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Abstract

In this work, we study a new approach to
optimizing the margin distribution realized
by binary classifiers, in which the learner
searches the hypothesis space in such a way
that a pre-set margin level ends up being
a distribution-robust estimator of the mar-
gin location. This procedure is easily imple-
mented using gradient descent, and admits
finite-sample bounds on the excess risk under
unbounded inputs, yielding competitive rates
under mild assumptions. Empirical tests on
real-world benchmark data reinforce the ba-
sic principles highlighted by the theory.

1 Introduction

Machine learning systems depend on both statistical
inference procedures and efficient implementations of
these procedures. These issues are reflected clearly
within a risk minimization framework, in which given
a known loss L(w; z) depending on data z and param-
eters w, the ultimate objective is minimization of the
risk R(w) := E L(w; z), where expectation is taken
with respect to the data. Since R is unknown, the
learner seeks to determine a candidate w based on a
limited sample z1, ..., 2z, such that R(w) is sufficiently
small, with high probability over the random draw of
the sample. Inference is important because R is al-
ways unknown, and the implementation is important
because the only w we ever have in practice is one
that can be computed given finite time, memory, and
processing power.

Our problem of interest is binary classification, where
z = (x,y) with inputs € R? and labels y € {—1,1}.
Parameter w shall determine a scoring rule h(:; w),
where h(x) > 0 implies a prediction of y = +1, and
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h(x) < 0 implies a prediction of y = —1. The classifi-
cation margin achieved by such a candidate is y h(x),
and the importance of the margin in terms of evalu-
ating algorithm performance has been recognized for
many years (Anthony and Bartlett, 1999; Langford
and Shawe-Taylor, 2002). The work of Koltchinskii
and Panchenko (2002) provide risk bounds that de-
pend on the empirical mean of I{yh(x) < ~}, pro-
viding useful generalization bounds for existing pro-
cedures whose on-sample margin error can be con-
trolled. Intuitively, one might expect that having
larger minimum margins on average would lead to
better off-sample generalization. However, influential
work by Breiman (1999) showed that the problem is
not so simple, demonstrating cases in which the mar-
gins achieved are higher, but generalization is worse.
In response to this, Reyzin and Schapire (2006) make
the important suggestion that it is not merely the loca-
tion of the margins, but properties of the entire margin
distribution that are important to generalization.

1.1 Related work

Here we review the technical literature closely related
to our work. Starting with the proposal of Garg and
Roth (2003), their main theoretical results are a bound
on the misclassification risk R(h) = P{yh(x) < 0}
of h(z) = (w,z) +b for any w € R? and b € R.
Assuming that ||| = 1, and given 2n observations,
with probability no less than 1 — 49, we have

R(h) < R(h)+

. (d+2)log(ne/(d +2)) +log(20~1)
min (Md(h) + 2\/ 5 )

where R(h) = n'Y" I{y;h(z;) < 0}, and the
wq(h) term takes the form

pa(h) ==

2n

- 2 min {L3ew (557 ﬁéf;;)?) )
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The projection error terms are derived from the fact
that

P{h(z) h(Z) < 0}

< wmin {1,360 5777 (|§23>2> o)

where h(Z) = (Pw,Pz) + b, and P is a k x d ran-
dom matrix of independent Gaussian random vari-
ables, N(0,1/d). Probability here is over the random
draw of the matrix elements. Based on these guaran-
tees, they construct a new loss, defined by

I(h;z) = Z exp (—ah(x;)?) + Z exp (—By; h(x,)),

i€l €L

where 7, and Z_ are respectively the indices of cor-
rectly and incorrectly classified observations. For cor-
rectly classified examples, they seek to minimize the
projection error bound, whereas for incorrectly classi-
fied examples, then use a standard exponential surro-
gate loss. Depending on what £ < d minimizes their
upper bound, the dependence on the number of param-
eters may be better than O(v/d), but a price is paid in
the form of O(1/d) dependence on the confidence and
bounded . On the computational side, proper setting
of o and ( is non-trivial.

The work of Zhang and Zhou (2016) considers using
first- and second-order moments of the margin dis-
tribution as relevant quantities to build an objective.
Writing

n
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in the case of h(x) = (w, x), they construct a loss

l(h;z) = @H\m(h) — Xomi(h)+

A3
- 1- zh i707
S e~ ih(z).0)

where the A1, Ao, A3 are parameters to be set manually.
The authors show how the optimization can be readily
cast into an n-dimensional dual program of the form

1
min —a’Ua+u"
acR” 2

st. 0<;<a;,, t=1,...,n

for appropriate data-dependent matrix U, vector u,
and weight bounds a;, and they give some exam-
ples of practical implementations using dual coordi-
nate descent and variance-reduced stochastic gradient

descent. In all cases, parameter settings are left up
to the user. Furthermore, statistical guarantees leave
something to be desired; the authors prove that for
any a@ satisfying their dual objective, risk bounds hold
as

1 ~
ER(a) < -E (Z a;Ui; + |I2|> ;

n :
€Ty

where expectation is taken with respect to the sample,
U;,; are the diagonal elements of U, and the index sets
are defined

I, = {’L 0 < al < )\3/TL}, Iy = {Z : al = Ag/n}

These bounds provide limited insight into how and
when the algorithm performs well, and in practice the
algorithm requires substantial effort for model selec-
tion.

Finally, we consider the analysis of Brownlees et al.
(2015), which greatly extends foundational work done
by Catoni (2012). Let ¢(u) = max{l — u,0} denote
the hinge loss. Throughout this paper, we use ¥ as a
generic notation for Catoni estimators. In the case of
the hinge-based loss, this is defined by

any 7 >0 s.t. zn:@u(W)o (1)

where s > 0 is a scaling parameter, and v is a soft
truncation function (see Figure 1) defined by

—V2<u<V2
2V/2/3, u>+\2 (2)
—2v/2/3, u< —2.

This estimator depends on the choice of h, and Brown-
lees et al. (2015) provide tools for obtaining risk
bounds for any procedure that minimizes J(h) as a
function of h € H, where H denotes the hypothesis
space our candidate lives in. Note that the 1-Lipschitz
continuity of the hinge loss gives us that for any can-
didates g and h,

u—u?/6,

b(u) =

oy h(x))] < |yllg(x) — h(z)]
= |g(x) — h(z)],

which means we can bound distances defined on the
space {f(x) = @(yh(x)) : h € H} by distances on
the space H. Going back to the linear model case of
h(x) = (w,x), bounds in the £y distance dy can be
constructed using

Elo(yg(x)) — e(yh(z))|* < E|g(z) — h(z)|?
< wy — wi | E||z|?,

lp(y g(x)) —
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and bounds in the L., distance take the form

sup|p(y 9(®)) — ¢(y h(@))| < suplg(x) — h(@)|

< llwg —wa sup [|z]|-
x

Now, using their results, for large enough s and n, one
can show that with probability no less than 1 — 9, it
holds that

Ey (yﬁ(w)) - hig{Esa(y h(z)) <

o < @ +log(207") <772\%£) + "°°7§H)>> :

where 12(H) and 1. (H) are complexity terms. When
these terms can be bounded, we can use the fact that
the hinge loss is “classification calibrated,” and using
standard results from Bartlett et al. (2006), can ob-
tain bounds on the excess misclassification risk based
on the above inequality. The problem naturally is how
to control these complexity terms. Skipping over some
technical details, these terms can be bounded using
covering number integrals dependent on H. As a con-
crete example, we have

A(H;doo)
Noo(H) < coo/ log N (e, H,d) de,
0

where doo (g, h) = sup,, |g(x) — h(x)| is the L metric
on H, the covering number N(e,H,dy) is the num-
ber of e-balls in the d,, metric needed to cover H,
and A(H;ds) = sup{deo(g,h) : g,h € H}. In the
case of h(x) = (w,x), this means ||| must be al-
most surely bounded in order for the L., distance
to be finite and the upper bounds to be meaning-
ful. Under such assumptions, say w comes from the
unit ball and ||| < Bx almost surely. Then ignor-
ing non-dominant terms, the high-probability upper
bound takes the form

o ( log(35) , 10g(251)de> ’

n v

While extremely flexible and applicable to a wide vari-
ety of learning tasks and algorithms, for the classifica-
tion task, getting around the bound on « is impossible
using the machinery of Brownlees et al. (2015). Even
more serious complications are introduced by the dif-
ficulty of computation: while simple fixed-point pro-
cedures can be used to accurately approximate the ro-
bust objective 4(h), it cannot be expressed explicitly,
and indeed need not be convex as a function defined on
‘H, even in the linear model case. Approximation error
is unavoidable due to early stopping, and in addition to
this computational overhead, using non-linear solvers

to minimize the function 74(h) can be costly and un-
stable in high-dimensional tasks (Holland and Ikeda,
2017). A recent pre-print from Lecué et al. (2018) con-
siders replacing the M-estimator of Brownlees et al.
(2015) with a median-of-means risk estimate, which
does not require bounded inputs to get strong guar-
antees, but which requires an expensive iterative sub-
routine for every loss evaluation, leading to substantial
overhead for even relatively small learning tasks.

Our contributions To deal with the limitations of
existing procedures highlighted above, the key idea
here is to introduce a new convex loss that encourages
the distribution of the margin to be tightly concen-
trated near a certain prescribed level. The procedure
is easily implemented using gradient descent, admits
formal performance guarantees reflecting both compu-
tational cost and optimization error, and aside from
the usual cost of gradient computation there is virtu-
ally no computational overhead. Two key highlights
are:

e The proposed algorithm enjoys high-probability
risk bounds under moment bounds on «, and does
not require ||z|| to be bounded.

e Numerical experiments show how a simple data-
dependent re-scaling procedure can reduce the
need for trial-and-error tuning of regularization.

2 Proposed algorithm

We would like to utilize the strong elements of the
existing procedures cited, while addressing their chief
weaknesses. To do so, we begin by integrating the
Catoni influence function 1 defined in (2), which re-
sults in a new function of the form

Note that p'(u) = @(u) for all w € R. This func-
tion satisfies p(u) > 0, is symmetric about zero so
p(u) = p(—u), and since the absolute value of the slope
is bounded by |p’(u)| < 21/2/3, we have that p is Lip-
schitz continuous, namely that for any u,v € R, we
have |p(u) — p(0)] < (2v2/3)|u — 1.

Recalling the Catoni estimator (1) used by Brownlees
et al. (2015), we define a new objective which is closely
related:

Q(h;) = = é p (7 — y;h(wi)> : (4)

Here v € R is the desired margin level, and once again
s > 0 is a re-scaling parameter. Note that this loss
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Figure 1: Graphs of p, p’ = ¢ and p” near the origin.

penalizes not only incorrectly classified examples, but
also examples which are correctly classified, but over-
confident. The intuition here is that by also penaliz-
ing overconfident correct examples to some degree, we
seek to constrain the variance of the margin distribu-
tion. The nature of this penalization is controlled by
v: a larger value leads to less correct examples being
penalized.

It remains to set the scale s. To do so, first note
that for any candidate h, the Catoni estimator F(h)
of Ey h(x) minimizes Q(h;~) as a function of v, and
enjoys a pointwise error bound dependent on s, which
says

vary h(x) n 25log(2671)

k)~ Eyh(a)] < L i

, (5)

with probability no less than 1 — §. Minimizing this
bound in s > 0 naturally leads to setting s?> =
nvaryh(z)/2log(2671), but in our case, a certain
amount of bias is assuredly tolerable; say a certain
fraction 1/k of the desired 7 setting, plus error that
vanishes as n — oo. By setting s > varyh(x)k/vy

then, we have

~ ¥ 1

() — Byh(w) < k+0<n)-
The exact setting of s > 0 plays an important role
both in theory and in practice; we shall look at this
in more detail in sections 3-4. In practice, the true
variance will of course be unknown, but we can replace
the true variance with any valid upper bound on the
variance; rough estimates are easily constructed using
moments of the empirical distribution (see section 4).

With scaling taken care of, our proposed algorithm
is simply to minimize the new loss (4) using gradient
descent, namely to run the iterative update

ﬁ(t+1) = B(t) - a(t)vQ(B(tﬁ ),

where o) are step sizes. We summarize the key com-
putations in Algorithm 1 for the case of a linear model
h(x) = (w, x) with fixed step sizes.

Remark 1 (Algorithm 1 and distribution control). In-
tuitively, in running Algorithm 1 (or any generaliza-
tion of it), the expectation is that with enough itera-
tions, the approximation ﬁ(ﬁ(t)) ~ ~ should be rather

Algorithm 1 Margin pursuit by steepest descent.

input: (z1,%1),--,(Tn,yn) € R x {~1,1}
parameters: W) € RY, v R, k>0, a >0
scaling: s > vary h(x) k/vy
fort=0,1,...,7—1do

~ 5 v = yi (Wery, T4)
9 =~ Do (S u ) Yit;
=1

Wpy1) = W) — 4G

end for

sharp, although arbitrary precision assuredly cannot
be guaranteed. If the  level is set too high given a
hypothesis class ‘H with low complexity, regardless of
the choice of h € H, we cannot expect v to be near the
location of the margin y h(x), which is accurately ap-
proximated by F(h). This can be easily proven: there
exists a set of classifiers ‘H and distribution p under
which even a perfect optimizer of the new risk has a
Catoni-type estimate smaller than v (proof in supple-
ment).

If the approximation ﬁ(ﬁ(t)) ~ 7 actually is sharp, how
does this relate to control of the margin distribution?
By design, the estimator () is resistant to errant ob-
servations and is located near the majority of obser-
vations (see Proposition 2), if it turns out that 5(h))
is close to , then it is not possible for the majority of
margin points be much smaller (or much larger) than
~.1' Conceptually, the desired outcome is similar to
that of the procedure of Brownlees et al. (2015) dis-
cussed in section 1.1, but with an easy implementation
and more straightforward statistical analysis. In sec-
tion 3, we show that risk bounds are readily available
for the proposed procedure, even without a bound on
the inputs . Empirical analysis in section 4 illustrates
the basic mechanisms underlying the algorithm, using
real-world benchmark data sets.

3 Theoretical analysis

Notation For positive integer k, write the set of all
positive integers no greater than k by [k] := {1,...,k}.
The underlying distribution of interest is that of (x, y),
here taking values on R? x {—1,1}. The data sam-
ple refers to n independent and identically distributed
(“iid”) copies of (z,y), denoted (x;,y;) for i € [n]. Let
H denote a generic class of functions h : R¢ — R. The
running assumption will be that all h € H are mea-

Note that we still cannot rule out the possibility that

the margin distribution is spread out over a wide region; a
simple example is the case where the margins are symmet-
rically distributed around ~.
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surable, and at the very least satisfy E|h(z)|?> < oo.
Denote the input variance by vx = E ||z||?, and any

valid median of a set A by med A.

Scaling and location estimates Our chief interest
from a theoretical standpoint is in statistical properties
of Algorithm 1, in particular we seek high-probability
upper bounds on the excess risk of the procedure after
T iterations, given n observations, that depend on T,
n, and low-order moments of the underlying distribu-
tion. We begin with some statistical properties of the
motivating estimator, and a look at how scale settings
impact these properties.

Proposition 2 (Scaling and location estimates). For
any h € H and scale s > 0, the estimate (h) satisfies
the following:

1. There exists 0 < s’ < 0o such that for all0 < s <
s', we have Y(h) = med{y; h(x;) }ic[n)-

2. There exists a constant ¢ > 0 such that for all
s> 0,

~ 1 & c
'Y(h)_ﬁzyih(mi) < 2
i=1

Remark 3. The basic facts laid out in Proposition 1
illustrate how s controls the “bias” of the Catoni es-
timator. A larger scale factor makes the estimator
increasingly sensitive to errant data, and causes it to
close in on the empirical mean. A sufficiently small
value on the other hand causes the estimator to effec-
tively ignore the distribution tails, closing in on the
empirical median.

Proposition 4 (Scaling and stability). Given any
dataset zi,...,z, and candidate h € H, construct
Y(h) as usual. Then consider a modified dataset
zy,..., 2., which is identical to the original except
for one point, subject to arbitrary perturbation. Let
~'(h) denote the estimator under the modified data set.

Defining a sub-index as
7= {i € [n]: f(R) — v hl@:)| < 5v2/2},

it follows that whenever n and s are large enough that
|Z| > n/2 > 24, we have

F(h) =7 ()] <

S+

Remark 5. The stability property highlighted in
Proposition 4 is appealing because the difference
max{|y; h(z;) —y; h(x})| : i € [n]} could be arbitrarily
large, while the estimator J(h) in shifting to 5'(h) re-
mains close to the majority of the points, and cannot
be drawn arbitrarily far away. For clarity, we have con-

sidered the case of just one modified point, but a brief

glance at the proof (in the appendix) should demon-
strate how analogous results can readily be obtained
for the case of larger fractions of modified points.

Lemma 6 (Pointwise error bound). Fizing any
h € H, consider the estimate 7(h) defined in
(1), equivalently characterized as a minimizer of
Q(h;vy) in v, with scaling parameter s set such that
s?2 = nv/2log(2671), where v is any upper bound
vary h(xz) < v < oco. It follows that

)
P {mh) ~Byh(a) > | 2R } <
Remark 7. The confidence interval in Lemma 6 is
called pointwise because it holds for a pre-fixed h € H,
in contrast with uniform bounds that hold indepen-
dent of the choice of h. When considering our Algo-
rithm 1, the candidate h will be data-dependent and
thus random, meaning that pointwise bounds will have
to be extended to cover all possible contingencies; see
the proof of Theorem 11 for details.

Classification-calibrated loss Proceeding with
our analysis, the ultimate evaluation metric of inter-
est here is the classification risk (expectation of the
zero-one loss), denoted

R(h) = P{sign(h(x)) #y}, R":= inf R(h). (6)

Using empirical estimates of the zero-one loss is not
conducive to efficient learning algorithms, and our Al-
gorithm 1 involves the minimization of a new loss
Q(+;7), defined in equation (4). To ensure that good
performance in this metric implies low classification
risk, the first step is to ensure that the function is
calibrated for classification, in the sense of Bartlett
et al. (2006). To start, fixing any v > 0, define
o(u) == s? p((y — u)/s). This furnishes the surrogate
risk

Ry(h) = B¢ (yh(@)), R:= inf Ry(h). (7)

heH
The basic idea is that if this loss ¢ is calibrated, then
one can show that there exists a function Wy, de-
pending on user-specified v and s settings, which is
non-decreasing on the positive real line and satisfies
W, (R(h) ~ R*) < Ry(h) - R}
Our loss function p defined in 3 is congenial due to
the fact that it is classification-calibrated, with a W-
transform W, ,(-) that can be computed exactly, for
arbitrary values of v > 0 and s > 0. Details of this
computation are not difficult, but are rather tedious,
and thus we relegate them to the supplement. Basic
facts are summarized in the following lemma.
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Lemma 8. The loss function o(u) == s p((y — u)/s)
is classification calibrated such that for each v > 0, the
following statements hold.

1. W-transform: there exists a function W,
[0,1] = R4 for which ¥, ,(R(h) —R*) < R,(h)—
RY, depending on p, s, v, and a concave func-
tion Hy ~(-) defined on [0, 1], specified in the proof.
This VU-transform function takes the form

Vo) = plafs) — oo (51

2. Risk convergence: given a Sequence (iALn) of
sample-dependent {z1,...,zn} — hn, we have
that convergence in our surrogate is sufficient for

convergence in the zero-one risk, namely

{ lim Ry, (h,) = R:;} c { lim R(hy,) = R*}.

n—oo n— oo

3. Invertibility: Wy (u) is invertible on [0,1], and
thus for small enough excess risk, we can bound
as R(h) — R* < W 1(R,(h) — RY).

Remark 9 (Generalization and v level setting). One
would naturally expect that all else equal, if a classifier
achieves the same excess ¢-risk for a larger value of ~,
then the resulting excess classification risk should be
smaller, or at least no larger. More concretely, we
should expect that

v<y = V. la) 2V 1 (a), a€0,5°p(y/s)].

This range comes from the fact that ¥, ,(0) = 0
and V¥, (1) = s?p(7y/s). This monotonicity follows
from the definition of p and the convexity of the W-
transform.

Assumptions and risk bounds, with discussion
With preparatory results in place, we can now pursue
an excess risk bound for Algorithm 1. To make nota-
tion more transparent, we accordingly write R(w) and
R,(w) to denote the respective risks under H = {h :
h(z) = (w,z),w € W}, where W C R%. The core
technical assumptions are as follows:

A0. W is a compact subset of R%, with diameter A :=
sup{||u — v| : u,v € W} < 0.
Al. There exists w* € W at which R/ (w*) = 0.

A2. R,(w) is k-strongly convex on W, with mini-
mum? denoted by w*.

2 Assuming we can take the derivative under the inte-
gral, the smoothness of p implies differentiability of R,.
Then using the compactness of W, it follows that w* € W.

A3. Writing b := —p/(y — y{w, ))y  for the new loss
gradient before scaling by s, and X for its covari-
ance matrix, there exists some ¢ > 0 such that
for all w € W, a > 0, and ||ul]| = 1, we have
Eexp (a{u,b—Eb)) < exp(ca®(u,Su)).

Remark 10 (Feasibility of assumptions). The impor-
tant assumptions here are A2 and A3. The latter can
be satisfied with inputs @ that have sub-Gaussian tails;
this does not include data with higher-order moments
that are infinite, but requires no bound on ||| at all.
As for the former assumption A2, first note that the
(7, j)th element of the Hessian of the new loss function

r p (TLb)) (v,

18
— S8
3w1;3wj

for 4,5 € [d], where p"(u) = 1 —u?/2 for |u| < V2,
and zero otherwise. Write ¢ = u” (zz?)u and r =
P ((v — y{w,x))/s) for readability, and use E; and
E_ to denote integration over the positive and non-
positive parts of ¢q. First, observe that

E_rq=EI{qg<0}rq>EI{¢<0}¢=Eq—E,q.
Using this inequality, we have
u" R (w)u =Erq
=E;rq+E_rq

—ylw,x
>E;p” (w>q+(EqE+q)

—Eq+E, <p” (W) - 1) q.

The second term on the right-hand side is a negative
value that can be taken near zero for any w € W by
taking s > 0 large enough. The first term is Eq =
uT ExxTu, and thus with large enough s, as long as
the second moment matrix of the inputs is positive
definite satisfying Exz? > cl; for some ¢ > 0 (a
weak assumption), it follows that there exists a x >
0 such that R/ (w) = kI holds. Since the risk is
twice continuously differentiable, This implies x-strong
convexity (Nesterov, 2004, Theorem 2.1.11).

With these assumptions in place, finite-sample risk
bounds can be obtained.

Theorem 11. Running Algorithm 1 for T iterations,
the final output produced, written Wy, for constant
c>0 and B :=2kvx /(K +vx) satisfies

Vs (R(®(r)) — R) <

41}X
B*n
with probability no less than 1 — 20 over the random
draw of the sample, where the dominant term &* is

(1= aB) vx () — w' > + 2o (1 +8)ox +2s&")?
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defined

= = \/ep (V2 E [z | (dlog(3v/n(20) 1) + log(3—)).

Remark 12 (Interpretation and tradeoffs). Excess risk
bounds give in Theorem 11 are composed of two key
terms, one of a computational nature, and one of a
statistical nature. The first term is optimization er-
ror, which decreases as T grows, and depends on the
initial estimate w ), the step-size a, and the convex-
ity of the surrogate risk through 8. The second term
is statistical error, and depends on the sample size,
scale s, the number of parameters, and second-order
moments of the inputs . Note that there is a clear
tradeoff due to s: a sufficiently large scale factor is
needed to ensure A2 holds (yielding large enough f),
but setting s too large impacts the statistical error in
a negative way.

Finally, we note the d factor in £* is due to a cov-
ering number argument used to obtain a bound on
the empirical gradient error that holds uniformly over
w € W. Does there exist another computational pro-
cedure, with the same optimization error, and without
this seemingly superfluous d factor in the statistical er-
ror? We pursue such analysis in future work.

4 Empirical analysis

In our numerical experiments, we aim to complement
the theoretical analysis carried out in the previous sec-
tion. We look at how algorithm parameter settings
impact generalization guarantees, and using real-world
datasets, investigate how Algorithm 1 performs, com-
paring its behavior with a benchmark procedure.

Benchmark data tests: experimental setup In
all the experiments discussed here, we consider binary
classification on real-world data sets, modified to con-
trol for unbalanced ratios of positive and negative la-
bels. Training for each data set is done using pair
(X,y), where X is n x d, and y is n x 1, and testing
is done on a disjoint subset. The train-test sequence is
repeated over 25 trials, and all numerical performance
metrics displayed henceforth should be assumed to be
averages taken over all trials.

We use four data sets, denoted COV, DIGIT5, PROTEIN,
and SIDO, creating subsets under the following con-
straints: (1) Sample size n is no more than ten times
the nominal dimension d, and (2) both the training
and testing data sets have balanced ratios of labels
(as close as possible to 50% each). Starting with cov
(n = 540, d = 54, non-zero: 22%), this is the “Forest
CoverType dataset” on the UC Irvine repository, con-
verted into a binary task identifying class 1 against the

rest. DIGITH (n = 5000, d = 784, non-zero: 19%) is
the MNIST hand-written digit data, converted into a
binary task for the digit 5. PROTEIN (n = 740, d = 74,
non-zero: 99%) is the protein homology dataset (KDD
Cup 2004). SIDO (n = 425, d = 4932, non-zero: 11%)
is the molecular descriptor data set (NIPS 2008 causal-
ity challenge), with binary-valued features. In each
trial, from the full original data set, we take a random
sub-sample of the specified size, without replacement,
for training, and for test data we use as much of the
remaining data as possible, within the confines of con-
straint (2) above.

As a well-known benchmark algorithm against which
we can compare the behaviour and performance of
the proposed Algorithm 1, we implement and run the
well-known Pegasos algorithm of Shalev-Shwartz et al.
(2011). For both methods, the initial value wg) is de-
termined randomly in each trial. We explore multiple
settings of Algorithm 1 described further below, but in
all cases we take the stochastic optimization approach:
instead of using all n training examples at each step,
we randomly select one at a time for computing the
update direction, and use a step size of . For direct
comparison with Pegasos, we set the margin level to
v =1, add a squared ¢s-norm regularization term with
coefficient \, utilizing a step size of a = (sv/A(1+t)) 71,
and projecting to the 1/ﬁ—radius ball. That is, we
run a stochastic projected gradient descent version of
Algorithm 1, and evaluate the impact of the proposed
loss function.

Benchmark data tests: generalization with
naive scaling We begin with the simplest setting
of Algorithm 1, where s = 1 is fixed throughout. In
Figure 2, we plot training error, test error, and loca-
tion statistics of the empirical margin distribution, all
as a function of cost incurred (equal to number of gra-
dients computed). For each dataset, we experimented
with A € {10°,1076,1076,...,107!} and display the
results for the case of A that resulted in the best perfor-
mance, as measured by the lowest test error achieved
over all iterations.

We see that our proposed procedure is as good or bet-
ter than the best setting of Pegasos, and results in
a margin distribution very distinct from that of the
competing procedure. On the whole, we see a much
more symmetrical distribution, with smaller variance,
that over iterations pushes the margin location up in
a monotonic fashion, in stark contrast to that of Pe-
gasos, whose empirical distribution peaks early and
slowly settles down over time. The smaller variance
and higher degree of symmetry is precisely what we
would expect given the definition of p, which assigns a
penalty for correctly classified examples that are over-
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Figure 2: For each dataset, the top row is Algorithm
1, bottom row is Pegasos.

confidently classified, as discussed in section 2.

Benchmark data tests: scaling and regulariza-
tion Next, we look at the impact of a fixed scale,
determined by observed data, as follows. Each run
of Algorithm 1 starts with s = 1 fixed just as in
the previous tests, but after a pre-fixed number of
steps, updates the scale just once, to take a value of
s > y/nux/(2\log(6-1)) (see Lemma 6), where vx is
approximated using the 75th quantile of the empirical
distribution induced by {|y; (W), )| : i € [n]}. This
time, we intentionally under-regularize, setting A at
less than 1/100th of the best setting found in the pre-
vious tests. Representative results are given in Figure
3.

When highly under-regularized, and without scal-
ing, the learning algorithm just wanders about, over-
whelmed by the variance of the per-iteration sub-
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Figure 3: Algorithm 1 with data-based s setting start-
ing from the point marked by a black vertical line.
From first row, reading left to right, COv, DIGIT5, PRO-
TEIN (all A = 107%), and SO (A = 1073).

sampling; when the procedure is left to run like this, a
good solution can rarely be found before the step size
grows small, highly inefficient. On the other hand, us-
ing the simple data-driven scaling procedure just de-
scribed to fix a “safe” value of s, we find that the
learning algorithm is almost immediately accelerated,
and in less time essentially catches up with the per-
formance achieved under the best regularization pos-
sible. This is extremely encouraging, as it suggests
that a safe, inexpensive, automated scaling procedure
can make up for our lack of knowledge about the ideal
regularization parameter, allowing for potentially sig-
nificant savings in hyper-parameter exploration.

5 Concluding remarks

In this paper, we introduced and analyzed a learning
algorithm based on a new convex loss and re-scaled
margin deviations. Statistical guarantees are available
for a routine which can be easily implemented as-is,
and practical utility in experiments using real-world
datasets was confirmed in our empirical analysis. As
a natural future line of work, consideration of a pro-
cedure which iteratively minimizes our loss, checks 7,
and updates the desired ~ threshold would be an in-
teresting next step to take this work in.
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