-
tiplicative distance of the probability distributions of
the randomized query outputs for any two neighbor-
ing datasets, and the standard approach for preserv-
ing ε-differential privacy is to add a Laplacian noise to
the query output. Since its introduction, differential
privacy has spawned a large body of research in differ-
entially private data-releasing mechanism design, and
the noise-adding mechanism has been applied in many
machine learning algorithms to preserve differential
privacy, e.g., logistic regression (Chaudhuri and Mon-
teleoni, 2008), empirical risk minimization (Chaudhuri
et al., 2011), online learning (Jain et al., 2012), statis-
tical risk minimization (Duchi et al., 2012), deep learn-
ing (Shokri and Shmatikov, 2015; Abadi et al., 2016;
Phan et al., 2016; Agarwal et al., 2018), hypothesis
testing (Sheffet, 2018), matrix completion (Jain et al.,
2018), expectation maximization (Park et al., 2017),
and principal component analysis (Chaudhuri et al.,
2012; Ge et al., 2018).

To fully make use of the randomized query outputs, it
is important to understand the fundamental trade-off
between privacy and utility (accuracy). Ghosh et al.
(2009) studied a very general utility-maximization
framework for a single count query with sensitivity one
under ε-differential privacy. Gupte and Sundarara-
jan (2010) derived the optimal noise probability dis-
tributions for a single count query with sensitivity one
for minimax (risk-averse) users. Geng and Viswanath
(2016b) derived the optimal ε-differentially private
noise adding mechanism for single real-valued query
function with arbitrary query sensitivity, and show
that the optimal noise distribution has a staircase-
shaped probability density function. Geng et al. (2015)
generalized the result in Geng and Viswanath (2016b)
to two-dimensional query output space for the `1 cost
function, and show the optimality of a two-dimensional
staircase-shaped probability density function. Soria-
Comas and Domingo-Ferrer (2013) also independently
derived the staircase-shaped noise probability distri-
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bution under a different optimization framework.

A relaxed notion of ε-differential privacy is (ε, δ)-
differential privacy, introduced by Dwork et al.
(2006a). The common interpretation of (ε, δ)-
differential privacy is that it is ε-differential privacy
“except with probability δ” (Mironov, 2017). The
standard approach for preserving (ε, δ)-differential pri-
vacy is the Gaussian mechanism, which adds a Gaus-
sian noise to the query output. Geng and Viswanath
(2016a) studied the trade-off between utility and pri-
vacy for a single integer-valued query function in (ε, δ)-
differential privacy. Geng and Viswanath (2016a) show
that for `1 and `2 cost functions, the discrete uniform
noise distribution is optimal for (0, δ)-differential pri-
vacy when the query sensitivity is one, and is asymp-
totically optimal as δ → 0 for arbitrary query sensi-
tivity. Geng et al. (2018) extend the result for sin-
gle real-valued query functions under (ε, δ)-differential
privacy and show that the truncated Laplacian mech-
anism is asymptotically optimal in various high pri-
vacy regimes. Balle and Wang (2018) improved the
classic analysis of the Gaussian mechanism for (ε, δ)-
differential in the high privacy regime (ε → 0), and
develops an optimal Gaussian mechanism whose vari-
ance is calibrated directly using the Gaussian cumula-
tive density function instead of a tail bound approxi-
mation.

(ε, 0)-differential privacy and (0, δ)-differential privacy
can be viewed as two special cases of the commonly
used (ε, δ)-differential privacy paradigm. While (ε, 0)-
differential privacy is well studied and exact optimal-
ity result has been obtained, little is known about
(0, δ)-differential privacy. Characterizing the privacy-
utility tradeoff in (0, δ)-differential privacy is impor-
tant towards understanding the fundamental privacy
and utility tradeoff in (ε, δ)-differential privacy.

1.1 Our Contributions

In this work, we characterize the fundamental trade-
off between privacy and utility in (0, δ)-differential pri-
vacy for a single read-valued query function. Within
the class of query-output independently noise-adding
mechanisms, we derive the optimal noise distribu-
tion for (0, δ)-differential privacy under a general cost-
minimization framework similar to Ghosh et al. (2009);
Gupte and Sundararajan (2010); Geng and Viswanath
(2014); Geng et al. (2015); Geng and Viswanath
(2016a). Under a mild technical condition on the noise
probability distribution1, we show that the optimal

1In this work, we assume that the noise probability dis-
tribution has higher probability over the small noise than
the big noise. This condition is satisfied by virtually all
probability distributions used in differential privacy, in-
cluding the uniform distribution, the Laplacian distribu-

noise probability distribution is a uniform distribution
with a probability mass at the origin, which can be
viewed as the distribution of the product of a uniform
random variable and a Bernoulli random variable. The
probability mass on the origin can be zero or non-zero,
depending on the value of δ. We explicitly derive the
optimal noise distribution for general `p cost functions,
including `1 (for noise magnitude) and `2 (for noise
power) cost functions, and show that the probability
concentration on the origin occurs when δ > p

p+1 .

Compared with the improved Gaussian mechanisms
for (0, δ)-differential privacy (Balle and Wang, 2018),
our result demonstrates a two-fold and three-fold im-
provement in the high privacy regime in the context
of minimizing the noise magnitude and noise power,
respectively. The improvement is more pronounced in
the low privacy regime.

Comparing the exact optimality results of ε-differential
privacy and (0, δ)-differential privacy, we show that
given the same amount of privacy constraint, (0, δ)-
differential privacy yields a higher utility than ε-
differential privacy in the high privacy regime.

Our result is consistent with the existing result for
(0, δ)-differential privacy in the discrete setting (Geng
and Viswanath, 2016a) which shows that the discrete
uniform distribution is optimal for an integer-valued
query function when the query sensitivity is one, and
asymptotically optimal as δ → 0 for general query sen-
sitivity. Interestingly, our result identifies a probabil-
ity concentration phenomenon in the continuous set-
ting for single real-valued query function.

1.2 Organization

The paper is organized as follows. In Section 2, we give
some preliminaries on differential privacy, and formu-
late the trade-off between privacy and utility under
(0, δ)-differential privacy for a single real-valued query
function as a functional optimization problem. Section
3 presents the optimal noise probability distribution
preserving (0, δ)-differential privacy, subject to a mild
technical condition. Section 4 applies our main result
to a class of momentum cost functions, and derives the
explicit forms of the optimal noise probability distribu-
tions with minimum noise magnitude and noise power,
respectively. Section 5 compares our result with the
improved Gaussian mechanism in the context of min-
imizing noise magnitude and noise power.

tion, the truncated Laplacian distribution, the Gaussian
distribution, and the staircase distribution. While the op-
timality result in this paper depends on this assumption,
we believe this assumption can be done away.
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2 Problem Formulation

In this section, we first give some preliminaries on dif-
ferential privacy, and then formulate the trade-off be-
tween privacy and utility under (0, δ)-differential pri-
vacy for a single real-valued query function as a func-
tional optimization problem.

2.1 Background on Differential Privacy

Consider a real-valued query function

q : D → R,

where D is the set of all possible datasets. The real-
valued query function q will be applied to a dataset,
and the query output is a real number. Two datasets
D1, D2 ∈ D are called neighboring datasets if they
differ in at most one element, i.e., one is a proper sub-
set of the other and the larger dataset contains just
one additional element (Dwork, 2008). A randomized
query-answering mechanism K for the query function
q will randomly output a number with probability dis-
tribution depending on query output q(D), where D
is the dataset.

Definition 1 (ε-differential privacy (Dwork, 2008)).
A randomized mechanism K gives ε-differential privacy
if for all data sets D1 and D2 differing on at most one
element, and any measurable set S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ eε Pr[K(D2) ∈ S], (1)

where K(D) is the random output of the mechanism K
when the query function q is applied to the dataset D.

The differential privacy constraint (1) imposes an up-
per bound eε on the multiplicative distance of the
two probability distributions. It essentially requires
that for all neighboring datasets, the probability dis-
tributions of the output of the randomized mechanism
should be approximately the same. Therefore, for
any individual record, its presence or absence in the
dataset will not significantly affect the output of the
mechanism, which makes it hard for adversaries with
arbitrary background knowledge to make inference on
any individual from the released query output infor-
mation. The parameter ε ∈ (0,+∞) quantifies how
private the mechanism is: the smaller ε is, the more
private the randomized mechanism is.

The standard approach to preserving ε-differential pri-
vacy is to perturb the query output by adding a ran-
dom noise with Laplacian distribution proportional to
the sensitivity ∆ of the query function q, where the
sensitivity of a real-valued query function is defined
as:

Definition 2 (Query Sensitivity (Dwork, 2008)). For
a real-valued query function q : D → R, the sensitivity
of q is defined as

∆ := max
D1,D2∈D

|q(D1)− q(D2)|,

for all D1, D2 differing in at most one element.

Introduced by Dwork et al. (2006a), a relaxed ver-
sion of ε-differential privacy is (ε, δ)-differential pri-
vacy, which relaxes the constraint (1) with an additive
term δ ∈ [0, 1].

Definition 3 ((ε, δ)-differential privacy (Dwork et al.,
2006a)). A randomized mechanism K gives (ε, δ)-
differential privacy if for all data sets D1 and D2 dif-
fering on at most one element, and all S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ eε Pr[K(D2) ∈ S] + δ.

In the special case where ε = 0, the constraint for
(0, δ)-differential privacy is

Pr[K(D1) ∈ S] ≤ Pr[K(D2) ∈ S] + δ. (2)

It is ready to see that (0, δ)-differential privacy puts
an upper bound δ on the additive distance of the two
probability distributions.

2.2 (0, δ)-Differential Privacy Constraint on
the Noise Probability Distribution

A standard approach for preserving differential pri-
vacy is query-output independent noise-adding mecha-
nisms, where a random noise is added to the query out-
put. Given a dataset D, a query-output independent
noise-adding mechanism K will release the query out-
put t = q(D) corrupted by an additive random noise
X with probability distribution P:

K(D) = t+X. (3)

The (0, δ)-differential privacy constraint (2) on K is
that for any t1, t2 ∈ R such that |t1 − t2| ≤ ∆ (cor-
responding to the query outputs for two neighboring
datasets),

P(S) ≤ P(S + t1 − t2) + δ, ∀ measurable set S ⊂ R,

where ∀t ∈ R, S+ t is defined as the set {s+ t | s ∈ S}.

Equivalently, the (0, δ)-differential privacy constraint
on the noise probability distribution P is

P(S) ≤ P(S + d) + δ, ∀ |d| ≤ ∆,measurable set S ⊂ R.
(4)
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2.3 Utility Model

Consider a cost function L(·) : R→ R, which is a func-
tion of the additive noise in the query-output noise-
adding mechanism. Given an additive noise x, the
cost is L(x), and thus the expectation of the cost over
P is ∫

x∈R
L(x)P(dx). (5)

Our objective is to minimize the expectation of the
cost over the noise probability distribution for preserv-
ing (0, δ)-differential privacy.

2.4 Optimization Problem

Combining the differential privacy constraint (4) and
the objective function (5), we formulate a functional
optimization problem:

minimize
P

∫
x∈R
L(x)P(dx) (6)

subject to ∀ measurable set S ⊆ R, ∀|d| ≤ ∆.

|P(S)− P(S + d)| ≤ δ (7)

3 Main Result

In this section, we solve the functional optimization
problem (6) for (0, δ)-differential privacy, and present
our main result in Theorem 2. Under a mild technical
condition on the probability distribution (see Property
2), we show that the optimal noise probability dis-
tribution is a uniform distribution with a probability
mass at the origin, which can be viewed as the dis-
tribution of the product of a uniform random variable
and a Bernoulli random variable.

We assume that the cost function L(·) satisfies a nat-
ural property.

Property 1. L(x) is a symmetric function, and
monotonically increasing for x ≥ 0, i.e, L(x) satisfies

L(x) = L(−x),∀ x ∈ R,

and

L(x) ≤ L(y),∀ 0 ≤ x ≤ y.

First, we show that without loss of generality, we only
need to consider symmetric noise probability distribu-
tions.

Lemma 1. Given a noise probability distribution P
satisfying (7), there exists a probability distribution P̂
such that P̂ satisfies (7), and

P̂(S) = P̂(−S),∀ measurable set S ⊆ R,

and ∫
x∈R
L(x)P̂(dx) =

∫
x∈R
L(x)P(dx).

Proof. Define P̂ as follows: ∀ measurable setS ⊆ R,

P̂(S) :=
P(S) + P(−S)

2
.

It is ready to see P̂ is a symmetric probability distribu-
tion. As the loss function L(·) is symmetric, we have∫
x∈R L(x)P̂(dx) =

∫
x∈R L(x)P(dx).

Next we show that P̂ also satisfies the differential pri-
vacy constraint. Indeed, ∀ measurable set S ⊆ R and
d such that |d| ≤ ∆, we have

|P̂(S)− P̂(S + d)|

= |P(S) + P(−S)

2
− P(S + d) + P(−S − d)

2
|

≤ |P(S)− P(S + d)|
2

+
|P(−S) + P(−S − d)|

2

≤ δ

2
+
δ

2
= δ.

Due to Lemma 1, we can restrict ourselves to symmet-
ric noise probability distributions.

As the loss function L(·) is monotonically increasing
as the noise becomes bigger, we impose a mild and
natural condition on the symmetric noise probability
contribution, which requires the noise probability dis-
tribution to have bigger probability measure on the
small noise than the large noise. More precisely,

Property 2. Given a symmetric probability measure
P ∈ Psym, P is monotonically decreasing if

P(S) ≥ P(S + a),∀a ≥ 0, measurable set S ⊆ [0,+∞)

Property 2 is satisfied by a large class of probability
distributions, including the uniform distribution, the
Laplacian distribution and the Gaussian distribution.

Let Psym, mon denote the set of symmetric probability
measures which are monotonically decreasing.

Lemma 2. Given P ∈ Psym, mon, then for any t 6= 0,
P({t}) = 0, i.e., P cannot have a non-zero probability
mass on any singular point except the origin t = 0.

Proof. Suppose there exists t 6= 0 such that P({t}) 6=
0. Since P is symmetric, we can assume t > 0.
Since P is monotonically decreasing in [0,+∞), for any
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t′ ∈ (0, t),P({t′}) ≥ P({t}), which implies P((0, t)) =
+∞. This contradicts with the fact that P is a prob-
ability measure.

Within the classes of monotonically decreasing proba-
bility distributions, we identify a sufficient and neces-
sary condition for preserving (0, δ)-differential privacy.

Theorem 1. Given P ∈ Psym, mon, P satisfies the
(0, δ)-differential privacy constraint (7), if and only if

P([−∆

2
,

∆

2
]) ≤ δ.

Proof. First we show that it is a necessary condition.
Assume P satisfies the (0, δ)-differential privacy con-
straint (7). Consider S = [−∆

2 ,+∞) and d = ∆ in
(7), and we have

|P([−∆

2
,+∞))− P([

∆

2
,+∞))| ≤ δ,

and thus P([−∆
2 ,

∆
2 )) ≤ δ. Due to Lemma 2,

P([−∆
2 ,

∆
2 ]) = P([−∆

2 ,
∆
2 )) ≤ δ.

Next we show that it is a sufficient condition. Assume
P([−∆

2 ,
∆
2 ]) ≤ δ. As P is symmetric and the differ-

ential privacy constraint (7) applies to all measurable
subset S ⊆ R and all d such that |d| ≤ ∆, it is equiv-
alent to show that P(S)− P(S + d) ≤ δ, ∀d ∈ (0,∆].

Since P is symmetric and monotonically decreasing in
[0,+∞), P(S) − P(S + d) is maximized when S =
[−d2 ,+∞). Therefore, ∀d ∈ (0,∆],

P(S)− P(S + d)

≤ P([−d
2
,+∞))− P([−d

2
,+∞) + d)

= P([−d
2
,
d

2
))

≤ P([−∆

2
,

∆

2
))

≤ δ.

This concludes the proof of Theorem 1.

Consider a class of probability distributions {Pα} pa-
rameterized by α ∈ [0, δ), where Pα is defined as

Pα({0}) = α

and except the point t = 0, Pα has a uniform proba-
bility distribution over the set [− 1−α

δ−α
∆
2 ,

1−α
δ−α

∆
2 ] \ {0}

with probability density δ−α
∆ (see Figure 1).

-
 

- (1- )
  2( - )

  (1- )
  2( - )

Figure 1: Probability distribution of Pα. Pα has a
probability mass α ∈ [0, δ) at the origin, and has a
uniform distribution over [− 1−α

δ−α
∆
2 ,

1−α
δ−α

∆
2 ] \ {0} with

probability density δ−α
∆ .

Let SP denote the set of all symmetric and monotoni-
cally decreasing probability distributions satisfying the
(0, δ)-differential privacy (7). Our main result on the
optimal noise probability distribution is:

Theorem 2. If the cost function L(x) satisfies Prop-
erty 1, then for any ∆ > 0 and 0 < δ < 1,

inf
P∈SP

∫
x∈R
L(x)P(dx) = inf

α∈[0,δ)

∫
x∈R
L(x)Pα(dx).

Proof. First note that for any α ∈ [0, δ), Pα is sym-
metric and monotonically decreasing in [0,+∞), and

Pα([−∆

2
,

∆

2
]) = α+

δ − α
∆

∆ = δ.

Therefore, due to Theorem 1, Pα satisfies the (0, δ)-
differential privacy constraint (7), and thus Pα ∈ SP.

Applying a similar argument as in Lemma 20 of Geng
and Viswanath (2016b), we can use a sequence of sym-
metric and piece-wise linear probability density func-
tion with probability mass concentration in the origin
to approximate any P ∈ SP (see Figure 2). More pre-
cisely, given a probability distribution P ∈ SP which
may have non-zero probability mass at x = 0, for pos-
itive integer i ∈ N , define the probability distribution
Pi as follows:

Pi({0}) := P({0})

and over the set R\{0}, Pi has a symmetric probability
density function fi(x) with

fi(x) =

{
ak ,

P((k ∆
2i ,(k+1) ∆

2i ])
∆
2i

x ∈ (k∆
2i , (k + 1) ∆

2i ],

fi(−x) x < 0

It is easy to see that Pi([−∆
2 ,

∆
2 ]) = P([−∆

2 ,
∆
2 ]) ≤ δ,

and thus due to Theorem 1, Pi ∈ SP. Due to the
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definition of Riemann-Stieltjes integral, we have

lim
i→+∞

∫
x∈R
L(x)Pi(dx) =

∫
x∈R
L(x)P(dx)

  
  2

  
  2

Figure 2: Discretize a probability distribution with a
piecewise-constant probability density function and a
probability mass at the origin.

Therefore, we only need to consider probability dis-
tributions with a probability mass on the origin
and a symmetric monotonically decreasing piecewise-
constant probability density function on R \ {0}.

First we show that without loss of generality, we can
assume the probability density function in [∆

2 ,+∞) is

a step function, i.e., there exists a t∗ > ∆
2 such that

probability density function is a constant in [∆
2 , t
∗] and

is zero in (t∗,+∞). Indeed, we can re-arrange the
probability distribution in [∆

2 ,+∞) to make the prob-
ability density function to be uniform within certain
interval [∆

2 , t
∗] with the probability density the same

as the previous bucket (see Figure 3). This will not
increase the cost, due to the fact that L(·) is a mono-
tonically increasing function on [0,+∞). Since we are
not changing the probability distribution in [−∆

2 ,
∆
2 ],

due to Theorem 1, the probability distribution after
the re-arrangement also satisfies the differential pri-
vacy constraint (7).

  
  2

  
*  

  2

Figure 3: Re-arrange the probability distribution in
[∆

2 ,+∞) to be a step.

Then we show that the probability distribution in
(0, ∆

2 ) shall be uniform as well. Indeed, if the dis-

tribution in (0, ∆
2 ) is not uniform, we can decrease

the probability density over (0, ∆
2 ) to be the same as

the point ∆
2 , and move the extra probability mass to

the origin point (see Figure 4). Due to the fact that
L(·) is a monotonically increasing function on [0,+∞),
this will not increase the cost. As P([−∆

2 ,
∆
2 ]) is un-

changed, the new probability distribution satisfies the
differential privacy constraint (7).

  
*  

  2

  
*  

  2

Figure 4: Re-arrange the probability distribution in
(0, ∆

2 ) to be uniform and put the extra probability
mass at the origin.

In the last step, we show that P([−∆
2 ,

∆
2 ]) should be

exactly δ. If it is strictly less than δ, then we can re-
duce the probability density over (0, t∗) and increase α
to make P([−∆

2 ,
∆
2 ]) = δ. Similarly, due to the prop-

erty of L(·) and Theorem 1, we conclude that this re-
duces the cost while preserving the differential privacy
constraint.

This concludes the proof of Theorem 2.

A natural and simple algorithm to generate random
noise with probability distribution Pα is given in Al-
gorithm 1.

Algorithm 1 Generation of a Random Variable of
Uniform Distribution with a Probability Concentra-
tion on the Origin

Input: δ, ∆, and α ∈ [0, δ).
Output: X, a random variable of uniform distri-
bution with a probability concentration on the ori-
gin, paremeterized by δ,∆ and α.

Generate a binary random variable B with

Pr[B = 0] = α,

Pr[B = 1] = 1− α.

Generate a random variable U uniformly distributed
in [− 1−α

δ−α
∆
2 ,

1−α
δ−α

∆
2 ].

X ← B · U .
Output X.
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4 Applications

In this section, we apply our main result Theorem 2
to derive an explicit expression for the parameter α in
the optimal noise probability distribution Pα for the
class of `p momentum cost functions in Theorem 3.
Applying Theorem 3 to the cases p = 1 and p = 2,
we get the optimal noise probability distribution with
minimum noise amplitude and minimum noise power
for (0, δ)-differential privacy, respectively.

Let V (P) :=
∫
x∈R L(x)P(dx), i.e., V (P) denote the

expectation of the cost given the noise probability dis-
tribution P for the cost function L(·).
Theorem 3. Given 0 < δ < 1 and the query sensitiv-
ity ∆ > 0. For the general momentum cost function
`p(x) := |x|p, where p > 0, the optimal noise proba-
bility distribution to preserve (0, δ)-differential privacy
with query sensitivity ∆ is Pα∗ with

α∗ =

{
0, for δ ∈ (0, p

p+1 ]

(p+ 1)δ − p, for δ ∈ ( p
p+1 , 1)

and the minimum cost is

V (Pα∗) =

{
∆p

2p(p+1)δp , for δ ∈ (0, p
p+1 ]

(p+1)p

2ppp (1− δ)∆p, for δ ∈ ( p
p+1 , 1)

Proof. It is easy to see that the momentum cost func-
tion satisfies Property 1. We can compute the cost
V (Pα) via

V (Pα) =

∫
x∈R
|x|pPα(dx)

= 2

∫ 1−α
δ−α

∆
2

0

xp
δ − α

∆
dx

=
∆p

(p+ 1)2p
(1− α)p+1

(δ − α)p
.

Define f(α) := (1−α)p+1

(δ−α)p . As f(α) is a continuous func-

tion of α over [0, δ), and f(0) = 1
δp , and f(δ) = ∞,

the minimum is achieved at either α = 0 or the point
where the derivative f ′(α) = 0.

Compute the derivative of f(α) via

f ′(α)

=
−(p+ 1)(1− α)p(δ − α)p + (1− α)p+1p(δ − α)p−1

(δ − α)2p

=
(δ − α)p−1(1− α)p

(δ − α)2p
(α− (p+ 1)δ + p).

Set f ′(α) = 0 and we get α = (p+ 1)δ − p.

It is ready to calculate that

V (Pα) =


∆p

2p(p+ 1)δp
, for α = 0

(p+ 1)p

2ppp
(1− δ)∆p, for α = (p+ 1)δ − p

It is easy to see that when δ ≤ p
p+1 , at the point where

the derivative is zero we have α = (p + 1)δ − p < 0,
and thus the minimum is achieved at α = 0. When
δ > p

p+1 , (p + 1)δ − p ∈ (0, δ), and we have V (P0) ≥
V (P(p+1)δ−p). Indeed,

V (P0) ≥ V (P(p+1)δ−p)

⇔ ∆p

2p(p+ 1)δp
≥ (p+ 1)p

2ppp
(1− δ)∆p

⇔ pp

(p+ 1)p+1
≥ δp(1− δ), (8)

where (8) holds as

δp(1− δ) =
δp(p− pδ)

p

≤
( (pδ+p−pδ)

p+1 )p+1

p

=
pp

(p+ 1)p+1
.

Therefore, when δ > p
p+1 , the minimum of f(α) is

achieved at α = (p+ 1)δ − p.

In conclusion, for the `p cost function, the optimal α
is

α∗ =

{
0, for δ ∈ (0, p

p+1 ]

(p+ 1)δ − p, for δ ∈ ( p
p+1 , 1)

and the minimum cost is

V (Pα∗) =

{
∆p

2p(p+1)δp , for δ ∈ (0, p
p+1 ]

(p+1)p

2ppp (1− δ)∆p, for δ ∈ ( p
p+1 , 1)

Applying Theorem 3 to the cases where p = 1 and
p = 2, we derive the optimal noise probability distribu-
tion for (0, δ)-differential privacy with minimum noise
amplitude and minimum noise power, respectively.

Corollary 4 (Optimal Noise Amplitude). Given 0 <
δ < 1 and the query sensitivity ∆ > 0, to minimize the
expectation of the amplitude of the noise (i.e., for the
`1 cost function), the optimal noise probability distri-
bution is Pα∗ with

α∗ =

{
0, for δ ∈ (0, 1

2 ]

2δ − 1, for δ ∈ ( 1
2 , 1)
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and the minimum expectation of noise amplitude is

V (Pα∗) =

{
∆
4δ , for δ ∈ (0, 1

2 ]

(1− δ)∆, for δ ∈ ( 1
2 , 1)

(9)

Corollary 5 (Optimal Noise Power). Given 0 < δ < 1
and the query sensitivity ∆ > 0, to minimize the ex-
pectation of the power of the noise (i.e., for the `2 cost
function), the optimal noise probability distribution is
Pα∗ with

α∗ =

{
0, for δ ∈ (0, 2

3 ]

3δ − 2, for δ ∈ ( 2
3 , 1)

and the minimum expectation of noise power is

V (Pα∗) =

{
∆2

12δ2 , for δ ∈ (0, 2
3 ]

9
16 (1− δ)∆2, for δ ∈ ( 2

3 , 1)
(10)

5 Comparison to Gaussian Mechanism

In this section, we compare our result with the classic
Gaussian mechanism, which adds a Gaussian noise to
preserve (ε, δ)-differential privacy. We show a two-fold
and three-fold improvement in the high privacy regime
over the improved Gaussian mechanism in Balle and
Wang (2018) for minimizing the noise magnitude and
the noise power, and we show that the gain is more
pronounced in the low privacy regime.

A classic result on the Gaussian mechanism is that
for any ε, δ ∈ (0, 1), adding a Gaussian noise with

standard deviation σ =

√
2 log(1.25/δ)

ε ∆ preserves (ε, δ)-
differential privacy (Dwork and Roth, 2014). This re-
sult does not apply to the (0, δ)-differential privacy, as
this would require σ to be +∞ when ε = 0.

For (ε, δ)-differential privacy, Balle and Wang (2018)
developed an optimal Gaussian mechanism whose vari-
ance is calibrated directly using the Gaussian cumula-
tive density function instead of a tail bound approxi-
mation. Balle and Wang (2018) show the following:

Theorem 6 (Theorem 2 in Balle and Wang (2018)). A
Gaussian output perturbation mechanism with σ = ∆

2δ
preserves (0, δ)-differential privacy.

It is ready to see that the Gaussian noise distribution
has an expected noise amplitude σ = ∆

2δ and an ex-

pected noise power σ2 = ∆2

4δ2 .

Table 1: Noise Magnitude Comparison

Gaussian ∆
2δ

Optimal

{
∆
4δ , for δ ∈ (0, 1

2 ]

(1− δ)∆, for δ ∈ ( 1
2 , 1)

Table 2: Noise Power Comparison

Gaussian ∆2

4δ2

Optimal

{
∆2

12δ2 , for δ ∈ (0, 2
3 ]

9
16 (1− δ)∆2, for δ ∈ ( 2

3 , 1)

For comparison, our result (9) and (10) in this pa-
per show that the minimum expected noise magnitude

and noise power are ∆
4δ and ∆2

12δ2 in the medium/high
privacy regime (δ ≤ 1

2 ). Therefore, our result shows
a two-fold and three-fold multiplicative gain over the
improved Gaussian mechanism in Balle and Wang
(2018) for (0, δ)-differential privacy in the high pri-
vacy regime for minimizing the noise magnitude and
the noise power, respectively.

In the low privacy regime, the gap is more pronounced:
as δ → 1, the cost of the Gaussian mechanism con-

verges to ∆
2 and ∆2

4 for the noise magnitude and the
noise power, while the cost of optimal noise from (9)
and (10) converges to zero proportionally to (1− δ) .

We plot the ratio of the optimal noise magnitude and
noise power over Gaussian mechanism in Fig. 5. We
conclude that the derived optimal (0, δ)-differential
private mechanism in this work reduces the noise mag-
nitude and noise power by 1

2 and 2
3 in the high privacy

regime, and the improvement is more pronounced in
the low privacy regime.

Figure 5: Ratio of the Optimal Noise Cost over the
Improved Gaussian Mechanism.
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