Supplementary Material for Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees

A Experiments

 Table 1: Datasets used for experiments. All datasets from the UCI Machine Learning

 Repository^a except for synthetic and delays10k datasets.

K = number of datapoints used to construct ν (approximately 10% of N_{train})

Name	N_{train}	N _{test}	d	K	Name	N_{train}	N _{test}	d	$\mid K$
synthetic	1000	1000	1	100	abalone	3177	1000	8	300
delays10k ^b	8000	2000	8	800	airfoil	1103	400	5	100
CCPP	7568	2000	4	700	wine quality	3898	1000	11	300

^a http://archive.ics.uci.edu/ml/index.php

^b Hensman et al. [5]

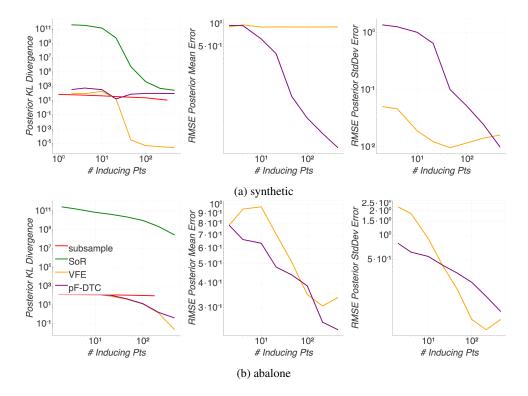


Figure A.1: KL divergences of the approximate posteriors and root mean squared error of the approximate posteriors for the VFE and pF-DTC trials with the smallest objective values.

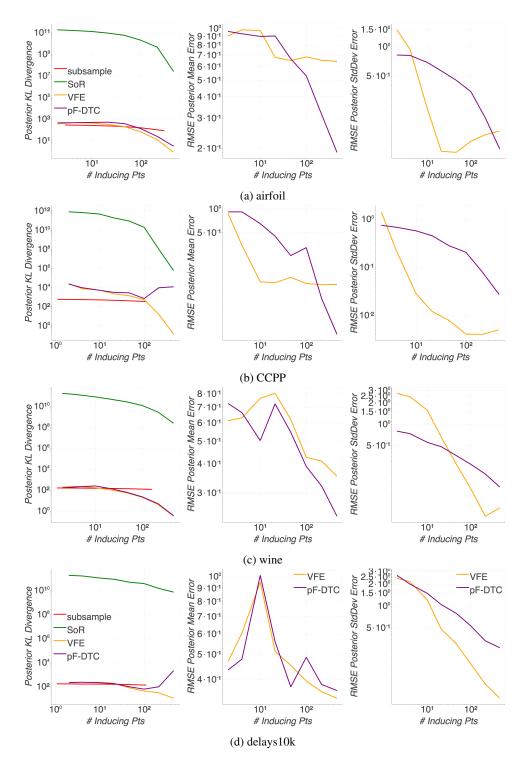


Figure A.2: KL divergences of the approximate posteriors and root mean squared error of the approximate posteriors for the VFE and pF-DTC trials with the smallest objective values.

B Proof of Proposition 3.1

Choose the means and variances of η and $\tilde{\eta}$ such that $(\tilde{\mu}-\mu)^2 = \tilde{s}^2 \{\exp(2\delta)-1\}$ and $s^2 = \exp(2\delta)\tilde{s}^2$. We then have that

$$\begin{split} &\operatorname{KL}(\tilde{\eta}||\eta) \\ &= 0.5\{\tilde{s}^2/s^2 - 1 + \log(s^2/\tilde{s}^2) + (\tilde{\mu} - \mu)^2/s^2\} \\ &= 0.5[\tilde{s}^2/\{\exp(2\delta)\tilde{s}^2\} - 1 + \log\{\exp(2\delta)\tilde{s}^2/\tilde{s}^2\} + \tilde{s}^2\{\exp(2\delta) - 1\}/\{\exp(2\delta)\tilde{s}^2\}] \\ &= 0.5[\exp(-2\delta) - 1 + \log\{\exp(2\delta)\} + \{\exp(2\delta) - 1\}\exp(-2\delta)] \\ &= \delta. \end{split}$$

C Details of Example 4.1

We take \mathbb{H} to be the reproducing kernel Hilbert space with reproducing kernel r. The posterior covariance functions for η and $\tilde{\eta}$ are equal to

$$k_{D}(x, x') = e^{-(x-x')^{2}/2} - (1+\sigma^{2})^{-1}e^{-x^{2}/2 - (x')^{2}/2}$$
(C.1)

while their posterior means are, respectively, $\mu(x) = (1 + \sigma^2)^{-1}e^{-x^2/2}t$ and $\tilde{\mu}(x) = (1 + \sigma^2)^{-1}e^{-x^2/2}\tilde{t}$ Define the induced kernel $k'(x, x') := \langle k_x, k_{x'} \rangle$. Since their covariance operators are equal, the 2-Wasserstein distance between the η and $\tilde{\eta}$ is [2, Thm. 3.5]

$$\mathcal{W}_{2}(\eta,\tilde{\eta}) = \|\mu - \tilde{\mu}\| = \|k(0,\cdot)\| (1+\sigma^{2})^{-1} |t-\tilde{t}|$$

= $\sqrt{k'(0,0)} (1+\sigma^{2})^{-1} |t-\tilde{t}|.$ (C.2)

The log-likelihoods associated with η and $\tilde{\eta}$ are, respectively, $\mathcal{L}(f) := -\frac{1}{2\sigma^2}(f(0) - t)^2$ and $\tilde{\mathcal{L}}(f) := -\frac{1}{2\sigma^2}(f(0) - \tilde{t})^2$. Using Lemma F.3, in the non-preconditioned case we have

$$d_{\mathrm{F},\nu}(\eta,\tilde{\eta})^{2} = \mathbb{E}_{f\sim\nu}[\langle \mathcal{D}\mathcal{L}, \mathcal{D}\mathcal{L} \rangle + \langle \mathcal{D}\tilde{\mathcal{L}}, \mathcal{D}\tilde{\mathcal{L}} \rangle - 2\langle \mathcal{D}\mathcal{L}, \mathcal{D}\tilde{\mathcal{L}} \rangle]$$

$$= \sigma^{-4}r(0,0)[(t-\hat{\mu}(0))^{2} + (\tilde{t}-\hat{\mu}(0))^{2} - 2(t-\hat{\mu}(0))(\tilde{t}-\hat{\mu}(0))]$$

$$= \sigma^{-4}r(0,0)(t-\tilde{t})^{2}.$$
 (C.3)

Eqs. (C.2) and (C.3) together show that $c = \sqrt{r(0,0)/k'(0,0)}$.

The preconditioned case is almost identical to Eq. (C.3). Using Lemmas F.1 and F.4 and Eq. (C.1), for any $f \in \mathbb{H}$,

$$\mathcal{C}_{\tilde{\eta}}\mathcal{D}\mathcal{L}(f) = -(1+\sigma^2)^{-1}(f(0)-t)k(0,\cdot)$$

and similarly for $C_{\tilde{\eta}} \mathcal{D} \tilde{\mathcal{L}}(f)$. Hence,

$$d_{\mathrm{pF},\nu}(\eta||\tilde{\eta}) = \mathbb{E}_{f\sim\nu}[\langle \mathcal{C}_{\tilde{\eta}}\mathcal{D}\mathcal{L}, \mathcal{C}_{\tilde{\eta}}\mathcal{D}\mathcal{L}\rangle + \langle \mathcal{C}_{\tilde{\eta}}\mathcal{D}\tilde{\mathcal{L}}, \mathcal{C}_{\tilde{\eta}}\mathcal{D}\tilde{\mathcal{L}}\rangle - 2\langle \mathcal{C}_{\tilde{\eta}}\mathcal{D}\mathcal{L}, \mathcal{C}_{\tilde{\eta}}\mathcal{D}\tilde{\mathcal{L}}\rangle]$$

$$= (1 + \sigma^2)^{-2}k'(0,0)[(t - \hat{\mu}(0))^2 + (\tilde{t} - \hat{\mu}(0))^2 - 2(t - \hat{\mu}(0))(\tilde{t} - \hat{\mu}(0))]$$

$$= (1 + \sigma^2)^{-2}k'(0,0)(t - \tilde{t})^2.$$
(C.4)

Eqs. (C.2) and (C.4) together show that $d_{pF,\nu}(\eta || \tilde{\eta}) = \mathcal{W}_2(\eta, \tilde{\eta})$.

D Proof of Theorem 4.3

Theorem 4.3 will follow almost immediately after we develop a number of preliminary results. For more details on infinite-dimensional SDEs and related ideas, we recommend Hairer et al. [3, 4] and Da Prato and Zabczyk [1].

The notation in this section differs slightly from the rest of the paper in order to follow the conventions of the stochastic processes literature. Let W denote a C-Wiener process [1, Definition 4.2], where $C : \mathbb{H} \to \mathbb{H}$ is the linear, self-adjoint, positive semi-definite, trace-class operator. Let $\mu \in \mathbb{H}$ and let

 $b, \tilde{b} : \mathbb{H} \to \mathbb{R}$ and consider the following infinite-dimensional stochastic differential equations (SDEs) in \mathbb{H} :

$$dX_t = (\mu - X_t)dt + b(X_t)dt + \sqrt{2} dW_t$$
(D.1)

$$dY_t = (\mu - Y_t)dt + \hat{b}(Y_t)dt + \sqrt{2} dW_t.$$
 (D.2)

We will need the constructions from the following lemma, the proof of which is deferred to Appendix D.1.

Lemma D.1. Let $\mathbb{\tilde{H}} := \mathbb{H} \oplus \mathbb{H}$, the direct sum of \mathbb{H} with itself, for which the inner product is given by $\langle (x_1, x_2), (y_1, y_2) \rangle_{\tilde{\mathbb{H}}} = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle.$

Define the self-adjoint operator $\tilde{C} : \tilde{\mathbb{H}} \to \tilde{\mathbb{H}}$ given by $(x, y) \mapsto (C(x+y), C(x+y))$. Then Eqs. (D.1) and (D.2) can be written on a common probability space as

$$d(X_t, Y_t) = (\mu, \mu)dt - (X_t, Y_t)dt + (b(X_t), \tilde{b}(Y_t))dt + \sqrt{2}d(W_t, W_t)$$
(D.3)

or

$$(X_t, Y_t) = \int_0^t (\mu, \mu) \mathrm{d}s - \int_0^t (X_s, Y_s) \mathrm{d}s + \int_0^t (b(X_s), \tilde{b}(Y_s)) \mathrm{d}s + \sqrt{2} (W_t, W_t),$$

where $t \mapsto (X_t, Y_t)$ is a process on \mathbb{H} and $t \mapsto (W_t, W_t)$ is a \mathcal{C} -Wiener process on \mathbb{H} .

Let \mathcal{P} denote the space of Borel measures on \mathbb{H} . Recall that for any $\eta \in \mathcal{P}$, the $\|\cdot\|_{\eta}$ -norm acting on functions $A : \mathbb{H} \to \mathbb{H}$ is defined by

$$||A||_{\eta} := \left(\int ||A(x)||^2 \eta(\mathrm{d}x)\right)^{1/2}.$$

Theorem D.2. Assume that Eq. (D.3) has a unique stationary law with the marginal stationary laws of Eqs. (D.1) and (D.2) given by $\tilde{\eta}$ and η respectively. Suppose that for $X \sim \tilde{\eta}$ and $Y \sim \eta$, $\mathbb{E} ||X||^2 < \infty$ and $\mathbb{E} ||Y||^2 < \infty$. Suppose that for some $\alpha > 0$, b satisfies the one-sided Lipschitz condition

$$\langle b(x) - b(y), x - y \rangle \le (-\alpha + 1) ||x - y||^2 \text{ for all } x, y \in \mathbb{H}.$$

Then

$$\mathcal{W}_2(\eta, \tilde{\eta}) \le \alpha^{-1} \|b - \tilde{b}\|_{\eta}. \tag{D.4}$$

We defer the proof to Appendix D.2.

Proposition D.3. *If the hypotheses of Theorem D.2 hold, then for any distribution* $\nu \in \mathcal{P}$ *such that* $\nu \ll \eta$ *,*

$$\mathcal{W}_2(\eta, \tilde{\eta}) \le \alpha^{-1} \left\| \frac{\mathrm{d}\eta}{\mathrm{d}\nu} \right\|_{\infty}^{1/2} \| b - \tilde{b} \|_{\nu}$$
(D.5)

Proof. Using Hölder's inequality, we have

$$\begin{split} \|b - \tilde{b}\|_{\eta}^{2} &= \int \|b(x) - \tilde{b}(x)\|^{2} \eta(\mathrm{d}x) \\ &= \int \frac{\mathrm{d}\eta}{\mathrm{d}\nu}(x) \|b(x) - \tilde{b}(x)\|^{2} \nu(\mathrm{d}x) \\ &\leq \left\|\frac{\mathrm{d}\eta}{\mathrm{d}\nu}\right\|_{\infty} \int \|b(x) - \tilde{b}(x)\|^{2} \nu(\mathrm{d}x) \end{split}$$

Eq. (D.5) follows by plugging the previous display into Eq. (D.4).

Proposition D.4. If $\eta, \nu \in \mathcal{P}$, $W_2(\eta, \nu) \leq \varepsilon$ and $\mathbb{H} = \mathbb{H}_r$, then for all $x \in \mathcal{X}$,

$$\begin{aligned} |\mu_{\eta}(\boldsymbol{x}) - \mu_{\nu}(\boldsymbol{x})| &\leq r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon \\ |k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} - k_{\nu}(\boldsymbol{x}, \boldsymbol{x})^{1/2}| &\leq \sqrt{6} r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon \\ |k_{\eta}(\boldsymbol{x}, \boldsymbol{x}) - k_{\nu}(\boldsymbol{x}, \boldsymbol{x})| &\leq 3 r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \min(k_{\eta}(\boldsymbol{x}, \boldsymbol{x}), k_{\nu}(\boldsymbol{x}, \boldsymbol{x}))^{1/2} \varepsilon + 6 r(\boldsymbol{x}, \boldsymbol{x}) \varepsilon^{2}. \end{aligned}$$

We defer the proof to Appendix D.3.

The result will follow by taking $C = C_{\tilde{\eta}}$. With this choice of C, b = 0 and $\mu = \mu_{\tilde{\eta}}$, so b satisfies the one-sided Lipschitz condition with $\alpha = 1$. The remaining hypotheses of Theorem D.2 hold by construction, so Theorem 4.3 follows by applying Propositions D.3 and D.4.

D.1 Proof of Lemma D.1

We first check that the process $t \mapsto (W_t, W_t)$ satisfies the definition of a Wiener process. It starts from 0, has continuous trajectories and independent increments. Furthermore,

$$\mathcal{L}\left((W_t, W_t) - (W_s, W_s)\right) = \mathcal{N}(0, (t-s)\mathcal{C}).$$

To see that for $t \ge s$ the variance of $(W_t, W_t) - (W_s, W_s)$ in $\tilde{\mathbb{H}}$ is indeed equal to $(t-s)\tilde{\mathcal{C}}$, note that, for any $(x_1, x_2), (y_1, y_2) \in \tilde{\mathbb{H}}$

$$\begin{split} & \mathbb{E}\left[\langle (x_1, x_2), (W_t, W_t) - (W_s, W_s) \rangle_{\tilde{\mathbb{H}}} \langle (y_1, y_2), (W_t, W_t) - (W_s, W_s) \rangle_{\tilde{\mathbb{H}}} \right] \\ &= \mathbb{E}\left[\left(\langle x_1, W_t - W_s \rangle + \langle x_2, W_t - W_s \rangle \right) \left(\langle y_1, W_t - W_s \rangle + \langle y_2, W_t - W_s \rangle \right) \right] \\ &= \langle (t-s)\mathcal{C}x_1, y_1 \rangle + \langle (t-s)\mathcal{C}x_1, y_2 \rangle + \langle (t-s)\mathcal{C}x_2, y_1 \rangle + \langle (t-s)\mathcal{C}x_2, y_2 \rangle \\ &= \langle (t-s)\mathcal{C}(x_1+x_2), y_1 \rangle + \langle (t-s)\mathcal{C}(x_1+x_2), y_2 \rangle \\ &= \langle (t-s)\tilde{\mathcal{C}}(x_1, x_2), (y_1, y_2) \rangle_{\tilde{\mathbb{H}}}. \end{split}$$

Given that C is self-adjoint, it follows that \tilde{C} is self-adjoint as well:

$$\begin{split} \langle \tilde{\mathcal{C}}(x_1, x_2), (y_1, y_2) \rangle_{\tilde{\mathbb{H}}} &= \langle \mathcal{C}(x_1 + x_2), y_1 + y_2 \rangle \\ &= \langle x_1 + x_2, \mathcal{C}(y_1 + y_2) \rangle \\ &= \langle (x_1, x_2), \tilde{\mathcal{C}}(y_1, y_2) \rangle_{\tilde{\mathbb{H}}}. \end{split}$$

D.2 Proof of Theorem D.2

We begin by quoting the Itô formula we will be using (see Da Prato and Zabczyk [1] for complete details):

Theorem D.5 (Itô formula, Da Prato and Zabczyk [1, Theorem 4.32]). Let H and U be two Hilbert spaces and W be a Q-Wiener process for a symmetric non-negative operator $Q \in L(U)$. Let $U_0 = Q^{1/2}(U)$ and let $L_2(U_0, H)$ be the space of all Hilbert-Schmidt operators from U_0 to H. Assume that Φ is an $L_2(U_0, H)$ -valued process stochastically integrable in [0, T], φ is an H-valued predictable process Bochner integrable on [0, T] almost surely, and X(0) a H-valued random variable. Then the following process:

$$X_t = X_0 + \int_0^t \varphi(s) \mathrm{d}s + \int_0^t \Phi(s) \mathrm{d}W_s, \quad t \in [0, T]$$

is well defined. Assume that a function $F : [0,T] \times H \to \mathbb{R}$ and its partial derivatives F_t, F_x, F_{xx} are uniformly continuous on bounded subsets of $[0,T] \times H$. Under these conditions, almost surely, for all $t \in [0,T]$:

$$\begin{split} F(t, X_t) &= F(0, X_0) + \int_0^t \langle F_x(s, X_s), \Phi(s) \mathrm{d}W_t \rangle + \int_0^t F_t(s, X_s) \mathrm{d}s \\ &+ \int_0^t \langle F_x(s, X_s), \varphi(s) \rangle \, \mathrm{d}s \\ &+ \int_0^t \frac{1}{2} \operatorname{Tr} \left[F_{xx}(s, X_s) (\Phi(s) Q^{1/2}) (\Phi(s) Q^{1/2})^* \right] \mathrm{d}s. \end{split}$$

Let $F : [0, \infty) \times \tilde{\mathbb{H}} \to \mathbb{R}$ be given by $F(t; x, y) = e^{2\alpha t} ||x - y||^2$. Then the Fréchet derivative of F with respect to the space parameters is given by

$$F_{(x,y)}(t;x,y)[(h_1,h_2)] = 2e^{2\alpha t} \langle x-y, h_1-h_2 \rangle.$$
(D.6)

Eq. (D.6) holds because

$$\frac{\left|\left\|x+h_{1}-y-h_{2}\right\|^{2}-\left\|x-y\right\|^{2}-2\langle x-y,h_{1}-h_{2}\rangle\right.}{\sqrt{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}}}$$
$$=\frac{\left\|h_{1}-h_{2}\right\|^{2}}{\sqrt{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}}}$$
$$\leq 2\sqrt{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}}\xrightarrow{\left\|h_{1}\|,\left\|h_{2}\right\|\to0} 0.$$

Furthermore, the second Fréchet derivative with respect to the space parameters is

$$F_{(x,y),(x,y)}[(h_1,h_2),(h_3,h_4)] = 2e^{2\alpha t} \langle h_3 - h_4, h_1 - h_2 \rangle.$$

Note that $\tilde{\mathcal{C}}^{1/2}(x,y) = \frac{\sqrt{2}}{2} \left(\mathcal{C}^{1/2}(x+y), \mathcal{C}^{1/2}(x+y) \right)$. Using the one-sided Lipschitz condition and the Cauchy-Schwarz inequality, we obtain

$$\langle b(X_t) - b(Y_t), X_t - Y_t \rangle = \langle b(X_t) - b(Y_t), X_t - Y_t \rangle + \langle b(Y_t) - \tilde{b}(Y_t), X_t - Y_t \rangle \leq (-\alpha + 1) \|X_t - Y_t\|^2 + \|b(Y_t) - \tilde{b}(Y_t)\| \|X_t - Y_t\|.$$
 (D.7)

We will assume that we start the process $t \mapsto (X_t, Y_t)$ at joint stationarity (with $X_0 \sim \eta$ and $Y_0 \sim \nu$). By the Itô formula given by Theorem D.5, applied to the process described by Eq. (D.3) and function F (so that $\varphi(t) = (b(X_t), \tilde{b}(Y_t)) - (X_t, Y_t)$ in Theorem D.5):

$$\begin{split} e^{2\alpha t} \left\| X_t - Y_t \right\|^2 &= \left\| X_0 - Y_0 \right\|^2 + \int_0^t 2\sqrt{2} e^{2\alpha s} \langle X_s - Y_s, \mathrm{d}W_s - \mathrm{d}W_s \rangle \\ &+ \int_0^t 2\alpha e^{2\alpha s} \left\| X_s - Y_s \right\|^2 \mathrm{d}s \\ &+ \int_0^t 2e^{2\alpha s} \langle X_s - Y_s, b(X_s) - X_s - \tilde{b}(Y_s) + Y_s \rangle \mathrm{d}s \\ &+ \int_0^t e^{2\alpha s} \operatorname{Tr} \left[(x, y) \mapsto (\mathcal{C}(x + y) - \mathcal{C}(x + y), \mathcal{C}(x + y) - \mathcal{C}(x + y)) \right] \mathrm{d}s \\ &= \left\| X_0 - Y_0 \right\|^2 + \int_0^t 2\alpha e^{2\alpha s} \left\| X_s - Y_s \right\|^2 \mathrm{d}s \\ &+ \int_0^t 2e^{2\alpha s} \langle X_s - Y_s, b(X_s) - X_s - \tilde{b}(Y_s) + Y_s \rangle \mathrm{d}s. \end{split}$$

Taking expectations on both sides (with respect to everything that is random and at the fixed time t), multiplying by $e^{-2\alpha t}$ and applying Eq. (D.7)

$$\begin{split} & \mathbb{E} \|X_{t} - Y_{t}\|^{2} \\ & \leq e^{-2\alpha t} \mathbb{E} \|X_{0} - Y_{0}\|^{2} + \mathbb{E} \left[\int_{0}^{t} 2e^{2\alpha(s-t)} \|b(Y_{s}) - \tilde{b}(Y_{s})\| \|X_{s} - Y_{s}\| \, \mathrm{d}s \right] \\ & \leq e^{-2\alpha t} \mathbb{E} \|X_{0} - Y_{0}\|^{2} \\ & + \left(\int_{0}^{t} 2e^{2\alpha(s-t)} \mathbb{E} \|b(Y_{s}) - \tilde{b}(Y_{s})\|^{2} \mathrm{d}s \right)^{1/2} \left(\int_{0}^{t} 2e^{2\alpha(s-t)} \mathbb{E} \|X_{s} - Y_{s}\|^{2} \, \mathrm{d}s \right)^{1/2} \text{ (D.8)} \\ & = e^{-2\alpha t} \mathbb{E} \|X_{0} - Y_{0}\|^{2} \\ & + \left(\alpha^{-1/2} (1 - e^{-2\alpha t})^{1/2} \|b - \tilde{b}\|_{\nu} \right) \left(\alpha^{-1/2} (1 - e^{-2\alpha t})^{1/2} \left(\mathbb{E} \|X_{t} - Y_{t}\|^{2} \right)^{1/2} \right) \text{ (D.9)} \\ & = e^{-2\alpha t} \mathbb{E} \|X_{0} - Y_{0}\|^{2} + \alpha^{-1} (1 - e^{-2\alpha t}) \|b - \tilde{b}\|_{\nu} \left(\mathbb{E} \|X_{t} - Y_{t}\|^{2} \right)^{1/2}, \end{split}$$

where Eq. (D.8) follows by the Cauchy-Schwarz inequality and Eq. (D.9) follows from the assumption that we start the process $t \mapsto (X_t, Y_t)$ at joint stationarity.

Now, dividing by $(\mathbb{E}||X_t - Y_t||^2)^{1/2}$, taking $t \to \infty$ and noting that the process $t \mapsto (X_t, Y_t)$ remains at joint stationarity, we obtain the result.

D.3 Proof of Proposition D.4

Let $f \sim \eta$ and $g \sim \nu$ and define $\bar{k}_{\nu}(\boldsymbol{x}, \boldsymbol{x}') := \mathbb{E}[g(\boldsymbol{x})g(\boldsymbol{x}')]$. By Cauchy-Schwarz and Jensen's inequalities,

$$\begin{aligned} |\mu_{\eta}(\boldsymbol{x}) - \mu_{\nu}(\boldsymbol{x})| &= |\mathbb{E}[f(\boldsymbol{x}) - g(\boldsymbol{x})]| = |\mathbb{E}[\langle f - g, r_{\boldsymbol{x}} \rangle]| \\ &\leq \mathbb{E}[\|f - g\| \, \|r_{\boldsymbol{x}}\|] \leq r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \mathbb{E}[\|f - g\|^2]^{1/2} \\ &\leq r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon. \end{aligned}$$

Without loss of generality we can assume $\mu_{\eta} = 0$, since if not then we consider the random variables $\tilde{f} := f - \mu_{\eta}$ and $\tilde{g} := g - \mu_{\eta}$ instead. It follows from the Cauchy-Schwarz inequality that

$$\begin{aligned} |k_{\eta}(\boldsymbol{x},\boldsymbol{x}) - \bar{k}_{\nu}(\boldsymbol{x},\boldsymbol{x})| &= |\mathbb{E}[f(\boldsymbol{x})^{2} - g(\boldsymbol{x})^{2}]| \\ &= \mathbb{E}[(f(\boldsymbol{x}) - g(\boldsymbol{x}))(f(\boldsymbol{x}) + g(\boldsymbol{x}))] \\ &\leq \sqrt{\mathbb{E}[(f(\boldsymbol{x}) - g(\boldsymbol{x}))^{2}]} \sqrt{\mathbb{E}[(f(\boldsymbol{x}) + g(\boldsymbol{x}))^{2}]} \\ &\leq r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon \sqrt{2\mathbb{E}[f(\boldsymbol{x})^{2} + g(\boldsymbol{x})^{2}]} \\ &\leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon (k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2} + \bar{k}_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}) \\ (\boldsymbol{x},\boldsymbol{x})^{1/2} - \bar{k}_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}| \leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon. \end{aligned}$$

Also,

$$ar{k}_{
u}(m{x},m{x})^{1/2} \leq \sqrt{k_{
u}(m{x},m{x}) + \mu_{
u}(m{x})^2} \leq k_{
u}(m{x},m{x})^{1/2} + r(m{x},m{x})^{1/2}arepsilon.$$

We now have that

 $|k_{\eta}|$

$$\begin{split} |k_{\eta}(\boldsymbol{x},\boldsymbol{x}) - k_{\nu}(\boldsymbol{x},\boldsymbol{x})| &= |k_{\eta}(\boldsymbol{x},\boldsymbol{x}) - \bar{k}_{\nu}(\boldsymbol{x},\boldsymbol{x}) + \mu_{\nu}(\boldsymbol{x})^{2}| \\ &\leq |k_{\eta}(\boldsymbol{x},\boldsymbol{x}) - \bar{k}_{\nu}(\boldsymbol{x},\boldsymbol{x})| + \mu_{\nu}(\boldsymbol{x})^{2} \\ &\leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon(k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2} + \bar{k}_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}) + r(\boldsymbol{x},\boldsymbol{x})\varepsilon^{2} \\ &\leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon(k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2} + k_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}) + (1 + \sqrt{2})r(\boldsymbol{x},\boldsymbol{x})\varepsilon^{2} \\ &\leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon(k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2} + k_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}) + (1 + \sqrt{2})r(\boldsymbol{x},\boldsymbol{x})\varepsilon^{2} \\ &\leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2} \varepsilon(k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2} + k_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}) + (1 + \sqrt{2})r(\boldsymbol{x},\boldsymbol{x})\varepsilon^{2} \\ &\leq \sqrt{2} r(\boldsymbol{x},\boldsymbol{x})^{1/2}\varepsilon + \frac{(1 + \sqrt{2})r(\boldsymbol{x},\boldsymbol{x})\varepsilon^{2}}{k(\boldsymbol{x},\boldsymbol{x})^{1/2} + k(\boldsymbol{x},\boldsymbol{x})^{1/2}}. \end{split}$$

Let $a := \frac{1+\sqrt{3+2\sqrt{2}}}{\sqrt{2}}r(\boldsymbol{x},\boldsymbol{x})^{1/2}\varepsilon$. If $\max(k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2},k_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}) \leq a$, then clearly $|k_{\eta}(\boldsymbol{x},\boldsymbol{x})^{1/2} - k_{\nu}(\boldsymbol{x},\boldsymbol{x})^{1/2}| \leq a$. Otherwise we have

$$|k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} - k_{\nu}(\boldsymbol{x}, \boldsymbol{x})^{1/2}| \leq \sqrt{2} r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon + \frac{(1 + \sqrt{2})r(\boldsymbol{x}, \boldsymbol{x})\varepsilon^{2}}{a} = a.$$

Hence we conclude unconditionally that

$$|k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} - k_{\nu}(\boldsymbol{x}, \boldsymbol{x})^{1/2}| \leq \frac{1 + \sqrt{3 + 2\sqrt{2}}}{\sqrt{2}} r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon < \sqrt{6} r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon$$

Thus, we also have that

$$\begin{split} |k_{\eta}(\boldsymbol{x}, \boldsymbol{x}) - k_{\nu}(\boldsymbol{x}, \boldsymbol{x})| &\leq \sqrt{2} |r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon (k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} + k_{\nu}(\boldsymbol{x}, \boldsymbol{x})^{1/2}) + (1 + \sqrt{2})r(\boldsymbol{x}, \boldsymbol{x})\varepsilon^{2} \\ &< \sqrt{2} |r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon (2k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} + \sqrt{6} |r(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon) + (1 + \sqrt{2})r(\boldsymbol{x}, \boldsymbol{x})\varepsilon^{2} \\ &= 2\sqrt{2} |r(\boldsymbol{x}, \boldsymbol{x})^{1/2} k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon + (1 + \sqrt{2} + \sqrt{12})r(\boldsymbol{x}, \boldsymbol{x})\varepsilon^{2} \\ &< 3 r(\boldsymbol{x}, \boldsymbol{x})^{1/2} k_{\eta}(\boldsymbol{x}, \boldsymbol{x})^{1/2} \varepsilon + 6 r(\boldsymbol{x}, \boldsymbol{x})\varepsilon^{2}. \end{split}$$

The final inequality follows from Jensen's inequality (which implies that the 1-Wasserstein distance lower bound the 2-Wasserstein distance) and [7, Rmk. 6.5].

E Proof of Proposition 4.5

We first write k in terms of the orthonormal basis of \mathbb{H}_k :

$$k(\boldsymbol{x}, \boldsymbol{x}') = \sum_{j \ge 1} e_j(\boldsymbol{x}) e_j(\boldsymbol{x}')$$

Define

$$r(\boldsymbol{x}, \boldsymbol{x}') := \sum_{j \ge 1} \lambda_j e_j(\boldsymbol{x}) e_j(\boldsymbol{x}').$$

If $\sum_{j\geq 1} \lambda_j^{-1} < \infty$ then r dominates k. So given inputs $\mathbf{X} = (\mathbf{x}_n)_{n=1}^N$, and defining $a_{nm,j} := e_j(\mathbf{x}_n)e_j(\mathbf{x}_m)$, to show the existence of the required kernel r we need to show there exists a solution to

$$\forall (n,m) \in [N]^2, \quad \left| \sum_{j \ge 1} \lambda_j a_{nm,j} - \sum_{j \ge 1} a_{nm,j} \right| \le \epsilon, \quad \sum_{j \ge 1} \lambda_j^{-1} < \infty, \quad \text{and} \quad \forall j \in \mathbb{N}, \lambda_j \ge 0.$$

By assumption on the pointwise decay of orthonormal basis elements, for all $(n,m) \in [N]^2$, $|a_{nm,j}| = o(j^{-2})$. Define $a_j := \max_{(n,m) \in [N]^2} |a_{nm,j}|$. Therefore $\sqrt{a_j} = o(j^{-1})$, $\sum_{j \ge 1} \sqrt{a_j} < \infty$, and there exists a J > 0 such that

$$\forall j > J, \sqrt{a_j} < 1 \quad \text{and} \quad \sum_{j \geq J} \sqrt{a_j} < \epsilon.$$

Setting $\lambda_j = 1$ for each $j \in 1, ..., J$ and $\lambda_j = 1 + \sqrt{a_j}^{-1}$ for j > J, we have that for any $(n,m) \in [N]^2$,

$$\sum_{j\geq 1} \lambda_j a_{nm,j} - \sum_{j\geq 1} a_{nm,j} = \left| \sum_{j\geq J} \frac{a_{nm,j}}{\sqrt{a_j}} \right| \le \sum_{j\geq J} \sqrt{a_j} < \epsilon.$$

Finally since $\sqrt{a_j} = o(j^{-1})$, $\lambda_j = \omega(j)$, and so $\lambda_j^{-1} = o(j^{-1})$ yielding $\sum_{j \ge 1} \lambda_j^{-1} < \infty$.

F Proof of Proposition 5.1

Let $\mathcal{L}_n(f) := -\frac{1}{2\sigma^2}(f(\boldsymbol{x}_n) - y_n)^2$ denote the log-likelihood of the *n*th observation and recall that $\mathbb{H} = \mathbb{H}_r$.

Lemma F.1. For any $f \in \mathbb{H}$,

$$\mathcal{DL}_n(f) = -\sigma^{-2}(f(\boldsymbol{x}_n) - y_n)r_{\boldsymbol{x}_n}.$$

Proof. For $g \in \mathbb{H}$,

$$\begin{aligned} |\mathcal{L}_{n}(f+g) - \mathcal{L}_{n}(f) + \langle \sigma^{-2}(f(\boldsymbol{x}_{n}) - y_{n})r(\boldsymbol{x}_{n}, \cdot), g \rangle| \\ &= \left| -\frac{1}{2\sigma^{2}}(f(\boldsymbol{x}_{n}) + g(\boldsymbol{x}_{n}) - y_{n})^{2} + \frac{1}{2\sigma^{2}}(f(\boldsymbol{x}_{n}) - y_{n})^{2} + \sigma^{-2}(f(\boldsymbol{x}_{n}) - y_{n})g(\boldsymbol{x}_{n}) \right| \\ &\leq \frac{1}{2\sigma^{2}}g(\boldsymbol{x}_{n})^{2} = \frac{1}{2\sigma^{2}}\langle r(\boldsymbol{x}_{n}, \cdot), g \rangle^{2} \leq \frac{r(\boldsymbol{x}_{n}, \boldsymbol{x}_{n})}{2\sigma^{2}} \|g\|^{2}. \end{aligned}$$

Lemma F.2. For any $f \in \mathbb{H}$,

$$\mathcal{DL}(f) = -\sigma^{-2}(f(\boldsymbol{X}) - \boldsymbol{y})^{\top} r_{\boldsymbol{X}}$$

and

$$\mathcal{D}\tilde{\mathcal{L}}(f) = -\sigma^{-2}(\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}f(\tilde{\boldsymbol{X}}) - \boldsymbol{y})^{\top}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}r_{\tilde{\boldsymbol{X}}}.$$

Proof. Both results follow directly from Lemma F.1.

Lemma F.3. If $\nu = GP(\hat{\mu}, \hat{k})$, then

$$\mathbb{E}_{f\sim\nu}[\langle \mathcal{DL}_n(f), \mathcal{DL}_m(f) \rangle] = \sigma^{-4} r(\boldsymbol{x}_n, \boldsymbol{x}_m) [\hat{k}(\boldsymbol{x}_n, \boldsymbol{x}_m) + (y_n - \hat{\mu}(\boldsymbol{x}_n))(y_m - \hat{\mu}(\boldsymbol{x}_m))].$$

Proof. Using Lemma F.1, we have

$$\mathbb{E}_{f\sim\nu}[\langle \mathcal{DL}_n(f), \mathcal{DL}_m(f) \rangle] = \sigma^{-4} \langle r_{\boldsymbol{x}_n}, r_{\boldsymbol{x}_m} \rangle \mathbb{E}_{f\sim\nu}[(f(\boldsymbol{x}_n) - y_n)(f(\boldsymbol{x}_m) - y_m)]$$

= $\sigma^{-4} r(\boldsymbol{x}_n, \boldsymbol{x}_m)[\hat{k}(\boldsymbol{x}_n, \boldsymbol{x}_m) + (y_n - \hat{\mu}(\boldsymbol{x}_n))(y_m - \hat{\mu}(\boldsymbol{x}_m))].$

Lemma F.4. If $\eta = \operatorname{GP}(0, \ell)$ then $(\mathcal{C}_{\eta}f)(\boldsymbol{x}) = \langle f, \ell_{\boldsymbol{x}} \rangle$.

Proof. Since
$$(\mathcal{C}_{\eta}r_{\boldsymbol{x}'}) = \langle r_{\boldsymbol{x}'}, \ell . \rangle = \ell_{\boldsymbol{x}'}$$
, for $f \sim \eta$,
 $\langle r_{\boldsymbol{x}}, \mathcal{C}_{\eta}r_{\boldsymbol{x}'} \rangle = \langle r_{\boldsymbol{x}}, \ell_{\boldsymbol{x}'} \rangle = \ell(\boldsymbol{x}, \boldsymbol{x}') = \operatorname{Cov}(f(\boldsymbol{x}), f(\boldsymbol{x}')).$

Lemma F.5. For the DTC log-likelihood approximation $\tilde{\pi}$,

$$(\mathcal{C}_{\tilde{\pi}}f)(\boldsymbol{x}) = (\mathcal{C}_{\pi_0}f)(\boldsymbol{x}) - \langle f, k_{\tilde{\boldsymbol{X}}} \rangle (k_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}}^{-1} - \Sigma) k_{\tilde{\boldsymbol{X}}\boldsymbol{x}},$$

where $\tilde{\Sigma} := (k_{\tilde{X}\tilde{X}} + \sigma^{-2}k_{\tilde{X}X}k_{X\tilde{X}})^{-1}$.

Proof. Since $\tilde{\pi}$ has covariance function $k(\boldsymbol{x}, \boldsymbol{x}') - Q_{\boldsymbol{x}\boldsymbol{x}'} + k_{\boldsymbol{x}\tilde{\boldsymbol{X}}} \tilde{\Sigma} k_{\boldsymbol{\tilde{X}}\boldsymbol{x}}$ [6], the result follows from Lemma F.4.

It follows from Lemmas F.2 and F.5 that

$$\begin{aligned} \mathcal{C}_{\tilde{\pi}} \mathcal{D} \tilde{\mathcal{L}}(f) &= -\sigma^{-2} (\bar{Q}_{\boldsymbol{X} \tilde{\boldsymbol{X}}} f(\tilde{\boldsymbol{X}}) - \boldsymbol{y})^{\top} K_{\boldsymbol{X} \tilde{\boldsymbol{X}}} \tilde{\Sigma} k_{\tilde{\boldsymbol{X}}} \\ \mathcal{C}_{\tilde{\pi}} \mathcal{D} \mathcal{L}(f) &= -\sigma^{-2} (f(\boldsymbol{X}) - \boldsymbol{y})^{\top} (k_{\boldsymbol{X}} - \bar{Q}_{\boldsymbol{X} \tilde{\boldsymbol{X}}} k_{\tilde{\boldsymbol{X}}} + K_{\boldsymbol{X} \tilde{\boldsymbol{X}}} \tilde{\Sigma} k_{\tilde{\boldsymbol{X}}}). \end{aligned}$$

We therefore have that

$$-\sigma^{2} C_{\tilde{\pi}} \mathcal{D}(\mathcal{L} - \tilde{\mathcal{L}})(f)$$

= $(f(\mathbf{X}) - \mathbf{y})^{\top} (k_{\mathbf{X}} - \bar{Q}_{\mathbf{X}\tilde{\mathbf{X}}} k_{\tilde{\mathbf{X}}}) + (f(\mathbf{X}) - \bar{Q}_{\mathbf{X}\tilde{\mathbf{X}}} f(\tilde{\mathbf{X}}))^{\top} K_{\mathbf{X}\tilde{\mathbf{X}}} \tilde{\Sigma} k_{\tilde{\mathbf{X}}}$

Consider the limit $r \to k$, so $k' \to k$. Then

$$\begin{split} &\sigma^{4} \| \mathcal{C}_{\tilde{\pi}} \mathcal{D}(\mathcal{L} - \tilde{\mathcal{L}})(f) \|^{2} \\ &= (f(\boldsymbol{X}) - \boldsymbol{y})^{\top} (K_{\boldsymbol{X}\boldsymbol{X}} + \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} K_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}} \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}^{\top} - 2K_{\boldsymbol{X}\tilde{\boldsymbol{X}}} \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}^{\top}) (f(\boldsymbol{X}) - \boldsymbol{y}) \\ &+ (f(\boldsymbol{X}) - \boldsymbol{y})^{\top} (K_{\boldsymbol{X}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\boldsymbol{X}} - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} K_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}) (f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} f(\tilde{\boldsymbol{X}})) \\ &+ (f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} f(\tilde{\boldsymbol{X}}))^{\top} K_{\boldsymbol{X}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\boldsymbol{X}} (f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} f(\tilde{\boldsymbol{X}})) \\ &= (f(\boldsymbol{X}) - \boldsymbol{y})^{\top} (K_{\boldsymbol{X}\boldsymbol{X}} - Q_{\boldsymbol{X}\boldsymbol{X}}) (f(\boldsymbol{X}) - \boldsymbol{y}) \\ &+ (f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} f(\tilde{\boldsymbol{X}}))^{\top} S_{\boldsymbol{X}\boldsymbol{X}} (f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}} f(\tilde{\boldsymbol{X}})), \end{split}$$

where $S_{\boldsymbol{X}\boldsymbol{X}} := K_{\boldsymbol{X}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}$. Let $E_{\boldsymbol{X}\boldsymbol{X}} := K_{\boldsymbol{X}\boldsymbol{X}} - Q_{\boldsymbol{X}\boldsymbol{X}}$. Taking expectations we get $\mathbb{E}_{\nu}[(f(\boldsymbol{X}) - \boldsymbol{y})^{\top} E_{\boldsymbol{X}\boldsymbol{X}}(f(\boldsymbol{X}) - \boldsymbol{y})]$ $= \mathbb{E}_{\nu}[(f(\boldsymbol{X}) - \hat{\mu}(\boldsymbol{X}) + \hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})^{\top} E_{\boldsymbol{X}\boldsymbol{X}}(f(\boldsymbol{X}) - \hat{\mu}(\boldsymbol{X}) + \hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})]$

$$= \operatorname{Tr}(\hat{K}_{\boldsymbol{X}\boldsymbol{X}} E_{\boldsymbol{X}\boldsymbol{X}}) + (\hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})^{\top} E_{\boldsymbol{X}\boldsymbol{X}}(\hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})$$

and

$$\begin{split} & \mathbb{E}_{\nu}[(f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}f(\tilde{\boldsymbol{X}}))^{\top}S_{\boldsymbol{X}\boldsymbol{X}}(f(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}f(\tilde{\boldsymbol{X}}))] \\ &= \mathbb{E}_{\nu}[\|(f(\boldsymbol{X}) - \hat{\mu}(\boldsymbol{X}) + \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}f(\tilde{\boldsymbol{X}}) + \hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}}))^{\top}S_{\boldsymbol{X}\boldsymbol{X}}^{1/2}\|_{2}^{2}] \\ &= \mathrm{Tr}(\hat{K}_{\boldsymbol{X}\boldsymbol{X}}S_{\boldsymbol{X}\boldsymbol{X}}) + \mathrm{Tr}(\hat{K}_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}^{\top}S_{\boldsymbol{X}\boldsymbol{X}}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}) - 2\,\mathrm{Tr}(\hat{K}_{\tilde{\boldsymbol{X}}\boldsymbol{X}}S_{\boldsymbol{X}\boldsymbol{X}}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}) \\ &+ (\hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}}))^{\top}S_{\boldsymbol{X}\boldsymbol{X}}(\hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}}). \end{split}$$

Let $S'_{\boldsymbol{X}\tilde{\boldsymbol{X}}} := K_{\boldsymbol{X}\tilde{\boldsymbol{X}}} \tilde{\Sigma} K_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}} \tilde{\Sigma}$. Putting everything together, conclude that

$$\sigma^{4} \| \mathcal{C}_{\tilde{\pi}} \mathcal{D}(\mathcal{L} - \tilde{\mathcal{L}}) \|_{\nu}^{2}$$

$$= \operatorname{Tr}((\hat{K}_{\boldsymbol{X}\boldsymbol{X}} + (\hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})(\hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})^{\top})(K_{\boldsymbol{X}\boldsymbol{X}} - Q_{\boldsymbol{X}\boldsymbol{X}}))$$

$$+ \operatorname{Tr}(\hat{K}_{\boldsymbol{X}\boldsymbol{X}}S_{\boldsymbol{X}\boldsymbol{X}}) + \operatorname{Tr}(\hat{K}_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}}\bar{\boldsymbol{X}}\bar{\boldsymbol{Q}}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}^{\top}S_{\boldsymbol{X}\boldsymbol{X}}\bar{\boldsymbol{Q}}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}) - 2\operatorname{Tr}(\hat{K}_{\tilde{\boldsymbol{X}}\boldsymbol{X}}S_{\boldsymbol{X}\boldsymbol{X}}\bar{\boldsymbol{Q}}_{\boldsymbol{X}\tilde{\boldsymbol{X}}})$$

$$+ (\hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}}))^{\top}S_{\boldsymbol{X}\boldsymbol{X}}(\hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}})).$$

$$= -\operatorname{Tr}(K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}(\hat{K}_{\boldsymbol{X}\boldsymbol{X}} + (\hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})(\hat{\mu}(\boldsymbol{X}) - \boldsymbol{y})^{\top})\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}})$$

$$+ \operatorname{Tr}((K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}\hat{K}_{\boldsymbol{X}\boldsymbol{X}} + K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{K}_{\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}^{\top} - 2K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}\bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{K}_{\tilde{\boldsymbol{X}}\boldsymbol{X}})S'_{\boldsymbol{X}\tilde{\boldsymbol{X}}})$$

$$+ (\hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}}))^{\top}S'_{\boldsymbol{X}\tilde{\boldsymbol{X}}}K_{\tilde{\boldsymbol{X}}\boldsymbol{X}}(\hat{\mu}(\boldsymbol{X}) - \bar{Q}_{\boldsymbol{X}\tilde{\boldsymbol{X}}}\hat{\mu}(\tilde{\boldsymbol{X}})) + C(\boldsymbol{X}).$$
(F.1)

It is clear from Eq. (F.1) that all quantities can be computed while never instantiating a matrix larger than $N \times M$, hence, up to the constant $C(\mathbf{X})$, the pF divergence can be computed in $O(NM^2)$ time and O(NM) space.

References

- [1] G. Da Prato and J. Zabczyk. *Stochastic Equations in Infinite Dimensions*. Cambridge University Press, New York, NY, 2nd edition, 2014.
- [2] M. Gelbrich. On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces. *Mathematische Nachrichten*, 147(1):185–203, 1990.
- [3] M. Hairer, A. M. Stuart, J. Voss, and P. Wiberg. Analysis of SPDEs arising in path sampling part I: The Gaussian case. *Communications in Mathematical Sciences*, 3(4):587–603, Dec. 2005.
- [4] M. Hairer, A. M. Stuart, and J. Voss. Analysis of SPDEs arising in path sampling part II: The nonlinear case. *The Annals of Applied Probability*, 17(5/6):1657–1706, Oct. 2007.
- [5] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian Processes for Big Data. In Uncertainty in Artificial Intelligence, 2013.
- [6] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. *Journal of Machine Learning Research*, 6:1939–1959, 2005.
- [7] C. Villani. Optimal transport: old and new, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, 2009.