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Abstract

Given a binary prediction problem, which
performance metric should the classifier op-
timize? We address this question by formal-
izing the problem of Metric Elicitation. The
goal of metric elicitation is to discover the
performance metric of a practitioner, which
reflects her innate rewards (costs) for correct
(incorrect) classification. In particular, we
focus on eliciting binary classification perfor-
mance metrics from pairwise feedback, where
a practitioner is queried to provide relative
preference between two classifiers. By exploit-
ing key geometric properties of the space of
confusion matrices, we obtain provably query
efficient algorithms for eliciting linear and
linear-fractional performance metrics. We
further show that our method is robust to
feedback and finite sample noise.

1 INTRODUCTION

Selecting an appropriate performance metric is crucial
to the real-world utility of predictive machine learning.
Specialized teams of statisticians and economists are
routinely hired in the industry to monitor many metrics
— since optimizing the wrong metric directly translates
into lost revenue [6]. Medical predictions are another
important application, where ignoring cost sensitive
trade-offs can directly impact lives [23]. Unfortunately,
there is scant formal guidance within the literature for
how a practitioner/user might choose a metric, beyond
a few common default choices [4, 10, 22], and even
less guidance on selecting a metric which reflects the
preferences of the practitioners/users.

Metric Elicitation: Motivated by the principle that
the performance metric which best reflects implicit user
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Fig. 1: Metric Elicitation framework.

tradeoffs results in learning models that best resonate
with user preferences [9, 22], we introduce a framework,
metric elicitation (ME), for determining the binary clas-
sification performance metric from user feedback. Since
human feedback is costly, the goal is to use as little
feedback as possible. On its face, ME simply requires
querying a user (oracle) to determine the quality she
assigns to classifiers that are learned from standard clas-
sification data; however, humans are often inaccurate
in providing absolute preferences [19]. Therefore, we
propose to employ pairwise comparison queries, where
the user (oracle) is asked to compare two classifiers and
provide an indicator of relative preference. Based on
that relative preference feedback, we elicit the innate
performance metric of the user (oracle). See Figure 1
for visual intuition of the framework.

Our approach is inspired by a large literature in
economics and psychology on preference elicitation
[21, 16, 27, 3]. Here, the goal is to learn user pref-
erences from purchases at posted prices. Since there
is no notion of prices or purchases in MFE for machine
learning, standard approaches from these studies do
not apply. In addition, we emphasize that the notion of
pairwise classifier comparison is not new and is already
prevalent in the industry. An example is A/B testing
[26], where the whole population of users acts as an
oracle.! Similarly, classifier comparison by a single

In A/B testing, sub-populations of users are shown
classifier A vs. classifier B, and their responses determine
the overall preference. Interestingly, while each person is
shown a sample output from one of the classifiers, the entire
user population acts as the oracle for comparing classifiers.
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expert is becoming commonplace due to advances in
the field of interpretable machine learning [20, 7).

In this first edition of ME, we focus on the most com-
mon performance metrics which are functions of the
confusion matrix [14, 17, 22|, particularly, linear and
ratio-of-linear functions.? This includes almost all mod-
ern metrics such as accuracy, Fz-Measure, Jaccard Sim-
ilarity Coeflicient [22], etc. By construction, pairwise
classifier comparisons may be conceptually represented
by their associated pairwise confusion matrix compar-
isons. Despite this apparent simplification, the problem
remains challenging because one can only query feasible
confusion matrices, i.e. confusion matrices for which
there exists a classifier. As we show, our characteri-
zation of the space of confusion matrices enables the
design of efficient binary-search type procedures that
identify the innate performance metric of the oracle.
While classifier (confusion matrix) comparisons may
introduce additional noise, our approach remains ro-
bust, both to noise from classifier (confusion matrix)
estimation, and to noise in the comparison itself. Thus,
our work directly results in a practical algorithm.

Example: Consider the case of cancer diagnosis, where
a doctor’s unknown, innate performance metric is a lin-
ear function of the confusion matrix, i.e., she has some
innate reward values for True Positives and True Neg-
atives — equivalently (equiv.), costs for False Positives
and False Negatives — based on known consequences
of misdiagnosis. Here, the doctor takes the role of the
oracle. Our proposed approach exploit the space of con-
fusion matrices associated with all possible classifiers
that can be learned from standard classification data
and determine the underlying rewards (equiv., costs)
provably using the least possible number of pairwise
comparison queries posed to the doctor.

Our contributions are summarized as follows:

e We propose the technical problem of Metric Elicita-
tion, a framework for determining supervised learning
metrics from user feedback. For the case of pairwise
feedback, we show that under certain conditions ME
is equivalent to learning preferences between pairs
of confusion matrices.

e When the underlying metric is linear, we propose a
binary search algorithm that can recover the metric
with query complexity that decays logarithmically
with the desired resolution. We further show that
our query-complexity rates match the lower bound.

e We extend the elicitation algorithm to more complex
linear-fractional performance metrics.

e We prove robustness of the proposed approach under
feedback and classifier estimation noise.

2Metrics depending on factors such as model complexity
and interpretability are beyond the scope of this manuscript.

2 BACKGROUND

Let X € X and Y € {0,1} represent the input and
output random variables respectively (0 = negative
class, 1 = positive class). We assume a dataset of size
n, {(x;,y:)}",, generated 4id from a data generating
distribution P % (X,Y). Let fx be the marginal dis-
tribution for X. Let n(z) = P(Y = 1|X = z) and
¢ =P(Y =1) represent the conditional and the uncon-
ditional probability of the positive class, respectively.
Note that the earlier term is a function of the input z;
whereas, the latter is a constant. We denote a classi-
fier by h, and let H = {h : X — [0,1]} be the set of
all classifiers. A confusion matrix for a classifier h is
denoted by C(h,P) € R?*2 comprising true positives
(TP), false positives (FP), false negatives (FN), and
true negatives (TN) and is given by:

Cy, =TP(h,P)=P(Y =1,h=1),
Cor = FP(h,P)=P(Y =0,h =1
Cio=FN(hP)=P(Y =1,h =

Coo = TN (h,P) =P(Y =0,h = 0). (1)

Clearly, >, ; Ci; = 1. We denote the set of all confu-
sion matrices by C = {C(h,P) : h € H}. Under the
population law P, the components of the confusion
matrix can be further decomposed as: F'N(h,P) =
¢—TP(h,P) and FP(h,P)=1—(—TN(h,P). This
decomposition reduces the four dimensional space to
two dimensional space. Therefore, the set of confusion
matrices can be defined as C = {(T'P(h,P), TN (h,P)) :
h € H}. For clarity, we will suppress the dependence
on P in our notation. In addition, we will subsume the
notation A if it is implicit from the context and denote
the confusion matrix by C = (T'P,TN). We represent
the boundary of the set C by 9C. Any hyperplane (line)
¢ in the (tp,tn) coordinate system is given by:

);
)

)

{:=a-tp+b-tn=c, wherea,b,cecR.

Let ¢ : [0,1]?%2 — R be the performance metric for a
classifier h determined by its confusion matrix C'(h).
Without loss of generality (WLOG), we assume that ¢
is a utility, so that larger values are better.

2.1 Types of Performance Metrics

We consider two of the most common families of bi-
nary classification metrics, namely linear and linear-
fractional functions of the confusion matrix (1).

Definition 1. Linear Performance Metric (LPM): We
denote this family by orpyp. Given constants (repre-
senting costs or weights) {a11, ao1, a10,a00} € R*, we
define the metric as:
¢(C) = auTP + a01FP + aloFN + (ZO()TN
=m1 TP + mopoT N + mg, (2)
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where myy = (a11 — ai), Mmoo = (@aoo — ao1), and
mo = a10¢ + ao1(1 - ¢).
Example 1. Weighted Accuracy (WA) [24]:

WA= wlTP + ’UJQTN,
where wy,wy € [0,1] (w1, wy can be shifted and scaled

to [0,1] without changing the learning problem [17]).

Definition 2. Linear-Fractional Performance Metric
(LFPM): We denote this family by orrparr. Given con-
stants (representing costs or weights) {all, agp1, @10, 00,
bi1,bo1,b10,boo } € RE, we define the metric as:

anTP + ag1 FP + apoF N + aggT'N

C P—
d)( b11TP + by FP + bigFN + bgoT N
_ P11T'P + pooT'N + po (3)
q1TP + qooTN +qo’
where p11 = (a11 — aw), poo = (a0 — ao1), qu1 =

(bi1 = b10), goo = (boo — bo1), po = a10¢ + ao1 (1 — ),
q0 = b10¢ + bo1(1 = ().

Example 2. The Fg measure and the Jaccard simi-
larity coefficient (JAC) [22]:

TP TP
Fs=—p 7w 62<+174’JA021_TN (4)
1+62 1447 1+p2

2.2 Bayes Optimal and Inverse Bayes
Optimal Classifiers

Given a performance metric ¢, the Bayes utility 7 is
the optimal value of the performance metric over all
classifiers, i.e., T = supycy ¢(C(h)) = supgec ¢(C).
The Bayes classifier h (when it exists) is the classi-
fier that optimizes the performance metric, so h =
arg max,cy ¢(C(h)). Similarly, the Bayes confusion
matrix is given by C = arg maxcc ¢(C). We further
define the inverse Bayes utility 7 = infrey ¢(C(h)) =
infoee ¢(C). The inverse Bayes classifier is given by
h = argmin, ¢y, ¢(C(h)). Similarly, the inverse Bayes
confusion matrix is given by C' = argmingce ¢(C).
Notice that for ¢ € prpa (2), the Bayes classifier pre-
dicts the label which maximizes the expected utility
conditioned on the instance, as discussed below.

Proposition 1. Let ¢ € prpr, then

=y ) () > o] man + meo > 0
h(z) = { 1[0 > p(z)], 0.0,

mi1+moo —

is a Bayes optimal classifier w.r.t ¢. Further, the
inverse Bayes classifier is given by h =1 — h.

2.3 Problem Setup

We first formalize oracle query. Recall that by the
definition of confusion matrices (1), there exists a sur-
jective mapping from H — C. An oracle is queried to
determine relative preference between two classifiers.

However, since we only consider metrics which are
functions of the confusion matrix, a comparison query
over classifiers becomes equivalent to a comparison
query over confusion matrices in our setting.

Definition 3. Oracle Query: Given two classifiers
h,h' (equiv. to confusion matrices C,C" respectively),
a query to the Oracle (with metric ¢) is represented by:

D(h, ) = Q(C,C") = 1[6(C) > $(C")] = 1[C = ),
()
where ' : H x H —{0,1} and Q@ : C xC — {0,1}. The

query denotes whether h is preferred to h' (equiv. to C
is preferred to C') as measured according to ¢.

We emphasize that depending on practical convenience,
the oracle may be asked to compare either confusion
matrices or classifiers achieving the corresponding con-
fusion matrices, via approaches discussed in Section 1.
Henceforth, for simplicity of notation, we will treat
any comparison query as confusion matrix comparison
query. Next, we state the metric elicitation problem.

Definition 4. Metric Elicitation (given P): Suppose
that the oracle’s true, unknown performance metric is
¢. Recover a metric g% by querying the oracle for as
few pairwise comparisons of the form Q(C,C"), such
that ||¢ — QA5||W < k for sufficiently small R 3 k > 0 and
for any suitable norm || - ||__.

Notice that Definition 4 involves true population quanti-
ties C,C" (See (1)). However, in practice, we are given
only finite samples. This leads to a more practical
definition of metric elicitation problem.

Definition 5. Metric Elicitation (given {(x;,y;)}):
The same problem as stated in Definition 4, except that
the queries are of the form Q(C’,C”), where C,C’ are
the estimated confusion matrices from the samples.

Ultimately, we want to perform ME as described in
Definition 5. A good approach to do so is to first solve
ME as defined in Definition 4, i.e, ME assuming access
to the appropriate population quantities, and then
consider practical implementation using finite data.
This is a standard approach in decision theory (see
e.g. [15]), where estimation error from finite samples is
adjudged as a noise source and handled accordingly.

3 CONFUSION MATRICES

ME will require confusion matrices that are achieved
by all possible classifiers, thus it is necessary to charac-
terize the set C in a way which is useful for the task.
Assumption 1. We assume g(t) = Pn(X) > t] is
continuous and strictly decreasing for t € [0, 1].

This is equivalent to standard assumptions [14] that the
event 1(X) = t has positive density but zero probability.
Note that this requires X to have no point mass.
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Fig. 2: (a) Supporting hyperplanes (with normal vectors) and resulting geometry of C; (b) Sketch of Algorithm 1;
(c) Maximizer C" and minimizer C* along with the supporting hyperplanes for LFPMs.

Proposition 2. (Properties of C — Figure 2(a).) The
set of confusion matrices C is convex, closed, contained
in the rectangle [0, (] x [0,1—(] (bounded), and 180° ro-
tationally symmetric around the center-point (%, %)
Under Assumption 1, (0,1 —¢) and ({,0) are the only
vertices of C, and C is strictly conver. Thus, any sup-

porting hyperplane of C is tangent at only one point.>

3.1 LPM Parametrization and Connection
with Supporting Hyperplanes of C

For an LPM ¢ (2), Proposition 2 guarantees the ex-
istence of a unique Bayes confusion matrix on the
boundary dC. This is because optimum for a linear
function over a strictly convex set is unique and lies
on the boundary [2]. Note that any linear function
with the same trade-offs for TP and TN, i.e. same
(m11,Moo), is maximized at the same boundary point
regardless of the bias term mg. Thus, different LPMs
can be generated by varying trade-offs m = (mj1, mgo)
such that ||m|| = 1 and mo = 0. The condition|m| =1
does not affect the learning problem as discussed in
Example 1. In other words, the performance metric is
scale invariant. This allows us to represent the family of
linear metrics ¢z, par by a single parameter 6 € [0, 27]:

(6)

Given m (equiv. to 6), we can recover the Bayes classi-
fier using Proposition 1, and then the Bayes confusion
matrix Cp = Cpy = (TPm, TNm) using (1). Under
Assumption 1, due to strict convexity of C, the Bayes
confusion matrix C'p, is unique; therefore, we have that

(m,C) < (m,Cp) VYCEC,C#Tm. ()

Notice the connection between the linear performance
metrics and the supporting hyperplanes of the set C
(see Figure 2(a)). Given m, there exists a supporting
hyperplane tangent to C at only Cy, defined as follows:

wrpm = {m = (cosf,sinb) : 6 € [0, 2n]}.

gm =Mmi1- tp—l—moo -tn = mllﬁm +mOoﬁm. (8)
Clearly, if m, and mgo are of opposite sign (i.e., 6 €
(7/2,m) U (37/2,27)), then hy, is the trivial classifier

3Additional visual intuition about the geometry of C
(via an example) is given in Appendix A.

predicting either 1 or 0 everywhere. In other words, if
the slope of the hyperplane is positive, then it touches
the set C either at (¢,0) or (0,1—¢). When mq1,mgg #
0 with the same sign (i.e.,, 8 € (0,7/2) U (m,37/2)),
then the Bayes confusion matrix is away from the two
vertices. Now, we may split the boundary OC as follows:

Definition 6. The Bayes confusion matrices for LPMs
with ma1,meo > 0 (0 € [0,7/2]) form the upper bound-
ary, denoted by Cy. The Bayes confusion matrices
for LPMs with my1,mgep < 0 (0 € (m,37/2)) form the
lower boundary, denoted by OC_. From Proposition 1,
it follows that the confusion matrices in OC4 and OC_
correspond to the classifiers of the form 1[n(x) > ¢]
and 1[0 > n(z)], respectively, for some § € [0, 1].

4 ALGORITHMS

In this section, we propose binary-search type algo-
rithms, which exploit the geometry of the set C (Section
3) to find the maximizer / minimizer and the associ-
ated supporting hyperplanes for any quasiconcave /
quasiconvex metrics. These algorithms are then used
to elicit LPMs and LFPMs, both of which belong to
both quasiconcave and quasiconvex function families.

We allow noisy oracles; however, for simplicity, we
will first discuss algorithms and elicitation with no-
noise, and then show that they are robust to the noisy
feedback (Section 6). Moreover, as one typically prefers
metrics which reward correct classification, we first
discuss metrics that are monotonically increasing in
both TP and TN. The monotonically decreasing case
is discussed in Appendix D as a natural extension.

The following lemma for any quasiconcave and quasicon-
vex metrics forms the basis of our proposed algorithms.
Lemma 1. Let p™ : [0,1] — 9Cy, p~ : [0,1] — OC_
be continuous, bijective, parametrizations of the upper
and lower boundary, respectively. Let ¢ : C — R be a
quasiconcave function, and v : C — R be a quasiconvex
function, which are monotone increasing in both T P
and TN. Then the composition ¢ o p™ : [0,1] — R is
quasiconcave (and therefore unimodal) on the interval
[0,1], and ¥ o p~ : [0,1] — R is quasiconvex (and
therefore unimodal) on the interval [0, 1].
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Algorithm 1 Quasiconcave Metric Maximization

1: Input: € > 0 and oracle Q.

2: Initialize: 0, =0, 0, = 7.

3: while |8, — 0,] > € do

4: Set 0, = il g, = Oatbe
Set corresponding slopes (m’s) using (6).

5:  Obtain Egaﬁgcﬁgr“ Ege, E@b using Proposition 1.
Compute Cy,,Cy_,Cy,,Co.,Cy, using (1).

6: Query 7Q(g00709a)a9(00d7CGC)vQ(CGevC%)v
and Q(Cy,,Ch,).

7. If Cy = Cy < Cyn for consecutive § < 6’ < ",
assume the default order Cy < Cyr < Cyr.

8: if (69,1 - égc) Set 6, = 04.

9: elseif (69a < égc - 6%) Set 0, = 04.

10: elseif (690 < 69(1 - ége) Set 0, = 6., 0, =0..

11:  elseif (Cp, < Cy, = Cy,) Set 0, = 0.

12: else Set 6, =46,.

13: Output: m, C, and £, where m = my (), C =

Cy,, and £ := (m, (tp, tn)) = (m, C).

__ 0,136
,and , = fat30

The unimodality of quasiconcave (quasiconvex) metrics
on the upper (lower) boundary of the set C along with
the one-dimensional parametrization of m using 6 €
[0,27] (Section 3) allows us to devise binary-search-
type methods to find the maximizer C, the minimizer
C, and the first order approximation of ¢ at these
points, i.e., the supporting hyperplanes at C and C.

Algorithm 1. Mazimizing quasiconcave metrics and
finding supporting hyperplanes at the optimum: Since ¢
is monotonically increasing in both TP and TN, and C
is convex, the maximizer must be on the upper bound-
ary. Hence, we start with the interval [0, = 0,6, = T]
(Definition 6). We divide it into four equal parts and
set slopes using (6) in line 4 (see Figure 2(b) for visual
intuition). Then, we compute the Bayes classifiers us-
ing Proposition 1 and the associated Bayes confusion
matrices in line 5. We pose four pairwise queries to
the oracle in line 6. Line 7 gives the default direction
to binary search in case of out-of-order responses.* In
lines 8-12, we shrink the search interval by half based
on oracle responses. We stop when the search interval
becomes smaller than a given € > 0 (tolerance). Lastly,
we output the slope i, the Bayes confusion matrix C,
and the supporting hyperplane ¢ at that point.

Algorithm 2. Minimizing quasiconvex metrics and
finding supporting hyperplane at the optimum: The
same algorithm can be used for quasiconvex mini-
mization with only two changes. First, we start with
0 € [, %7?], because the optimum will lie on the lower
boundary dC_. Second, we check for C' < C’ whenever

“Due to finite samples, C’s boundary may have staircase-
type bumps in practice. This may lead to out-of-order
responses, even when the metric is unimodal w.r.t. 6.

LPM Elicitation (True metric ¢* = m”*)

1. Run Algorithm 1 to get C* and a hyperplane ‘.
2. Set the elicited metric to be the slope of £.
LFPM Elicitation (True metric ¢*)

1. Run Algorithm 1 to get C”, a hyperplane Z, and SoE 9).

2. Run Algorithm 2 to get C*, a hyperplane £, and SoE (10).

3. Run the oracle-query independent Algorithm 3 to get the
elicited metric, which satisfies both the SoEs.

Fig. 3: LPM and LFPM elicitation procedures.

Algorithm 1 checks for C' = C’, and vice versa. Here,
we output the counterparts, i.e., slope m, inverse Bayes
Confusion matrix C, and supporting hyperplane £.

5 METRIC ELICITATION

In this section, we discuss how Algorithms 1, 2, and 3
(described later) are used as subroutines to elicit LPMs
and LFPMs. See Figure 3 for a brief summary.

5.1 Eliciting LPMs

Suppose that the oracle’s metric is wrpy 2 ¢* = m*,
where, WLOG, |m*|| = 1 and m{ = 0 (Section 3).
Application of Algorithm 1 to the oracle, who responds
according to m*, returns the maximizer and supporting
hyperplane at that point. Since the true performance
metric is linear, we take the elicited metric, m, to be
the slope of the resulting supporting hyperplane.

5.2 Eliciting LFPMs

An LFPM is given by (3), where p11,poo,q11, and
goo are not simultaneously zero. Also, it is bounded
over C. As scaling and shifting does not change the
linear-fractional form, WLOG, we may take ¢(C) €
[0,1]VC € C with positive numerator and denominator.

Assumption 2. Let ¢ € prppy (3). We assume
that p11,po0 = 0, P11 > q11, Poo = Goo, Po = 0, go =
(P11 — q11)¢ + (Poo — qoo)(1 — (), and p11 + poo = 1.

Proposition 3. The conditions in Assumption 2 are
sufficient for ¢ € prrpm to be bounded in [0,1] and
simultaneously monotonically increasing in TP and TN.

The conditions in Assumption 2 are reasonable as we
want to elicit any unknown bounded, monotonically
increasing LFPM. To no surprise, examples outlined in
(4) and Koyejo et al. [14] satisfy these conditions. We
first provide intuition for eliciting LFPMs (Figure 3).
We obtain two hyperplanes: one at the maximizer on
the upper boundary, and other at the minimizer on the
lower boundary. This results in two nonlinear systems
of equations (SoEs) having only one degree of freedom,
but they are satisfied by the true unknown metric.
Thus, the elicited metric is one where solutions to the
two systems match pointwise on the confusion matrices.
Formally, suppose that the oracle’s metric is:
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pi TP+ p TN
411 TP+ q50TN + g5

¢"(C) =

Let 7* and 7* be the maximum and minimum value of

¢* over C, respectively, i.e., 7* < ¢*(C) <7*VC € C.

Under Assumption 1, we have a hyperplane

7% — * = * = *
Cp = (ply — T qi)tp + (P11 — T'qi)in =T"q4

touching the set C only at (TP ,TN") on the upper
boundary dCy. Similarly, we have a hyperplane

L5 = (P11 — Z°q11)tp + (Poo — T do0)tn = 77 qp,
which touches the set C only at (TP*,TN*) on the
lower boundary dC_. To help with intuition, see Figure

2(c). Since LFPM is quasiconcave, Algorithm 1 returns
a hyperplane (= mllthrmOgtn =), Where Co =
mnTP + moOTN This is equivalent to € up to

a constant multiple; therefore, the true metrlc is the
solution to the following non-linear SoE:

* =% >k — * =% >k — =% >k ral
Pl — T qi1 = aMi1,Pog — T Goo = iMoo, T ¢y = aCl,

where « > 0, because LHS and 7’s are non-negative.

Additionally, we ignore the case when o = 0, since this
would imply a constant ¢. Next, we may divide the
above equations by a > 0 on both sides so that all the
coefficients p*’s and g*’s are factored by «. This does
not change ¢*; thus, the SoE becomes:

— 7 oo = Moo, 7" qg = Co.
9)
Notice that none of the conditions in Assumption 2 are
changed except pj; + pjy = 1. However, we may still
use this condition to learn a constant o times the true
metric, which does not harm the elicitation problem.

/ =k | = /
P11 — T 411 = M11,Poo

As LFPM is also quasiconvex, Algorithm 2 outputs
a hyperplane £ := mq,tp + mggtn = C\, where Cy =
my TP* + moeTN*. This is equivalent to £} up to
a constant multiple; thus, the true metric is also the
solution of the following SoE:

>k * ok * * ok * *
P11 — T7q11 = YMq1, P00 — T Goo = Yoo, T o = 7Co:s

where v < 0 since LHS is positive, but m’s are negative.

Again, we may assume y < 0. By dividing the above
equations by —v on both sides, all the coefficients p*’s
and ¢*’s are factored by —v. This does not change ¢*;
thus, the system of equations becomes the following:

P11 — T g1 = ma1, Poo — T 00 = Moo, T7q5 = Co.
(10)
Proposition 4. Under Assumption 2, knowing p},
solves the system of equations (9) as follows:
_p
Pho =1 =11 3 = Cosys
/ /

a1 = (P11 — mll)@v d00 = (Poo — moo)@, (11)

Algorithm 3 Grid Search for Best Ratio

: Input: k, A.

Initialize: o, = oo,pu’opt =0.

Generate C1, ...,Cy on 9C and dC_ (Section 3).

for (py; = 0; pjy < 1 pjy =pj; +A) do
Compute ¢’, ¢’ using Proposition 4. Compute

array r = [;5,,,((%11)) . ;’,,(C")] Set o = std(r).

if (0 < oopt) Set oop = 0 and plLopt Pl
7: Output: piy -

where P' = p}1¢ + pho(l1 = ¢) and Q' = P' + Cq —
m11¢ — moo(1 — ¢). Thus, it elicits the LEPM.

Now assume we know p},. Using Proposition 4, we may
solve the system (9) and obtain a metric, say ¢’. Sys-
tem (10) can be solved analogously, provided we know
pY1, to get a metric, say ¢”. Notice that when 11 /p%, =
Pia/rho = oty then 6°(C) = ¢/(C)/a = —¢"(C)/.
This means that when the true ratios of p’s are known,
then ¢, ¢” are constant multiples of each other. So, to
know the true p}, (or, pf;) is to search the grid [0, 1]
and select the one where the ratios of ¢’ and ¢” are
constant on a number of confusion matrices. Since we
can generate many confusion matrices on dC; and 0C_—
(vary ¢ in Definition 6), we can estimate the ratio p; to
Ppo using grid search based Algorithm 3. We may then
use Proposition 4 for the output of Algorithm 3 and
set the elicited metric ¢ = ¢. Note that Algorithm 3
is independent of oracle queries and easy to implement,
thus it is suitable for the purpose.

6 GUARANTEES

In this section, we discuss guarantees for the elicitation
procedures (Section 5) in the presence of (a) confusion
matrices’ estimation noise from finite samples and (b)
oracle feedback noise with the following notion.

Definition 7. Oracle Feedback Noise (eq > 0): The
oracle may provide wrong answers whenever |¢(C) —
d(C")| < eq. Otherwise, it provides correct answers.

Simply put, if the confusion matrices are close as mea-
sured by ¢, then the oracle responses can be wrong.
Moving forward to the guarantees, we make two as-
sumptions which hold in most common settings.

Assumption 3. Let {7};(z)}, be a sequence of esti-

mates of n(x) depending on the sample size. We assume
N P

that || — 7ifle = 0.

Assumption 4. For quasiconcave ¢, recall that the

Bayes classifier is of the form h = 1[n(x) > d].

Let 6 be the threshold that mazimizes ¢. We as-

sume that the probability that n(X) lies near § is
bounded from below and above. Formally, kov <
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P[5~ n(X)) € [0,0]] P [0(X) =) € [0,0]] < kv

forany 0 <v < k%\/kleg and some k1 > kg > 0.

Assumption 3 is arguably natural, as most estimation is
parametric, where the function classes are sufficiently
well behaved. Assumption 4 ensures that near the
optimal threshold &, the values of n(X) have bounded
density. In other words, when X has no point mass, the
slope of n(X) where it attains the optimal threshold
d is neither vertical nor horizontal. We start with
guarantees for the algorithms in their respective tasks.

Theorem 1. Given €,eq > 0 and a 1-Lipschitz metric
¢ that is monotonically increasing in TP, TN. If it
is quasiconcave (quasiconvex) then Algorithm 1 (Algo-
rithm 2) finds an approzvimate mazimizer C (minimizer
C). Furthemore, (i) the algorithm returns the support-
ing hyperplane at that point, (ii) the value of ¢ at that
point is within O(\/e€q + €) of the optimum, and (iii)
the number of queries is O(log %)

Lemma 2. Under our model, no algorithm can find the
magzimizer (minimizer) in fewer than O(log L) queries.

Theorem 1 and Lemma 2, guarantee that Algorithm 1
(Algorithm 2), for a quasiconcave (quasiconvex) metric,
finds a confusion matrix and a hypeplane which is close
to the true maximizer (minimizer) and its associated
supporting hyperplane, using just the optimal number
of queries. Further, since binary search always tends
towards the optimal whenever responses are correct, the
algorithms necessarily terminate within a confidence
interval of the true maximizer. Thus, we can take €
sufficiently small so that the only error that arises is
due to the feedback noise €n. Now, we present our
main result which guarantees effective LPM elicitation.
Guarantees in LFPM elicitation follow naturally as
discussed in the proof of Theorem 2 (Appendix B).

Theorem 2. Let oppy O ¢* = m* be the true perfor-
mance metric. Under Assumption 4, given € > 0, LPM
elicitation (Section 5.1) outputs a performance metric

¢ = 1, such that|m* — m|_ <V2e+ %\/lef.ﬂ.

So far, we assumed access to the confusion matrices.
However, in practice, we need to estimate them using
samples {(z;,y;)}7,. We now discuss robustness of
the algorithms working with samples. Recall that, as
a standard consequence of Chernoff-type bounds [1],
sample estimates of true-positive and true-negative are
consistent estimators. Therefore, with high probability,
we can estimate the confusion matrix within any desired
tolerance, provided we have sufficient samples. This
implies that we can also estimate the ¢ values within
any tolerance since LPM and LFPM are 1-Lipschitz due
to (6) and Assumption 2, respectively. Thus, with high
probability, the elicitation procedures gather correct
oracle’s preferences within feedback noise €. Further,

Table 1: LPM elicitation at tolerance ¢ = 0.02 radians.

d)*:m* ¢:rh ¢*:m* ¢:ﬁ1
(0.98,0.17) | (0.99,0.17) | (-0.94,-0.34) | (-0.94,-0.34)
(0.64,0.77) | (0.64,0.77) | (-0.50,-0.87) | (-0.50,-0.87)

we may prove the following lemma which allow us to
control the error in optimal classifiers from using the
estimated 7j(x) rather than the true n(x).

Lemma 3. Let hy and fzg be two classifiers es-
timated using n and 1), respectively.  Further, let
6 be such that hy = argmaxyd(hg). Then

1C(hg) = C(hg)llos = Ol = nlloo)-

The errors due to using 7, instead of true n may propel
in the results discussed earlier, however, only in the
bounded sense. This shows that our elicitation ap-
proach is robust to feedback and finite sample noise.

7 EXPERIMENTS

In this section, we empirically validate the theory and
investigate the sensitivity due to sample estimates.’

7.1 Synthetic Data Experiments

We assume a joint probability for X = [—1,1] and
Y ={0,1} given by fx = U[-1,1] and n(z) = ﬁ,
where U[—1, 1] is the uniform distribution on [—1, 1],
and a is a parameter controlling the degree of noise in
the labels. We fix a = 5 in our experiments. To verify
LPM elicitation, we first define a true metric ¢*. This
specifies the query outputs in line 6 of Algorithm 1
(Algorithm 2). Then we run LPM elicitation procedure
(Section 5.1) to check whether or not we compute the
same metric. Some results are shown in Table 1. We
elicit the true metrics even for ¢ = 0.02 radians.

Next, we elicit LFPM. We define a true metric ¢* by
{(#1:P30). (a1 @0+ 43)}- Then we follow the LEPM
elicitation procedure (Section 5.2), where Algorithms 1
and 2 are run with ¢ = 0.05 and Algorithm 3 is run
with k& = 2000 and A = 0.01. The elicited metric ¢
is denoted by {(p11,Poo), (411, doo, do)} and presented
in Table 2 (Column 2). We also present mean ()
and standard deviation (o) of the ratio of the elicited
metric qg to the true metric ¢* over a subset of confusion
matrices (columns 3 and 4). For improved comparisons,
Figure 4 shows the true and elicited metrics evaluated
on selected pairs of (TP,TN) € 9C;. The metrics are
plotted together after sorting the slope parameter 6.
Clearly, the elicited metric is a constant multiple of the
true metric. We also see that the argmaz of the true
and elicited metric coincide, thus validating Theorem 1.

5A subset of results is shown here.
pendix C for extended set of results.

Please refer Ap-



Performance Metric Elicitation from Pairwise Classifier Comparisons

Table 2: LFPM Elicitation for synthetic distribution (Section 7.1) and Magic (M) dataset (Section 7.2). o and o
are the mean and standard deviation of ¢/s* evaluated over a subset of confusion matrices used in Algorithm 3.

True Metric

Results on Synthetic Distribution (Section 7.1)

Results on Real World Dataset M (Section 7.2)

(P11, P00), (411, 900: 90) (P11, Poo), (411, Goo, Go) a o (P11, Poo), (411, Goo, o) a o
(1.00,0.00),(0.50,-0.50,0.50) | (1.00,0.00).(0.25,-0.75,0.75) | 0.92 | 0.03 | (1.00,0.00),(0.25,-0.75,0.75) | 0.0 | 0.0
(0.20,0.80),(-0.40,-0.20,0.80) | (0.12, 0.88).(-0.43, 0.002, 0.71) | 1.02 | 0.006 | (0.19,0.81),(-0.38,-0.13,0.70) | 1.02 | 0.004
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Fig. 4: True (solid green) and elicited (dashed blue) LEPMs for synthetic distribution and dataset M from Table 2.
The solid red and coinciding dashed black vertical lines are argmaz of the true and elicited metric, respectively.

7.2 Real-World Data Experiments

Now, we validate the elicitation procedures with two
real-world datasets. The datasets are: (a) Breast Can-
cer (BC) Wisconsin Diagnostic dataset [25] containing
569 instances, and (b) Magic (M) dataset [8] containing
19020 instances. For both the datasets, we standardize
the features and split the data into two parts S; and Ss.
On S7, we learn the estimator 7 using regularized logis-
tic regression model. We use Sy for making predictions
and computing sample confusion matrices.

We randomly selected twenty-eight LPMs by choosing
0* (m*). We then used Algorithm 1 (Algortihm 2)
with different tolerance € and for different datasets and
recovered the estimate m using LPM elicitation. In
Table 5 of Appendix C, we report the proportion of the
number of times when our procedure failed to recover
the true m*. We see improved elicitation for dataset
M, suggesting that ME improves with larger datasets.
In particular, for dataset M, we elicit all the metrics
within threshold € = 0.11 radians. We also observe
that e = 0.02 is an overly tight tolerance for both the
datasets leading to many failures. This is because the
elicitation routine gets stuck at the closest achievable
confusion matrix from finite samples, which need not
be optimal within the given (small) tolerance.

Next, we evaluate LFPM elicitation using dataset M.
We define the same true metrics and follow the same
LFPM elicitation process as defined in Section 7.1. In
Table 2 (columns 5, 6, and 7), we present the elicitation
results along with mean « and standard deviation o of
the ratio of the elicited metric and the true metric. We
also show the true and elicited metrics evaluated on the
selected pairs of (TP,TN) € 9C; in Figure 4, ordered
by the parameter . We see that the elicited metrics
are equivalent to the true metrics up to a constant.

8 RELATED WORK

Our work may be compared to ranking from pairwise
comparisons [28]. However, we note that our results
depend on novel geometric ideas on the space of con-
fusion matrices. Thus, instead of a ranking problem,
we show that ME in standard models can be reduced
to just finding the maximizer (and minimizer) of an
unknown function which in turn yields the true metric
— resulting in low query complexity. A direct ranking
approach adds unnecessary complexity to achieve the
same task. Further, in contrast to our approach, most
large margin ordinal regression based ranking [11] fail
to control which samples are queried. There is another
line of work, which actively controls the query sam-
ples for ranking, e.g., [12]. However, to our knowledge,
this requires that the number of objects is finite and
finite dimensional — thus cannot be directly applied to
ME without significant modifications, e.g. exploiting
confusion matrix properties, as we have. Learning a
performance metric which correlates with human pref-
erences has been studied before [13, 18]; however, these
studies learn a regression function over some prede-
fined features which is fundamentally different from
our problem. Lastly, while [4, 10] address how one
might qualitatively choose between metrics, none ad-
dresses our central contribution — a principled approach
for eliciting the ideal metric from user feedback.

9 CONCLUSION

We conceptualize metric elicitation and elicit linear and
linear-fractional metrics using preference feedback over
pairs of classifiers. We propose provably query efficient
and robust algorithms which exploit key properties of
the set of confusion matrices. In future, we plan to
explore metric elicitation beyond binary classification.
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