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Abstract

We consider the following conditional linear
regresston problem: the task is to identify both
(i) a k—DN condition ¢ and (ii) a linear rule
f such that the probability of ¢ is (approxi-
mately) at least some given bound p, and f
minimizes the £, loss of predicting the target
z in the distribution of examples conditioned
Thus, the task is to identify a por-
tion of the distribution on which a linear rule
can provide a good fit. Algorithms for this
task are useful in cases where simple, learn-
able rules only accurately model portions of
the distribution. The prior state-of-the-art for
such algorithms could only guarantee to find a
condition of probability Q(u/n*) when a con-
dition of probability u exists, and achieved
an O(n*)-approximation to the target loss,
where n is the number of Boolean attributes.
Here, we give efficient algorithms for solv-
ing this task with a condition ¢ that nearly
matches the probability of the ideal condition,
while also improving the approximation to
the target loss. We also give an algorithm for
finding a k-DNF reference class for prediction
at a given query point, that obtains a sparse
regression fit that has loss within O(n*) of op-
timal among all sparse regression parameters
and sufficiently large k-DNF reference classes
containing the query point.

on c.

!k-Disjunctive Normal Form (k-DNF): an OR of ANDs
of at most k literals, where a literal is either a Boolean
attribute or the negation of a Boolean attribute.
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1 Introduction

In areas such as advertising, it is common to break a
population into segments, on account of a belief that the
population as a whole is heterogeneous, and thus better
modeled as separate subpopulations. A natural ques-
tion is how we can identify such subpopulations. A re-
lated question arises in personalized medicine. Namely,
we need existing cases to apply data-driven methods,
but how can we identify cases that should be grouped
together in order to obtain more accurate models?

In this work, we consider a problem of this sort recently
formalized by |Juba/[2017|: we are given a data set where
each example has both a real-valued vector together
with a Boolean-valued vector associated with it. Let
Y denote the real-valued vector for some example, and
let X denote the vector of Boolean attributes. We are
also given some target prediction Z of interest, and we
wish to identify a k-DNF ¢ such that c()z) specifies a
subpopulation on which we can find a linear predictor
for Z, (d, ?}, that achieves small loss. In particular, it
may be that neither @, nor any other linear predictor
achieves small loss over the entire data distribution, and
we simply wish to find the subset of the distribution,
determined by our k-DNF ¢ evaluated on the Boolean
attributes of our data, on which accurate regression is
possible. We refer to this subset of the distribution as
a “segment.” In real-world problems, identifying such
“segments” sometimes can be extremely valuable. For
example, after analyzing a medical data set, we could
be able to detect an increased likelihood of cancer for
those who happen to be over 65, on medication A,
and of a certain ethnicity, etc. (described in form of a
k-DNF ¢). Discovering these kinds of patterns would
be difficult using standard statistical approaches.

Juba proposed two algorithms for different families of
loss functions, one for the sup norm (that only applies
to O(1)-sparse regression) and one for the usual £,
norms. But, the algorithm for the £, norm has a major
weakness, namely that it can only promise to identify
a condition /(X) that has a probability polynomially
smaller than optimal. This is especially problematic if
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the segment had relatively small probability to begin
with: it may be that there is no such condition with
enough examples in the data for adequate generaliza-
tion. By contrast, the algorithm for the sup norm
recovers a condition ¢’ with probability essentially the
same as the optimal condition, but of course the sup
norm is an undesirable norm to use for regression, as
it is maximally sensitive to outliers. In general, /,
regression is more tolerant to outliers as p decreases,
and the sup norm is roughly “p = 00.”

In this work, in Theorem [6, we show how to give an
algorithm for O(1)-sparse ¢, regression with a two-fold
improvement over the previous £, regression algorithm
(mentioned above) when the coeflicient vector is sparse:

1. The new algorithm recovers a condition ¢ with
probability essentially matching the optimal con-
dition.

2. We also obtain a smaller blow-up of the loss rel-
ative to the optimal regression parameters @ and
optimal condition ¢, reducing the degree of this
polynomial factor.

More concretely, Juba’s previous algorithm identifies
k-DNF conditions, as does ours. This algorithm only
identified a condition of probability Q(u/n*) when a
condition with probability p exists, and only achieved
loss bounded by O(en”) when it is possible to achieve
loss e. We improve the probability of the condition to
(1—n)p for any desired n > 0, and also reduce the bound
on the loss to O(en*/?), or further to O(egloglog(n*))
if the condition has only g “terms” (ANDs of literals), in
Corollary [7] This latter algorithm furthermore features
a smaller sample complexity, that only depends loga-
rithmically on the number n of Boolean attributes. We
include a synthetic data experiment demonstrating that
the latter algorithm can successfully recover a planted
solution under a small amount of noise, whereas Juba’s
sup norm algorithm completely fails. We also evaluate
our algorithm against selective regression [El-Yaniv and
Wiener, |2012| on some standard benchmarks.

We further give an algorithm for the closely related
reference class regression problem in Theorem [9. In
this problem, we are given a query point &* (along
with values for the real attributes §*), and we wish to
estimate the corresponding z*. In order to compute
this estimate for a single point, we find some k-DNF
¢’ such that ¢/(#*) = 1 so #* is in the support of the
distribution conditioned on ¢/(X), and such that there
are (sparse) regression parameters @ for ¢’ that (nearly)
match the optimal loss for sparse regression under any
condition ¢ with ¢(*) = 1. In this case, the condition
c is a reference class containing Z*, obtaining the
tightest possible fit among k-DNF classes containing

Z*. We think of this as describing a collection of “similar

cases” for use in estimating the target value z* from
the attributes ¢*. For this problem, we guarantee that
we find a condition ¢’ and sparse regression parameters
@ that achieve loss within O(n*) of optimal.

Our algorithms are based on sparsifiers for linear sys-
tems, for example as obtained for the ¢ norm by Bat-
son et al. [2012], and as obtained for non-Euclidean
¢, norms by |Cohen and Peng [2015] based on Lewis
weights |Lewis, |[1978]. The strategy is similar to Juba’s
sup norm algorithm: there, by enumerating the ver-
tices of the polytopes obtained on various subsets of the
data, he is able to obtain a list of all possible candidates
for the optimal estimates of the sup-norm regression
coefficients. Here, we can similarly obtain such a list of
estimates for the £, norms by enumerating the possible
sparsified linear systems. Sparsifiers are often used to
accelerate algorithms, e.g., to run in time in terms of
the number of nonzero entries rather than the size of
the overall input. However, here we use the sparsified
representation in a rather different way. Namely, the
small representation allows for a feasible enumeration
of possible candidates for the regression coeflicients.

We note that this means that we also obtain an algo-
rithm for O(1)-sparse £,-norm regression in the list-
learning model [Balcan et al., |2008| |Charikar et al.,
2017|. Although Charikar et al. in particular are able
to solve a large family of problems in the list-learning
model, they observe that their technique can only ob-
tain trivial estimates for regression problems. We show
that once we have such a list, algorithms for the condi-
tional distribution search problem |Juba, 2016, Zhang
et al., [2017} |Juba et al.| [2018] can be generically used
to extract a description of a good event ¢ for the given
candidate linear rule. Similar algorithms can also then
be used to find a good reference class.

1.1 Relationship to other work

The conditional linear regression problem is most
closely related to the problem of prediction with a
“reject” option. In this model, a prediction algorithm
has the option to abstain from making a prediction.
In particular, |[El-Yaniv and Wiener [2012] considered
linear regression in such a model. However, like most of
the work in this area, their approach is based on scor-
ing the “confidence” of a prediction function, and only
making a prediction when the confidence is sufficiently
high. This does not necessarily yield a nice description
of the region in which the predictor will actually make
predictions. On the other hand, Cortes et al. [2016] con-
sider an alternative variant of learning with rejection
that does obtain such nice descriptions; but, in their
model, they assume that abstention comes at a fixed,
known cost, and they simply optimize the overall loss
when their space of possible prediction values includes
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this fixed-cost “abstain” option. By contrast, we can
explicitly consider various rates of coverage or loss.

Our work is also related to the field of robust statis-
tics [Huber| 1981, Rousseeuw and Leroy, [1987|: in this
area, one seeks to mitigate the effect of outliers. That
is, roughly, we suppose that a small fraction of the data
is unusable (i.e. distant outliers), and we wish for our
models and inferences to be relatively unaffected by
these outliers. The difference between robust statistics
and the conditional regression problem is that in con-
ditional regression we are willing to ignore most of the
data. We only wish to find a small fraction, described
by some rule, on which we can obtain a good regression
fit.

Another work that similarly focuses on learning for
small subsets of the data is the the work by |[Charikar
et al.| [2017] in the list-learning model of Balcan et al.
[2008|. In that work, one seeks to find a setting of some
parameters that (nearly) minimizes a given loss func-
tion on an unknown small subset of the data. Since it
is generally impossible to produce a single set of param-
eters to solve this task — many different small subsets
could have different choices of optimal parameters —
the objective is to produce a small list of parameters
that contains a near-optimal solution for the unknown
subset somewhere in it. As we mentioned above, our
approach actually gives a list-learning algorithm for
O(1)-sparse ¢, regression; but, we show furthermore
how to identify a conditional distribution such that
some regression fit in the list obtains a good fit, thus
also solving the conditional linear regression task. In-
deed, in general, we find that algorithms for solving
the list-learning task for regression yield algorithms for
conditional linear regression. The actual technique of
Charikar et al. does not solve our problem since their
approximation guarantee essentially always admits the
zero vector as a valid approximation. Thus, they also
do not obtain an algorithm for list-learning (sparse)
regression either.

Another task similar to list-learning of linear regression
is the problem of finding dense linear relationships, as
solved by RANSAC |Fischler and Bolles, [1981|. But,
these techniques only work in constant dimension. By
contrast, although we are seeking sparse regression
rules, this is a sparse fit in high dimension. As with
list-learning, in contrast to the conditional regression
problem, such algorithms do not provide a description
of the points fitting the dense linear relationship.

Finally, yet another task similar to list-learning for
regression is fitting linear mixed models [McCulloch and
Searle} 2001} |[Jiang, 2007]. In this approach, one seeks
to explain all (or almost all) of the data as a mixture of
several linear rules. The guarantee here is incomparable

to ours: in contrast to list-learning, the linear mixed
model simply needs a list of linear rules that accounts
for nearly all of the data; it does not need to find a list
that accounts for all possible sufficiently large subsets
of the data. So, there is no guarantee that any of the
mixture components represent an approximation to
the regression parameters corresponding to an event of
interest. On the other hand, in linear mixed models,
one does not need to give any description at all of which
points should lie in which of the mixture components.
In applications, one usually assigns points to the linear
rule that gives it the smallest residual, but this may be
less useful for predicting the values for new points.

2 Preliminaries

We now formally define the problems we consider in
this work, and recall the relevant background.

2.1 The conditional regression and
distribution search tasks

Formally, we focus on the following task:

Definition 1 (Conditional ¢,-norm Regression)
Conditional /,-norm linear regression is the fol-
lowing task. Suppose we are given access to
i.1.d. examples drawn from a joint distribution over
(X,Y,Z) € {0,1}" x{§ € R? : |ly|l2 < b} x [~b,b] such
that for some k-DNF c¢* and some coefficient vector
@ e R with ||@*|, < b, E[[(@,Y) — Z|P|c*(X)] < ¢
and Pr[c*()?)] > (1 + n)u for some given b > 0,
€>0,17>0, and p > 0. Then we wish to find ¢
and @ such that E[|(@,Y) — Z|P|&(X)]V/? < ae and
Pr[¢(X)] > (1 — n)u for an approximation factor
function «. If @* has at most s nonzero components,
and we require @ likewise has at most s nonzero
components, then this is the conditional s-sparse

¢p-norm regression task.

As stressed by |Juba/ [2017], the restriction to k-DNF
conditions is not arbitrary. If we could identify condi-
tions that capture arbitrary conjunctions, even for one-
dimensional regression, this would yield PAC-learning
algorithms for general DNFs. In addition to this being
an unlikely breakthrough, recent work by Daniely and
Shalev-Shwartz [2016| shows that such algorithms would
imply new algorithms for random k-SAT, falsifying a
slight strengthening of Feige’s hypothesis [Feige, 2002].
We thus regard it as unlikely that any algorithm can
find conditions of this kind. Of the classes of Boolean
functions that do not contain all conjunctions, k-DNFs
are the most natural large class, and hence are the focus
for this model. We note though, that our algorithms
could use disjunctions of any fixed polynomial-size fam-
ilies of formulas rather than ANDs of size k.
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The difficulty of the problem lies in the fact that ini-
tially we are given neither the condition nor the linear
predictor. Naturally, if we are told what the relevant
subset is, we can just use standard methods for linear
regression to obtain the linear predictor; conversely, if
we are given the linear predictor, then we can use algo-
rithms for the conditional distribution search (learning
abduction) task (introduced by |Juba| [2016], recalled
below) to identify a condition on which the linear pre-
dictor has small error. Our final algorithm actually
uses this connection, by considering a list of candidates
for the linear predictors to use for labeling the data,
and choosing the linear predictor that yields a condi-
tion that selects a large subset. In particular, we will
use algorithms for the following weighted variant of the
conditional distribution search task:

Definition 2 (Conditional Distribution Search)
Weighted conditional distribution search is the fol-
lowing problem.  Suppose we are given access to
examples drawn i.i.d. from a distribution owver
(X, W) € {0,1}" x [0,b] such that there exists a
k-DNF condition ¢* with Prlc*(X)] > (1 + n)u
and EW|c*(X)] < € for some given parameters
n,u,0,e > 0. Then, find a k-DNF ¢ such that
Pr[e¢(X)] > (1 — n)p and E[W|&(X)] < a- € for some
approximation factor function « (or INFEASIBLE if
no such ¢* exists).

This task is closely related to agnostic conditional dis-
tribution search, which is the special case where the
weights only take values 0 or 1. The current state of
the art for agnostic conditional distribution search is
an algorithm given by [Zhang et al. [2017|, achieving
an O(v/nk)-approximation to the optimal error. That
work built on an earlier algorithm due to [Peleg] [2007].
Peleg’s work already showed how to extend his original
algorithm to a weighted variant of the problem, and
we observe that an analogous modification of the algo-
rithm used by Zhang et al. will obtain an algorithm
for the more general weighted conditional distribution
search problem we are considering here:

Theorem 3 (Peleg [2007, Zhang et al. |2017))
There is a  polynomial-time  algorithm  for

weighted — conditional  distribution search —achiev-
ing an O(n*2(loghb + logl/n + loglogl/d))-
approrimation  with probability 1 — 0 given

m=0 (uljﬂ (n* + log %)) examples.
We note that it is possible to obtain much stronger
guarantees when we are seeking a small formula. |Juba)
et al. [2018| present an algorithm that, when there
is a k-DNF with g terms achieving error €, uses only

m = O(ﬂiﬁz log %) examples and obtains a k-DNF

with probability at least (1 —7)u and error O(eglogm).

Although this is stated for the unweighted case (i.e., €
is a probability), it is easy to verify that since our loss
is nonnegative and bounded, by rescaling the losses to
lie in [0, 1], we can obtain an analogous guarantee for
the weighted case:

Theorem 4 (Juba et al. [2018) There is a
polynomial-time  algorithm  for weighted condi-
tional distribution search when the condition has g

terms using m = O(;ffr]; log %) evamples achieving

an O(g log m)-approzimation using a k-DNF with
O(glogm) terms with probability 1 — 6.

2.2 Reference class regression

Using a similar approach, we will also solve a related
problem, selecting a best k-DNF “reference class” for
regression. In this task, we are not merely seeking some
k-DNF event of probability 1 on which the conditional
loss is small. Rather, we are given some specific ob-
served Boolean attribute values ©*, and we wish to find
a k-DNF condition ¢ that is satisfied by &* solving the
previous task. That is, ¢ should have probability at
least p and our sparse regression fit has small condi-
tional loss, conditioned on c¢. Naturally, the motivation
here is that we have some specific point (Z*,7*) for
which we are seeking to predict z*, and so we are look-
ing for a “reference class” ¢ such that we can get the
tightest possible regression estimate of z* from ¢*; to
do so, we need to take p large enough that we have
enough data to get a high-confidence estimate, and
we need £* to lie in the support of the conditional
distribution for which we are computing this estimate.

Definition 5 (Reference Class {,-Regression)

Reference class £,-norm regression is the following task.
We are given a query point &* € {0,1}", target density
w € (0,1), ideal loss bound €y > 0 approzimation pa-
rameter n > 0, confidence parameter 6 > 0, and access
to i.i.d. exzamples drawn from a joint distribution over
(X,Y,Z) € {0,1}" x {7 € R% : |||l < b} x [~b,b].
We wish to find @ € RY with ||@. < b and a
reference class k-DNF ¢ such that with probability

1= 0, (i) &@) = 1, (i) Ple(X)] > (1 - ),
and (i) for a fized approximation factor a > 1,
E[(@,Y) — Z[P|e(X)]Y/P < amax{e*, eo} where €* is
the optimal €, loss E[[(@*,Y) — Z[P|c*(X)]Y/? over
a* € RY of ||@*||2 < b and k-DNFs c¢* such that
(@) =1 and Pr[c*(X)] > p. If we also require both
@ and @ to have at most s nonzero components, then
this is the reference class s-sparse {,-norm regression
task.

The selection and use of such reference classes for es-
timation goes back to work by |[Reichenbach [1949].
Various refinements of this approach were proposed by
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Table 1: Dimension needed for (1 & +)-approximate £,
sparsification of ¢-dimensional subspaces |[Cohen and
Peng] 2015]. p = 2 uses BSS weights [Batson et al.,
2012, [Boutsidis et al.| 2014].

p ‘ Required dimension r
p= 1 tlozgt
¥
Il<p<2 %tlog(t/fy) log? log(t/7)
p=2 |t/y"
p>2 k"%”tpm logt

Kyburg| [1974] and [Pollock [1990], e.g., to choose the
estimate provided by the highest-accuracy reference
class that is consistent with the most specific reference
class containing the point of interest 2*. Our approach
is not compatible with these proposals, as they essen-
tially disallow the use of the kind of disjunctive classes
that are our exclusive focus. Along the lines we noted
earlier, it is unlikely that there exist efficient algorithms
for selecting reference classes that capture arbitrary
conjunctions, so k-DNFs are essentially the most ex-
pressive class for which we can hope to solve this task.
Bacchus et al.| [1996] give a nice discussion of other
unintended shortcomings of disallowing disjunctions.
A concrete example discussed by Bacchus et al. is the
genetic disease Tay-Sachs. Tay-Sachs only occurs in
two very specific, distinct populations: Eastern Euro-
pean Jews and French Canadians. Thus, a study of
Tay-Sachs should consider a reference class at least
partially defined by a disjunction over membership in
these two populations.

3 The weighting algorithms for
conditional and reference class
regression

The results from sparsification of linear systems (see
supplemental material) tell us that we can estimate the
loss on the subset of the data selected by the unknown
condition by computing the loss on an appropriate
“sketch,” a weighted average of the losses on a small
subset of the data. The dimensions in Table [I] give
the size of these sparsified systems, i.e., the number of
examples from the unknown subset we need to use to
estimate the loss over the whole subset. The key point
is that since the predictors are sparse, the dimension
is small; and, since we are willing to accept a constant-
factor approximation to the loss, a small number of
points suffice. Therefore, it is feasible to enumerate
these small tuples of points to obtain a list of candidate
sets of points for use in the sketch. We also need to
enumerate the weights for these points, but since we
have also argued that the weights are bounded and

we are (again) willing to tolerate a constant-factor
approximation to the overall expression, there is also a
small list of possible approximate weights for the points.
The collection of points, together with the weights,
gives a candidate for what might be an appropriate
sketch for the empirical loss on the unknown subset. We
can use each such candidate approximation for the loss
to recover a candidate for the linear predictor. Thus,
we obtain a list of candidate linear predictors that we
can use to label our data as described above. More
precisely, our algorithm is as shown in Algorithm [L.
In the following, let Ilg, . 4, denote the projection to
coordinates dy,ds, ..., ds.

Theorem 6 (Conditional sparse ¢, regression)
For any constant s and v > 0, r as given
in Table [I for t = (s + 1), and m = mgy +

((14+))° (& mo log(y'/Ps/r) 1
C) (W(n + slogd + rlog ==50—= +log5))

examples, Algorithm [1 runs in polynomial time and
solves the conditional s-sparse £, regression task with

a=O((1+~)Vn*(logb + log% +loglog $)).

input : Examples
(@D, g WY (@) gm) L m)y
target loss bound € and fraction pu.
output : A k-DNF over z1,...,x, and linear

predictor over yi, ..., Y4, Or
INFEASIBLE if none exist.
subroutines : WtCond takes as inputs examples
(@™, ..., #™), nonnegative weights
(wM, ..., w™), and a bound p, and
returns a k-DNF ¢ over zq,...,x,
solving the weighted conditional
distribution search task.
begin
Let mo = [5(75%(2]9“ v2In(12/5))% +1n 2)7,
r is as given in Table
forall (di,...,ds) € (), (q1,...,4:) €
{—[%(lnr - %ln'y)], 0,0 [In(s + 1) /29]}
and (j1,---,Jr) € ([nff’]) do
Let @ be a solution to the following convex
optimization problem: minimize
St (L4 7% (@ My, .0, §89) — 2099)P
subject to ||d@||, <.
Put ¢ < the output of WtCond on
(@M, ..., #M)) with the weights
w® = (@, Ty, a.7P) — 2)|P and bound .
if WtCond did not return INFEASIBLE and
B[((@ Mg,...a.Y) — Z)?|c(X)]'/? < ae then
return d@ and c.

end

return INFEASIBLE.
end

Algorithm 1: Weighted Sparse Regression
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A proof is in the supplemental material. Taking the
approximation parameters 77 and -y, the bound on the
parameters b, norm p, sparsity s, term size k, and
confidence ¢ to be constants, we find that we use ~
1 1 0k 1 .

— + E(n + logd + log E) examples to obtain a

pe?p
O(\/ni" )-approximation to the £, loss with a condition
of probability ~ u, whereas the previous algorithm only
obtained a O(n*)-approximation with a condition of
probability ~ p/n*. Furthermore, by simply plugging
in the algorithm from Theorem {4 for WtCond, we can
obtain the following improvement when the desired
k-DNF condition is small:

Corollary 7 For any constant s and v > 0, r as
given in Table |Z fort = (s+ 1), and m = mgy +
C) (7(1:;)73916 (1og 2 4 slogd + rlog ™ 10@;(1””S/T))

examples, if there is a g-term k-DNF solution to
the conditional s-sparse {,-regression task, then the
modified Algorithm [I runs in polynomial time and
solves the task with a O(glogm)-term k-DNF with

a=O0((1+7)glogm).

1
pezr

That is, using ~ + %(logn + logd + log i
amples, we get a O(g(log ﬁ + loglogn + loglog d))-
approximation to the error obtained by the best g-
term k-DNF' (and the k-DNF we find itself only has
O(g(log i + loglogn + loglogd)) terms). Note that
this guarantee is particularly strong in the case where
the k-DNF would be small enough to be reasonably
interpretable by a human user.

) ex-

The extension to reference class £,-norm regression
proceeds by replacing the weighted condition search
algorithm with a variant of the tolerant elimination
algorithm from Jubal [2016], given in Algorithm[2] (The
analysis again is in the supplemental material.)

Lemma 8 If m > Q(%T(klogn + log X T
log log—o + log log 5)) where W € [0,b], then Algo-
rithm |2 returns a k-DNF ¢ such t_{LCLt with probabil-
ity 1 — 0, 1. ¢(z*) =1 2 Pr[é(X)] > uo/(1 4+ 1)
3. E[W|e(X)] < O((1 + n)*nk(eo + €)) where ¢ is
the minimum E[W|c*( X)| over k-DNF ¢* such that
(7)) = 1 and Prc*(X)] > (14 n)po.

Now, as noted above, our algorithm for reference class
regression is obtained essentially by substituting Al-
gorithm [2| for the subroutine WtCond in Algorithm [1;
the analysis, similarly, substitutes the guarantee of
Lemma, [§] for Theorem [3] In summary, we find:

Theorem 9 (Reference class regression) For
any constant s and v > 0, r as given in Table[I for

: Examples (200, wM), ... (£ (™),
query point Z*, minimum fraction g,
minimum loss target ¢g, approximation
parameter 7).

output: A k-DNF over z1,...,T,.

begin

Initialize p <= 1, ¢ <= L, € < max; w)

while u > pg do

Initialize € « €

while € > ¢,/(1 + 1) do

Initialize ¢ to be the empty disjunction

forall Terms T of at most k literals do

if > )=t wY) < epm then Add
T to c.

input

end

Put e < ¢/(14+n)

end

if (@) =1, Y7, ¢(F9) > pm, and e < é
then Put ¢<c, é<+ ¢

Put p < p/(1+mn)

end

return ¢
end

Algorithm 2: Reference Class Search

=(s+1), and

(1+7)3%°
n?(eo + €*) o

nkd* 1
+ log log — log
no Ho

1 1/p
m > metQ ( (r log M0 108(2!75/r)

=20

examples, our modified algorithm runs in polynomial
time and solves the reference class s-sparse £, regression
task with o = O((1 + ) (1 + n)*n*).

4 Experimental evaluation

To evaluate our algorithm’s performance in practice,
we performed two kinds of experiments: one using
synthetic data with a planted solution, and another
using standard benchmark data sets from the LIBSVM
repository [Chang and Lin| [2011]. The aims of these
experiments are to: 1) compare the performance of our
algorithm to baseline algorithms; 2) demonstrate the
algorithm’s ability to scale to realistic data sets.

Synthetic data. To generate the synthetic data sets,
we first chose a random 2-DNF over Boolean attributes
by sampling terms uniformly at random. We also fixed
two out of d coordinates at random and sampled pa-
rameters @ from a mean 0, variance ¢2 Gaussian for
our target regression fit. For the actual data, we then
sampled Boolean attributes X that, with 25% prob-
ability are a uniformly random satisfying assignment
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Table 2: Synthetic Data Set Properties

Size  #RealAtt #BoolAtt k-DNF Terms Var o
1000 6 10 4 0.01
5000 10 50 8 0.1
10000 20 50 16 0.1

to the DNF and with 75% probability are a uniformly
random falsifying assignment. We sampled Y from a
standard Gaussian in R?. For the examples where X
was a satisfying assignment, we let Z be given by the
linear rule (@,Y) + v where v is a mean 0, variance
0% Gaussian; otherwise, if X was a falsifying assign-
ment, Z was set to v* where v* is a standard mean 0,
variance 1 Gaussian. (Parameters shown in Table |Z)
Furthermore, for the 5000-example and 10000-example
data sets, we also add 5% noise: with 5% probability,
we instead set Z to a mean-0, variance-4 Gaussian. In
general, conditioned on the planted formula, there is a
small-error regression fit a—the expected error of a is
|v]. Off of this planted formula, the expected error for
the optimal prediction z = 0 is [v*| = 1.

For these simple data sets, we made several modifica-
tions to simplify and accelerate the algorithm. First,
we simply fixed all of the weights (of the form (1++)%)
to 1, i.e., g; = 0 for all 7, since the leverage scores for
Gaussian data (and indeed, most natural data sets)
are usually small. Second, we used the version of the
algorithm for small DNFs considered in Corollary [7,
that uses algorithm of [Juba et al. [2018] (recalled in
Theorem {4]) for WtCond. Finally, we set mg = 100 for
all three data sets. Note that mg can be interpreted
as the amount of data required to obtain a good linear
regression fit in a constant number of dimensions. We
observed that a reasonably small number suffices in
practice without affecting the quality of results (namely,
still obtaining the same k-DNF). The algorithm then
searches over sketches for a subset of size mg, which
is in fact much smaller than the actual size m of the
data set. It reduces the amount of computation in
the search and thus, helps us to scale the algorithm to
larger data sets.

As a baseline, we also used the Sup-Norm algorithm
from |Jubal [2017| for conditional sparse sup-norm re-
gression on our synthetic data. In order to obtain
reasonable performance, we needed to make some mod-
ifications: we modified the algorithm along the lines of
Algorithm [T, to only search over tuples of a random
mg = 100 examples in producing its candidate regres-
sion parameters. We also chose to take the regression
parameters that achieved the smallest residuals under
the sup norm, among those that obtained a condition
satisfied by the desired fraction of the data. We con-

Table 3: Parameter Settings for ¢5-Norm and Sup-Norm
Algorithms

(a) £2-Norm
Dataset Size s I vy
1000 2 02250 1
5000 2 0.2465 1
10000 2 02495 1
(b) Sup-Norm
Dataset Size s m €
1000 2 0.2450 1.2
5000 2 0.2450 3.3-3.8
10000 2 0.2450 3.3-3.8

sidered a range of possible values for €; when € ~ 1.5
on the noiseless 02 = 0.01 data, the sup norm algo-
rithm started adding terms outside the planted DNF,
significantly increasing its error, but the algorithm is
successful for the parameters shown here. Note that
the sup norm of the Gaussian residuals is only bounded
with high probability, and given m examples we expect
it to grow approximately like ~ ologm. Parameters
settings for both algorithms are given in Table

For the 1000-example data set, both algorithms were
able to identify the planted 2-DNF (note that once the
planted 2-DNF has been identified, a good regression
fit can be found by any number of methods.) However,
for the 5000-example and 10000-example data sets,
while the ¢y-norm algorithm (i.e. Algorithm |1) could
still find the planted 2-DNF, the sup-norm algorithm
failed: below € = 3.3 it returns an empty DNF, and
at € = 3.8, it returned formulas that were satisfied
by 96.86% of the examples for the 5000-example data
set and 99.99% of the examples for the 10000-example
data set, whereas the planted condition contains about
25%. In between this range, the algorithm finds a
small (2-6 term) DNF that is satisfied by 25-29% of
the data, but that contains at most one term from the
planted DNF. On average, only 35% of the examples
that satisfied the found DNF on the 5000 example data
set were from the planted DNF, comprising 10-18% of
the data overall, and only 40% were from the planted
DNF on the 10000 example data set, comprising 15—
19% of the data overall. Thus, the found DNF includes
a substantial fraction of the data that is not from the
planted distribution and thus has high error. The sup
norm is maximally sensitive to extreme points. Thus,
for these two data sets, the sup norm on each term
was dominated by the outliers (i.e. noise, which have
higher variance). So, the algorithm cannot distinguish
good terms from bad, and it adds many terms outside
the planted 2-DNF. Hence, it was not able to find the
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true condition under which the bulk of the data can be
predicted accurately.

Real-world benchmarks. We also compared Algo-
rithm E against ly selective regressors |El-Yaniv and
Wiener, [2012] on some of the LIBSVM [Chang and Lin,
2011] regression data sets that were used to evaluate
that work. We split each of those datasets into a train-
ing set (1/3 of the data) and test set (2/3 of the data).
We generated Boolean attributes using binary splits at
the median values on the numerical features, exclud-
ing the target attribute. We then ran Algorithm [I] on
the training set to obtain a 2-DNF, using my = 100
for the smaller data sets (Boston housing and Body
fat) and mg = 200 for the larger data sets (Cpusmall
and Space) Next, we filtered both the training and
test data satisfying the 2-DNF, using the first one to
train a new regression fit on the selected subset and
the other as a holdout to estimate the error of this
resulting regression fit. We compared this to the test
error for selective regression, averaged over ten runs.
Risk-Coverage (RC) curves of the results are shown in
Figure [II We outperform the baseline on the Boston
housing dataset, and we generally achieved lower error
than the baseline for lower coverage (less than 0.5) on
all data sets except Body fat and somewhat higher error
for higher coverage on three data sets (Body fat, Space,
and Cpusmall). Since selective regression first tries to
fit the entire data set, and then chooses a subset where
that fixed predictor does well, it is to be expected that
it may miss a small subset where a different predictor
can do better, but that its freedom to abstain on a
somewhat arbitrary subset may give it an advantage at
high coverage. However, note that in addition, we also
obtained a 2-DNF that describes the subpopulation
on all four data sets, which is the main advantage of
our method. For example, for the Boston housing data
set, at 25 % coverage, our algorithm detected a good
regression fit on a subset of the data specified by the
following condition (i.e. 2-DNF):

(NOX > 0.54 and DIS > 3.2)
or (CRIM <0.26 and RAD > 5)
or (DIS > 3.2 and PTRATIO > 19)

where NOX: nitric oxides concentration (parts per
10 million); DIS: weighted distances to five Boston
employment centres; CRIM: per capita crime rate by
town; RAD: index of accessibility to radial highways;
PTRATIO: pupil-teacher ratio by town.

Given this condition and the regression fit, we can

2Empirically, we observed on Boston housing that we
could have taken mg as small as 50 for p > 20% and we still
find the same DNFs; similarly, for Space, we could take my
as small as 120 for p > 20% and still find the same DNFs.
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Figure 1: RC curves of Algorithm |I (red line) and
the baseline method (black line) on different regression
data sets from the LIBSVM repository for a single
run of the algorithms. The horizontal axis represents
the coverage (u), while the vertical axis represents the
€error.

easily predict the target variable (in this case, is the
median value of owner-occupied homes in $1000's) for
any new data that satisfies this condition.

Scala code for these experiments that uses the Google
Kubernetes engine is available at https://github,
com/johnhainline/sclr/.

5 Directions for future work

There are several natural open problems. First, al-
though sparsity is desirable, our exponential depen-
dence of the running time (or list size) on the sparsity
is problematic. (The sup norm regression algorithm
|[Jubay 2017] also suffered this deficiency.) Is it possi-
ble to avoid this? Second, our algorithm for reference
class regression has an O(n*) blow-up of the loss, as
compared to O(n¥/2) for conditional regression. Can
we achieve a similar approximation factor for reference
class regression? Finally, we still do not know how close
to optimal this blow-up of the loss is; in particular, we
do not have any lower bounds. Note that this is a
computational and not a statistical issue, since we can
obtain uniform convergence over all k-DNF conditions.
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