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A Outline and Notation
In this section, we provide an outline of the supplemental material and define some notation. In Section B, we
prove Theorem 1. In Section C, we prove Theorem 3 and the main lemmas used in its proof. In Section D, we
prove Theorem 4, splitting it up into three distinct theorems. In Section E, we discuss our conjecture that
there is a small gap between δ- PAC and δ- PAC-EXPLANATORY algorithms; we also prove and discuss our
lower bound for δ- PAC algorithms. In section F, we prove a number of technical lemmas. In Section G, we
present and discuss a version of TF-LUCB that allows for tolerance of infeasibility and suboptimality. In
section H, we provide pseudocode for TF-AE and FFAF.

Define SD´1 “ tx P RD : }x}2 “ 1u. Define a function d : p0, 1q ˆ p0, 1q ÞÑ R such that dpx, yq –

x logpxy q ` p1 ´ xq logp 1´x
1´y q. Recall that if U “ H, then we use the convention minxPU x “ 8 and

maxxPU x “ ´8.

B Lower Bound
For the proof of Theorem 1, we introduce the following notation. For a given problem pν, P, r,mq, define

FEASpν, P, r,mq “ ti P rKs : µi P P u, INFEASpν, P, r,mq “ FEASpν, P, r,mqc,

OPTpν, P, r,mq “ ti P FEASpν, P, r,mq : rJµi ě maxpmqjPFEASpν,P,r,mq r
Jµju,

SUBOPTpν, P, r,mq “ ti P rKs : rJµi ă maxpmqjPFEASpν,P,r,mq r
Jµju.

Proof of Theorem 1. Step 1: Pick a good partition of the arms. Fix δ ą 0. Let pν, P, r,mq satisfy the
hypotheses of the theorem statement. In the interest of brevity, abbreviate

FEAS – FEASpν, P, r,mq, INFEAS – INFEASpν, P, r,mq,
OPT – OPTpν, P, r,mq, SUBOPT – SUBOPTpν, P, r,mq.

Let A denote a δ- PAC-EXPLANATORY algorithm wrt M with stopping time τ .
We claim that there exists pS, Iq P Valid-Partitions that satisfies the following property:

i P S ùñ Prνpi P pSq ě
1´ δ

2 ; i P I ùñ Prνpi PpIq ě
1´ δ

2 . (1)
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As an intermediate step, we claim that for every i P OPTc,

maxpPrνpi PpIq,Prνpi P pSqq ě
1´ δ

2 . (2)

To see this, fix i P OPTc. Define the events

B “ tpO “ OPT, ppS,pIq P Valid-Partitionsu,

B1 “ B X ti P pSu,

B2 “ B X ti PpIu.

Note that B “ B1 YB2 and B1 XB2 “ H. Since A is δ- PAC-EXPLANATORY wrt M,

1´ δ ď PrνpBq
“ PrνpB1q ` PrνpB2q

ď Prνpi P pSq ` Prνpi PpIq

ď 2 maxpPrνpi P pSq,Prνpi PpIqq.

This establishes the claim in (2). Furthermore, note that if i P OPTc z INFEAS “ SUBOPTXFEAS, then
B2 “ H, so that

Prνpi P pSq ě
1´ δ

2 . (3)

Similarly, if i P OPTc zSUBOPT, then B1 “ H, so that

Prνpi PpIq ě
1´ δ

2 . (4)

Define

S “ ti P SUBOPT : Prνpi P pSq ě
1´ δ

2 u

I “ INFEAS zti P SUBOPT : Prνpi P pSq ě
1´ δ

2 u.

We claim that pS, Iq P Valid-Partitions. Clearly, S Ă SUBOPT, I Ă INFEAS, S X I “ H, and S Y I Ă
OPTc. Therefore, it suffices to show that OPTc Ă S Y I . Let i P OPTc. If i P INFEAS, then either i P I or
i P S, so suppose that i R INFEAS. Then, i P OPTc z INFEAS “ SUBOPTXFEAS Ă S by (3). Thus, the
claim that pS, Iq P Valid-Partitions follows.

We claim that pS, Iq has the property (1). Let i P S. By definition of S, Prνpi P pSq ě 1´δ
2 . Next,

let i P I . If i P SUBOPT, then i P I Ă INFEAS and i R S imply that Prνpi P pSq ă 1´δ
2 . Then, by (2)

Prνpi PpIq ě 1´δ
2 . If i R SUBOPT, then (4) implies that Prνpi PpIq ě 1´δ

2 . Thus, the claim follows.
Next, we outline the rest of our proof. For the rest of the proof, the S and I that we constructed are fixed.

Using the fact that τ “
řK
i“1Nipτq, we will show that for this choice of S and I ,

Eνrτ s “
K
ÿ

i“1
EνrNipτqs ě

1
15 lnp 1

2δ qr
ÿ

iPOPT

maxprmin
jPS

rJpµi ´ µjqs
´2, distpµi, BP q´2q (5)

`
ÿ

iPS

rmin
jPOPT

rJpµj ´ µiqs
´2 `

ÿ

iPI

distpµi, P q´2s. (6)
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To this end, we lower bound EνrNipτqs for each of the distinct cases (i P OPT, i P S, i P I). To do this, we
construct a related problem by modifying one of the distributions and applying Lemma F.1. The result will
follow by taking the minimum of the right-hand side of (6) over all pS1, I 1q P Valid-Partitions.

In each of the next steps, we will define a new problem to obtain a lower bound. To avoid notational
clutter, we will redefine the symbols µ1i, ν

1
i, and νpiq in each step. The context should make their meaning

clear.
Step 2.a: reward bound for i P OPT. Fix i P OPT. First, we show that

EνrNipτqs ě
2
15 lnp 1

2δ qrmin
jPS

rJpµi ´ µjq ` εs
´2

for a sufficiently small ε ą 0. If S “ H, minjPS rJpµi ´ µjq “ ´8 by definition and there is nothing to
show. So, suppose that S ‰ H. Define

j0 “ arg max
jPS

rJµj . (7)

Define for all j P rKs

µ1j “

$

’

&

’

%

˜

µj0,1 ´ ε

µi,2:D

¸

if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.

where ε ą 0 is chosen sufficiently small such that for all δ P r0, εq, rJµ1i ` δ ‰ rJµ1j for all j ‰ i (which
is possible since rJµl ‰ rJµk for all l ‰ k P rKs). Define νpiq “ pν11, . . . , ν

1
Kq and consider the problem

pνpiq, P, r,mq. We claim that pνpiq, P, r,mq P M. Since µi R BP and BP “ BpR ˆ P 1q “ R ˆ BP 1 for
some P 1 Ă RD´1, µ1i R BP . Further, by construction, rJµ1i ‰ r

Jµ1j for all j ‰ i. Thus, none of the arms
have means on the boundary of P and all of the rewards of the arms are distinct, so pνpiq, P, r,mq P M.

In the interest of brevity, abbreviate

FEASi – FEASpνpiq, P, r,mq, SUBOPTi – SUBOPTpνpiq, P, r,mq.

We claim that j0 R SUBOPTi. Suppose j0 P FEAS. Then,

rJµ1j0
“ rJµj0

“ maxlPSrJµl (8)

ě maxlPSUBOPTX FEASr
Jµl (9)

“ maxpm`1q
lPFEASr

Jµl (10)

“ maxpmqlPFEASir
Jµ1l (11)

where line (8) follows from (7), line (9) follows from S Ą SUBOPTXFEAS, (10) follows from j0 P FEAS
by assumption, and (11) follows from the fact that j0 P FEAS and the only difference between ν and νpiq is
in the ith arm, which now has reward less than the j0th arm. Thus, if j0 P FEAS, then j0 R SUBOPTi.
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On the other hand, if j0 R FEAS, then

rJµ1j0
“ maxlPSrJµ1l (12)

ą rJµ1i (13)

ą maxlPSUBOPTX FEASr
Jµ1l (14)

where line (12) follows from (7) and µ1l “ µl for all l P S, line (13) follows from µ1i is defined to satisfy
rJµ1i ą maxl:rJµ1

l
ărJµ1

j0
rJµ1l, and line (14) follows from S Ą SUBOPTXFEAS, j0 R FEAS, and

trJµ
|

lprimeulPrKs distinct. (14) implies that

maxpmqlPFEASir
Jµ1l “ r

Jµ1i ă r
Jµ1j0

so that j0 R SUBOPTi. This establishes the claim that j0 R SUBOPTi.
Consider the event B “ tj0 P pSu. Then, since A is δ- PAC-EXPLANATORY wrt to M, pνpiq, P, r,mq P

M, and arm j0 R SUBOPTi, we have that

PrνpiqpBq ď PrνpiqppS Ć SUBOPTiq ď δ. (15)

Further, by construction of S,

PrνpBq ě
1´ δ

2 . (16)

Then,

1
2 rr

Jpµi ´ µj0q ` εs
2EνrNipτqs “ KLpνi, ν1iqEνrNipτqs (17)

ě dpPrνpBq,PrνpiqpBqq (18)
ě dpPrνpBq, δq (19)

ě dp
1´ δ

2 , δq (20)

ě
1
15 lnp 1

2δ q. (21)

Line (17) follows by the formula for the KL-divergence of two multivariate normal distributions, (18) follows
by Lemma F.1, (19) follows since y ÞÑ dpx, yq is decreasing when x ą y, (15), (16), and δ ă .1, (20) follows
since x ÞÑ dpx, yq is increasing when x ą y, (15), (16), and δ ă .1, and (21) follows by Lemma (F.7). The
claim follows by rearranging the inequality.

Step 2.b: feasibility bound for i P OPT. Next, we show that for sufficiently small ε ą 0,

EνrNipτqs ě
2
15 lnp 1

2δ qr distpµi, BP q ` εs´2.

Since P is nonempty and P ‰ RD, by Lemma F.6 BP is nonempty. Since in addition BP is closed, by
Lemma F.2, there exists τi P ProjBP pµiq. Since τi P BP , by the assumptions of the Theorem on P , for all
ε ą 0, Bεpτq X pP cq˝ ‰ H. Thus, for any ε ą 0, there exists a direction v P RD with }v}2 “ 1 such that
τi` εv P pP

cq˝. Further, since by the assumptions of the Theorem on P , P “ RˆP 1 for some P 1 Ă RD´1,
we can choose v such that v1 “ 0.
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Define for j P rKs

µ1j “

#

τi ` εv if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.

Define νpiq “ pν11, . . . , ν
1
Kq and consider the problem pνpiq, P, r,mq. We claim that pνpiq, P, r,mq P M.

Since µ1i P pP
cq˝, µ1i R BP . Therefore, it suffices to show that rJµ1i ‰ r

Jµ1j for all j ‰ i. To show this,
it suffices to show that τi,1 “ µi,1 since then it follows by our choice of v, r “ e1, and the fact that for all
j ‰ i, rJµj ‰ rJµi. Towards a contradiction, suppose that µi,1 ‰ τi,1. Define

τ 1i,j “

"

τi,j : j ‰ 1
µi,1 : otherwise .

Recall that P “ RˆP 1 for some P 1 Ă RD´1 and observe that BP “ BRˆP 1YRˆBP 1 “ RˆBP 1. Thus,
τi P BP implies that τ 1i P BP . Further, }τ 1i ´ µi}2 ă }τi ´ µi}2, which is a contradiction to τi P BP . Thus,
the claim follows and hence pνpiq, P, r,mq P M.

In the interest of brevity, abbreviate

FEASi – FEASpνpiq, P, r,mq, OPTi – OPTpνpiqP , P, r,mq.

Define the event B “ ti P pOu. Then, i R FEASi, so that the event B implies that the algorithm A makes a
mistake. Since A is δ- PAC-EXPLANATORY wrt M, PrνpiqpBq ď PrνpiqppO Ć OPTiq ď δ. Further, since
i P OPT and A is δ- PAC-EXPLANATORY wrt M,

PrνpBq ě PrνppO “ OPTq ě 1´ δ ě 1´ δ
2 .

Thus,

1
2 p distpµi, BP q ` εq2EνrNipτqs “

1
2 p}τi ´ µi}2 ` εq

2EνrNipτqs (22)

ě
1
2 }τi ` εv ´ µi}

2
2 EνrNipτqs (23)

“ KLpνi, ν1iqEνrNipτqs (24)

ě
1
15 lnp 1

2δ q. (25)

Line (22) follows by the definition of τi, line (23) follows by the triangle inequality and }v}2 “ 1, line (24)
follows by the definition of the KL divergence for multivariate normal distributions, and line (25) follows by
a similar series of inequalities as (17)-(21).

Step 3: i P S. If S “ H, then there is nothing to show in this step. So, suppose that S ‰ H. Then,
S ‰ H implies that there are at least m feasible arms. Let j0 P rKs such that µj0 P P and

rJµj0 “ minlPOPTr
Jµl.
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Define for j P rKs

µ1j “

$

’

&

’

%

˜

µi,1 ` µj0,1 ` ε

µi,2:D

¸

if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.

where ε ą 0 is chosen sufficiently small so that for any δ P r0, εq, rJµ1i ´ δ ‰ rJµ1j for all j ‰ i (which
is possible since rJµl ‰ rJµk for all l ‰ k P rKs). Define νpiq “ pν11, . . . , ν

1
Kq and consider the problem

pνpiq, P, r,mq. It follows that pνpiq, P, r,mq P M by a similar argument that showed in Step 2.a that when
i P OPT, pνpiq, P, r,mq P M.

In the interest of brevity, abbreviate

SUBOPTi – SUBOPTpνpiq, P, r,mq.

DefineB “ ti P pSu. Note that arm i R SUBOPTi by construction. Thus, since A is δ- PAC-EXPLANATORY
wrt M, we have that PrνpiqpBq ď δ. Further, by construction of S, PrνpBq ě 1´δ

2 . Therefore, by a similar
series of inequalities as (17)-(21), it follows that

1
15 lnp 1

2δ q ď
1
2 rr

Jpµj0 ´ µiq ` εs
2EνrNipτqs. (26)

Step 4: i P I . Since P ‰ RD and P is nonempty, by Lemma F.6 BP is nonempty. Since in addition
BP is closed, by Lemma F.2, there exists τi P ProjBP pµiq. By the assumptions of the Theorem on P , since
τi P BP , for every ε ą 0, Bεpτiq X P ˝ ‰ H. Thus, for sufficiently small ε ą 0, there exists a direction
v P RD with }v}2 “ 1 such that τi ` εv P P ˝. Since by the assumptions of the Theorem on P , P “ Rˆ P 1
for some P 1 Ă RD´1, we can choose v such that v1 “ 0. Define for j P rKs

µ1j “

#

τi ` εv if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.

Define νpiq “ pν11, . . . , ν
1
Kq and consider the problem pνpiq, P, r,mq. It follows that pνpiq, P, r,mq P M by

a similar argument that showed in step 2.b that when i P OPT, pνpiq, P, r,mq P M.
In the interest of brevity, abbreviate

INFEASi – INFEASpνpiq, P, r,mq.

Define the event B “ ti PpIu. Observe that i R INFEASi. Thus, since A is δ- PAC-EXPLANATORY wrt M,

PrνpiqpBq ď PrνpiqppI Ć INFEASiq ď δ.

Further, by construction of I , Prνpi P pIq ě 1´δ
2 . Therefore, by a similar series of inequalities as (22)-(25), it

follows that

1
15 lnp 1

2δ q ď
1
2 p distpµi, P q ` εq2EνrNipτqs. (27)
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Step 5: Putting it together. Using Eνrτ s “
řK
i“1 EνrNipτqs and inequalities (21), (25), (26), and (27),

we establish for all sufficiently small ε ą 0,

Eνrτ s ě
2
15 lnp 1

2δ qr
ÿ

iPOPT

maxprmin
jPS

rJpµi ´ µjq ` εs
´2, r distpµi, BP q ` εs´2q

`
ÿ

iPS

rmin
jPOPT

rJpµj ´ µiq ` εs
´2 `

ÿ

iPI

r distpµi, P q ` εs´2s.

Since this bound holds for all ε ą 0 sufficiently small, letting ε ÝÑ 0 on the RHS of the above inequality
establishes (6).

C Proof of Theorem 3
To begin, we introduce some notation. Fix pS, Iq P Valid-Partitions. We will bound the number of samples
required to identify each arm as belonging to either OPT, S, or I . Define

dpSq “
miniPOPTr

Jµi `maxjPSrJµj
2 .

If either |FEAS | ă m or S “ H, then define dpSq – ´8. Next, we introduce a notion, which captures
when arm i needs to be pulled more. Define for all i P rKs,

NEEDYtipS, Iq “ rti P OPTu ^ pti P Gtu _ trJpµi,Niptq ´ UrpNiptq, δq ď dpSquqs

_ rti P Su ^ trJpµi,Niptq ` UrpNiptq, δq ě dpSqus

_ rti P Iu ^ ti P Gtus

In words, if arm i is optimal, then it needs to be pulled more if either it has not been determined whp that
µi P P or the lower bound on its reward is below dpSq. If i is in S, then it needs to be pulled more if the
upper bound on its reward is above dpSq, and if i is in I , then it needs to be pulled more if it has not been
determined that µi R P .

Next, we state the two main lemmas that we use in the proof of Theorem 3.

Lemma C.1. Fix δ ą 0 and a problem pν, P, r,mq P M. Fix pS, Iq P Valid-Partitions. Suppose that for all
i P rKs and for all t ě 1, (i) it holds that

|rJpµi ´ pµi,tq| ď Urpt, δq, (28)

and (ii) TestFpi, tq “ True implies that µi P P and TestFpi, tq “ False implies that µi R P . Then, for all t
prior to termination (i.e., t ă τ ), NEEDYtltpS, Iq _ NEEDYthtpS, Iq is true.

Lemma C.1 essentially says that provided (i) Urpt, δq bounds the deviation |rJpµi ´ pµi,tq| and (ii) TestF
does not make a mistake, then every round prior to termination, at least one of the pulled arms is “needy."

The second main lemma states that provided that (i) Urpt, δq bounds the deviation |rJpµi ´ pµi,tq| and
(ii) TestF does not make a mistake, the algorithm returns a correct answer, i.e., returns ppO, pS,pIq such that
pO “ OPT, pS Ă SUBOPT, andpI Ă INFEAS.
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Lemma C.2. Fix δ ą 0 and a problem pν, P, r,mq P M. Suppose that for all i P rKs and t P N, (i) it holds
that

|rJpµi ´ pµi,tq| ď Urpt, δq, (29)

and (ii) TestFpi, tq “ True implies that µi P P and TestFpi, tq “ False implies that µi R P . Then, TF-
LUCB(δ) returns ppO,pS,pIq such that pO “ OPT, and ppS,pIq P Valid-Partitions.

The proofs of the two lemmas are given in Section C.1.
Next, we prove Theorem 3. The proof has three main steps. First, we show that whp for every arm i (i)

TestF does not make a mistake about the feasibility of arm i, (ii) after arm i has been pulled ηpνi, P q times,
TestF determines whether arm i is feasible, and (iii) Urpt, δq controls the deviation of the empirical mean
reward to the expected reward for arm i. Second, we apply Lemma C.2 to conclude that the algorithm returns
the correct answer. Finally, we upper bound the sample complexity, τ , of the algorithm by essentially upper
bounding how many times an arm must be pulled before no longer being “needy."

Proof of Theorem 3. Step 1: Defining the event. Let pS, Iq P Valid-Partitions that achieves the minimum
in the upper bound (1) stated in Theorem 3. For the sake of brevity, we write NEEDYti and d instead of
NEEDYtipS, Iq and dpSq, respectively.

If µi P P , let

Bi “t@t P N : TestFpi, tq ‰ Falseu X t@t ě ηpνi, P q : TestFpi, tq “ Trueu

Xt@t P N : |rJppµi,t ´ µiq| ď Urpt, δqu.

If µi R P , let

Bi “t@t P N : TestFpi, tq ‰ Trueu X t@t ě ηpνi, P q : TestFpi, tq “ Falseu

Xt@t P N : |rJppµi,t ´ µiq| ď Urpt, δqu.

In words, when µi P P , Bi says that (i) TestF does not make the mistake of concluding that arm i is infeasible,
(ii) after arm i has been pulled ηpνi, P q times, TestF determines that arm i is feasible, and (iii) Urpt, δq
controls the deviation of the empirical mean reward to the expected reward of arm i. For µi R P , Bi is the
analogous event.

Observe that since }r}2 “ 1 and νi is σ-sub-Gaussian, ifX „ νi, then
›

›rJX
›

›

ψ2
ď }X}ψ2

ď σ

so that rJX is σ-sub-Gaussian.
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Then, by the union bound,

Prp YKi“1 B
c
i q (30)

ď
ÿ

iPrKs

PrpBci q (31)

ď
ÿ

iPFEAS

Prprt@t P N : TestFpi, tq ‰ Falseu X t@t ě ηpνi, P q : TestFpi, tq “ Trueuscq (32)

`
ÿ

iPINFEAS

Prprt@t P N : TestFpi, tq ‰ Trueu X t@t ě ηpνi, P q : TestFpi, tq “ Falseuscq (33)

`
ÿ

iPrKs

PrpDt P N : |rJppµi,t ´ µiq| ą Urpt, δqq (34)

ď
ÿ

iPrKs

2 δ

2K (35)

“ δ, (36)

where line (35) follows by Lemma F.10 and the assumption on TestF that for any set membership problem
pξ,Rq P N where ξ is σ-sub-Gaussian and has mean µ, with probability at least 1´ δ

2K , TestF returns True
only if µ P R and False only if µ P Rc and uses at most ηpξ,Rq samples. For the rest of the proof, we
assume XiPrKsEi.

Step 2: Correctness. On event XiPrKsBi, the conditions of Lemma C.2 are satisfied, so that TF-LUCB
returns ppO, pS,pIq such that pO “ OPT, pS Ă SUBOPT andpI ĂpI.

Step 3: Sample Complexity. Next, we bound the sample complexity of TF-LUCB, i.e., prove (1) in the
statement of Theorem 3. If i P OPT, let ρi denote the smallest integer such that @t ě ρi

Urpt, δq ă
minjPS rJpµi ´ µjq

4 . (37)

We claim that for all i P OPT and s P N, if Nipsq ě maxpρi, ηpνi, P qq, then NEEDYsi “ 0. Let i P OPT.
Let Nipsq ě maxpρi, ηpνi, P qq. Then, on event Bi, TestFpi,Nipsqq “ True, which implies that i R Gs.
Further,

rJpµi,Nipsq ´ UrpNipsq, δq ě r
Jµi ´ 2UrpNipsq, δq (38)

ě rJµi ´
minjPS rJpµi ´ µjq

2 (39)

ě d (40)

where line (38) follows by event Bi and line (39) follows by (37). Thus, NEEDYsi “ 0.
If i P S, let ρi denote the smallest integer such that @t ě ρi

Urpt, δq ă
minjPOPT r

Jµj ´ r
Jµi

4 . (41)

We claim that for all i P S and s P N, if Nipsq ě ρi, then NEEDYsi “ 0. Observe that

rJpµi,Nipsq ` UrpNipsq, δq ď r
Jµi ` 2UrpNipsq, δq (42)

ď rJµi `
minjPOPT r

Jpµj ´ µiq

2 (43)

ď d (44)
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where line (42) follows by event Bi, and (43) follows by (41). Thus, NEEDYsi “ 0.
Finally, let i P I . Then, Nipsq ě ηpνi, P q implies by event Bi that TestFpi, tq “ False, so that i R Gs.

Thus, NEEDYsi “ 0.
Then,

τ ´ 1 ď
8
ÿ

t“1
1tNEEDYtht “ 1 or NEEDYtlt “ 1u (45)

ď

8
ÿ

t“1

K
ÿ

i“1
1tht “ i or lt “ iu1tNEEDYti “ 1u (46)

ď

8
ÿ

t“1

ÿ

iPOPT

“

1tht “ i or lt “ iu1tNiptq ď maxpρi, ηpνi, P qqu (47)

`
ÿ

iPS

1tht “ i or lt “ iu1tNiptq ď ρiu (48)

`
ÿ

iPI

1tht “ i or lt “ iu1tNiptq ď ηpνi, P qu
‰

(49)

ď
ÿ

iPOPT

maxpρi, ηpνi, P qq `
ÿ

iPS

ρi `
ÿ

iPI

ηpνi, P q. (50)

Line (45) follows by Lemma C.1; line (47) follows by the contrapositive of the claim that for i P OPT and
s P N, if Nipsq ě maxpρi, ηpνi, P qq, then NEEDYsi “ 0; lines (48) and (49) follow by the contrapositives
of the analogous claims for i P S and i P I; line (50) follows by exchanging the summations via Tonelli’s
theorem for series and if ht “ i or lt “ i, then Nipt` 1q “ Ntptq ` 1.

By Lemma F.11, for i P OPT,

ρi ď cσ2rmin
jPS

rJpµi ´ µjqs
´2q logplogprmin

jPS
rJpµi ´ µjqs

´2q
K

δ
q.

where c is a universal positive constant. By Lemma F.11, for i P S,

ρi ď cσ2rmin
jPOPT

rJpµj ´ µiqs
´2 logplogprmin

jPOPT
rJpµj ´ µiqs

´2q
K

δ
q

where c is a universal positive constant. The result follows.

C.1 Main Lemmas
Define the sets

ABOVEtpSq “ ti P rKs : rJpµi,Niptq ´ UrpNiptq, δq ą dpSqu

BELOWtpSq “ ti P rKs : rJpµi,Niptq ` UrpNiptq, δq ă dpSqu

MIDDLEtpSq “ rKszpABOVEtpSq Y BELOWtpSqq

Recall that dpSq is the average of the smallest reward among the arms in OPT and the largest reward
among the arms in S. Note that dpSq is not known to the agent. Hence, ABOVEtpSq are the arms that at time
t it is clear that whp their rewards are greater than the rewards of the arms in S and, similarly, BELOWtpSq
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are the arms that at time t it is clear that whp their rewards are less than the rewards of the arms in OPT.
MIDDLEtpSq are the arms for which more evidence must be collected about their rewards to determine
whether their reward is greater than or less than dpSq.

Proof of Lemma C.1. Fix pS, Iq P Valid-Partitions. Let t be some round prior to termination, i.e., t ă τ . For
the sake of brevity, we write NEEDYti, d, ABOVEt, BELOWt, and MIDDLEt instead of NEEDYtipS, Iq,
dpSq, ABOVEtpSq, BELOWtpSq, and MIDDLEtpSq respectively.

Case 1: |FEAS | ă m. Then, SUBOPT “ H so that S “ H. We claim that ht P Gt. Towards a
contradiction, suppose that ht R Gt. Since ht P TOPt Ă Et, if ht R Gt, then ht P Ft. Then, by lines 11 and
13 of the algorithm, TOPt Ă Ft. Either (i) |TOPt | ă m or (ii) |TOPt | “ m. Suppose |TOPt | ă m. Then,
the definition of TOPt implies that

Et “ TOP
t
Ă Ft Ă Et,

so that TOPt “ Ft “ Et. Thus, that t is the last round, i.e., t “ τ , which is a contradiction. Next, assume
that |TOPt | “ m. Since by assumption |FEAS | ă m there exists i P INFEAS such that TestFpi, tq “ True,
which is a contradiction. Thus, ht P Gt.

Since S “ H, ht P OPTYI , which implies NEEDYtht “ 1.
Case 2: |FEAS | ě m. We split the rest of the proof up into cases, where in each case we show either

that NEEDYtht “ 1, NEEDYtlt “ 1, or there is a contradiction. We briefly make two useful observations
that follow from the assumption that TestFpi, tq “ True implies that µi P P and TestFpi, tq “ False implies
that µi R P . First, the assumption implies that FEAS Ă Et for all t, so that m ď | FEAS | ď |Et| and
furthermore by the definition of TOPt, |TOPt | ě m. Second, if i P I Ă INFEAS, the assumption implies
that TestFpi, tq ‰ True, so that i P Gt for all t P N.

• Suppose TOPct XEt “ H. Then, |Ect | ě n´m, which implies that

m ď |FEAS | ď |Et| ď m.

Since Et “ TOPt by definition of TOPt, FEAS Ă Et “ TOPt, so that TOPt “ FEAS “ OPT. Either
TOPt Ă Ft or TOPt Ć Ft. If TOPt Ă Ft, then

Et “ TOP
t
Ă Ft Ă Et,

so that TOPt “ Ft “ Et. Thus, that t is the last round, i.e., t “ τ , which is a contradiction. If
TOPt Ć Ft, then ht P Gt by line 13 of the algorithm, so that NEEDYtht “ 1. For the remainder of the
proof, we will assume TOPct XEt ‰ H.

• Suppose ht P BELOWt and lt P ABOVEt. Then,

rJpµht,Nht ptq ď r
J
pµht,Nht ptq ` UrpNhtptq, δq (51)

ă d (52)

ă rJpµlt,Nlt ptq ´ UrpNltptq, δq (53)

ď rJpµlt,Nlt ptq (54)

where line (52) follows since ht P BELOWt and line (53) follows since lt P ABOVEt. Thus,
rJpµht,Nht ptq ă rJpµlt,Nlt ptq. However, ht P TOPt and lt P TOPtXEt imply rJpµht,Nht ptq ě
rJpµlt,Nlt ptq and thus we have a contradiction.
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• Suppose that ht P BELOWt and lt P BELOWt; we will derive a contradiction. We claim that
OPTXTOPct “ H. Suppose that there exists i P OPTXTOPct . Since TestFpi, tq ‰ False for all
i P OPT, i P Et. Then,

rJµi ď r
J
pµi,Niptq ` UrpNiptq, δq (55)

ď rJpµlt,Nlt ptq ` UrpNltptq, δq (56)

ă d, (57)

where (55) follows by (28), (56) follows by i P Et, and (57) follows by lt P BELOWt. rJµi ă d
is a contradiction, so that OPTXTOPct “ H. Thus, for all i P TOPct , either rJµi ă d or µi R P .
Furthermore, observe that

rJµht ď r
J
pµht,Nht ptq ` UrpNhtptq, δq (58)

ď d (59)

where line (58) follows by (28) and line (59) follows by ht P BELOWt. Thus, there are at least
K ´ m ` 1 arms that are either suboptimal or infeasible. But, this is a contradiction since by
assumption |FEAS | ě m, there are exactly K ´m arms that are suboptimal or infeasible.

• Suppose ht P ABOVEt and TOPt Ć Ft. Since TOPt Ć Ft, ht P Gt so that if ht P OPTYI , then
NEEDYtht “ 1. So, suppose that ht P S. If ht P S, then

rJµht ě r
J
pµht,Nht ptq ´ UrpNhtptq, δq ą d

where the first inequality follows by (28) and the second inequality follows by ht P ABOVEt. But,
rJµht ą d is a contradiction since ht P S.

• Suppose ht P ABOVEt, TOPt Ă Ft, and lt P BELOWt . Then, TOPt Ă Ft, ht P ABOVEt, and
lt P BELOWt imply that the termination condition is satisfied so that t “ τ , which is a contradiction.

• Suppose ht P ABOVEt, TOPt Ă Ft, and lt P ABOVEt. First, we claim that TOPt Ă OPT. Let
i P TOPt. Then, i P Ft, which implies that TestFpi, tq “ True, so that i R I . Further, ht P ABOVEt
implies that

rJµi ě r
J
pµi,Niptq ´ UrpNiptq, δq ą d,

where the first inequality follows by (28) and the second inequality follows by ht P ABOVEt. Therefore,
i R S. Thus, i P OPT, proving that TOPt Ă OPT.

There are three cases: either lt P OPT, lt P S, or lt P I . lt P OPT implies that there are m` 1 optimal
feasible arms since |TOPt | ě m as established earlier and OPT Ą TOPt, which is a contradiction.
Since lt P ABOVEt, we have by (28),

rJµlt ě r
J
pµlt,Nlt ptq ´ UrpNltptq, δq ą d,

which implies that lt R S. Thus, lt P I . Since lt P Gt as established earlier, we have that NEEDYtlt “ 1.

• If lt P MIDDLEt, then lt R ABOVEtYBELOWt so if lt P OPTYS, then NEEDYtlt “ 1. Further, if
lt P I , then as argued previously lt P Gt, so that NEEDYtlt “ 1.
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• If ht P MIDDLEt, the argument is identical to the previous case.

Proof of Lemma C.2. First, we observe that pO “ TOPτ , pS “ pTOPτ YEcτ q
c, and pI “ Ecτ . Note that

pSXpI “ H by definition of the algorithm.
Step 1: TOPτ “ OPT.
To begin, we make two useful observations. (i) We claim that TOPτ Ă FEAS. Let i P TOPτ . Then,

since at termination, TOPτ Ă Fτ , we have that TestFpi, τq “ True. Then, by the hypothesis, µi P P , so that
i P FEAS. (ii) We claim that OPT Ă Eτ . Let i P OPT. Since by assumption TestFpi, τq ‰ False for all i
such that µi P P , it follows that i P Eτ , establishing OPT Ă Eτ .

Case 1: |FEAS | ă m. Notice that since there are fewer than m feasible arms, SUBOPT “ H and we
have that OPT “ FEAS.

By our observation (i), TOPτ Ă FEAS “ OPT.
Next, we show that OPT Ă TOPτ . Let i P OPT. Then, by observation (ii) i P Eτ . Since TOPτ Ă OPT

and |OPT | ă m, |TOPτ | ă m. Since |TOPτ | ă m, the definition of TOPτ in line 6 of the algorithm
implies that |TOPτ | “ |Eτ | and TOPτ Ă Eτ . Therefore, TOPτ “ Eτ so i P TOPτ , which establishes the
claim.

Case 2: |FEAS | ě m. By observation (i), TOPτ Ă FEAS, which implies that TOPτ X INFEAS “
H. Next, we show that TOPτ XSUBOPT “ H. Towards a contradiction, suppose that there exists
i P TOPτ XSUBOPT. Then, since |OPT | “ m and |TOPτ | “ m by (ii), there exists j P OPTXTOPcτ .
Since OPT Ă Eτ by observation (ii), j P Eτ . Then, by line 6 defining TOPτ , |Eτ | ą m, so the algorithm
must terminate with the stopping condition: TOPt Ă Ft and miniPTOPt r

J
pµi,Niptq ´ UrpNiptq, δq ě

maxjPTOPct XEt r
J
pµj,Njptq ` UrpNjptq, δq. By the stopping condition, we have that

rJµi ě r
J
pµi,Nipτq ´ UrpNipτq, δq (60)

ě min
lPTOPτ

rJpµl,Nkpτq ´ UrpNlpτq, δq (61)

ě max
kPTOPcτ XEτ

rJpµk,Nkpτq ` UrpNkpτq, δq (62)

ě rJpµj,Njpτq ` UrpNjpτq, δq (63)

ě rJµj (64)

where lines (60) and (64) follow by (29) and (62) follows by the stopping condition. Thus, rJµi ě rJµj ,
which is contradicts the assumption pν, P, r,mq P M. Therefore, the claim TOPτ XSUBOPT “ H follows.

Note that TOPτ X INFEAS “ H and TOPτ XSUBOPT “ H imply that TOPτ Ă OPT. Since OPT Ă
Eτ and |FEAS | ě m, |TOPτ | “ m. Thus, it follows that TOPτ “ OPT and correctness follows.

Step 2: pS Ă SUBOPT and pI Ă INFEAS. First, we show that pS Ă SUBOPT. If pS “ H, there
is nothing to show so suppose that pS ‰ H. Let i P pS. Since i P pS “ TOPcτ XEτ , we cannot have
that TOPτ “ Fτ and Fτ “ Eτ . So, the algorithm terminates with the stopping condition: TOPt Ă Ft
and miniPTOPt r

J
pµi,Niptq ´ UrpNiptq, δq ě maxjPTOPct XEt r

J
pµj,Njptq ` UrpNjptq, δq. Then, using the

stopping condition,

rJµi ď r
J
pµi,Nipτq ` UrpNjpτq, δq (65)

ď min
kPTOPt

rJpµk,Nkptq ´ UrpNkptq, δq (66)

ď min
kPOPT

rJµk (67)
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where lines (65) and (67) follow by (29) and line (66) follows by the stopping condition. Thus, i P SUBOPT
by the assumption pν, P, r,mq P M.

Next, we show thatpI Ă INFEAS. Let i P pI. Then, TestFpi,Nτ piqq “ False. By hypothesis, this implies
that µi R P , so i P INFEAS.

D Upper Bounds for Three Instances of TF-LUCB
In the following three sections, we prove Theorem 4. We prove a separate theorem for each statement in
Theorem 4: namely, Theorem D.1, Theorem D.2, and Theorem D.3. Each proof has a similar structure: (i)
define a good event that holds whp, (ii) show that on this event, the TestF subroutine in question does not
return the wrong answer, and (iii) show that after enough samples have been taken from the distribution, the
TestF subroutine in question determines whether the mean of the distribution belongs to the set.

We introduce the following definition.

Definition D.1. Let Z Ă RD and ε ą 0. N Ă Z is an ε-net of Z if for all x P Z, there exists y P N such
that }x´ y}2 ď ε. Let N Ă Z be an ε-net of Z. We say that N is minimal if, for any other ε-net O of Z, it
holds that |O| ě |N |.

D.1 Proof of Upper Bound for TF-LUCB-B

Theorem D.1. Let δ ą 0 and pν, P, r,mq P M. With probability at least 1´ δ, TF-LUCB-B returns ppO,pS,pIq
such that pO “ OPT, pS Ă SUBOPT,pI Ă INFEAS, and

τ ď min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTr
Jpµj ´ µiq,

K

δ
q `

ÿ

iPI

DF p distpµi, BP q,
K

δ
q (68)

`
ÿ

iPOPT

maxpF pminjPSrJpµi ´ µjq,
K

δ
q, DF p distpµi, BP q,

K

δ
qq

ı

. (69)

where c is a universal positive constant.

Proof. By Theorem 3, it suffices to show that for any pξ,Rq P N where ξ is σ-sub-Gaussian and has mean
µ P RD, with probability at least 1´ δ

2K , TestF-B returns True only if µ P R and returns False only if µ R R
and after at most

cσ2D distpµ, BRq´2 logplogp distpµ, BRq´2q
K

δ
q

pulls for some universal positive constant c, it returns either True or False.
Step 1: Define the event. Let pµt denote the empirical mean of ξ after t samples. Define the event

B “ t@t P N : }pµt ´ µ}2 ď Uballpt, δqu. Let N be a minimal 1
2 -net of SD´1.

Observe that since for any y P N , }y}2 “ 1 and νi is σ-sub-Gaussian, ifX „ νi, then
›

›yJX
›

›

ψ2
ď }X}ψ2

ď σ

so that yJX is σ-sub-Gaussian.
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Then,

PrpBcq “ PrpDt P N : }pµt ´ µ}2 ą Uballpt, δqq (70)

“ PrpDt P N, Dy P N : |yJppµt ´ µq| ą
1
2 Uballpt, dqq (71)

ď
ÿ

yPN
PrpDt P N : |yJppµt ´ µq| ą

1
2 Uballpt, dqq (72)

ď 5D δ

5D2K (73)

ď
δ

2K , (74)

where line (71) follows by Lemma F.4 and line (73) follows by Lemma F.10 and since Lemma F.5 implies
that |N | ď 5D. So, PrpBq ě 1´ δ

2K . For the remainder of the proof, we suppose that B occurs.
Step 2: An incorrect answer is never returned. First, we consider the case µ P R. First, we show that

TestF-B returns only either True or ?. Towards a contradiction, suppose that TestF-Bptq “ False. Then, since
µ P R and event B,

Uballpt, δq ă distppµt, Rq ď }pµt ´ µ}2 ď Uballpt, δq,

which is a contradiction. Thus, TestF-B returns either True or ?.
Next, consider the case µ P Rc; the proof is very similar to the case µ P R. Towards a contradiction,

suppose that TestF-Bptq “ True. Then, since µ P Rc and event B,

Uballpt, δq ă distppµt, Rcq ď }pµt ´ µ}2 ď Uballpt, δq,

which is a contradiction. Thus, TestF-B returns either False or ?.
Step 3: Bound the sample complexity. Next, we show that TestF-Bptq “ returns either True or False

for all

t ě cσ2D distpµ, BRq´2 logplogp distpµ, BRq´2qK

δ
q

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uballpρ, δq ă
distpµ, BRq

2 .

By Lemma F.11, ρ ď cσ2D distpµ, BRq´2 logp logp distpµ,BRq´2
q2K

δ q for some universal positive constant c.
Let t ě ρ. Towards a contradiction, suppose that TestF-Bpi, tq “ ?. Then, distppµt, Rq ď Uballpt, δq and
distppµt, Rcq ď Uballpt, δq so that by Lemma F.9, there exists x P BR such that }pµt ´ x}2 ď Upt, δq. Then,

by the triangle inequality and event B,

}µ´ x}2 ď }µ´ pµt}2 ` }pµt ´ x}2
ď Uballpt, δq ` Uballpt, δq

ă distpµ, BRq
ď }µ´ x}2 ,

which is a contradiction. Thus, for all t ě ρ, TestF-Bptq returns True or False. The result follows.
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D.2 Proof of Upper Bound for TF-LUCB-CB
Define

Npoly “ tpξ,Rq P N : R is a polyhedronu.

Theorem D.2. Let δ ą 0, P “ tx P RD : Ax ď bu, and pν, P, r,mq P M. With probability at least 1´ δ,
TF-LUCB-CB returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT,pI Ă INFEAS, and

τ ď min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTr
Jpµj ´ µiq,

K

δ
q `

ÿ

iPI

DF p distpµi, BP q,
K

δ
q (75)

`
ÿ

iPOPT

maxpF pminjPSrJpµi ´ µjq,
K

δ
q, F p distpµi, BP q,

KM

δ
qq

ı

. (76)

where c is a universal positive constant.

Proof. By Theorem 3, it suffices to show that for any pξ,Rq P Npoly where ξ is σ-sub-Gaussian and has
mean µ P RD, with probability at least 1´ δ

2K , if µ P R, then TestF-CB only returns either ? or True and
for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2q
K

δ
q

where c is a universal positive constant, TestF-CBptq returns True, and if µ R R, then TestF-CB only returns
either ? or False and for all

t ě cσ2D distpµ, BRq´2 logplogp distpµ, BRq´2q
KM

δ
q

where c is a universal positive constant, TestF-CBptq returns False.
Step 1: Define the event. For the sake of brevity, let Uballptq – Uballpt,

δ
2 q and Uconptq – Uconpt,

δ
2 q. Let

pµt denote the empirical mean of ξ after t samples. Define the event

B “t@t P N : }pµt ´ µ}2 ď Uballptqu

Xt@t P N,@s P rM s : |aJs pµt ´ µ| ď Uconptqu.

Let N be a minimal 1
2 -net of SD´1. Observe that since for any y P N , }y}2 “ 1, for any j P rM s,

}aj}2 “ 1 and νi is σ-sub-Gaussian, ifX „ νi, then for z P N Y taj : j P rM su
›

›zJX
›

›

ψ2
ď }X}ψ2

ď σ

so that zJX is σ-sub-Gaussian.
By the union bound, Lemma F.10, and a similar argument as in (74),

PrpBcq ď δ

4K `
δ

4K “
δ

2K .

For the remainder of the proof, suppose that B occurs.
Step 2: µ P R. Suppose µ P R. First, we show that TestF-CB returns only either True or ?. Towards a

contradiction, suppose that TestF-CBptq “ False. Then, since µ P R and event B,

Uballptq ă distppµt, Rq ď }pµt ´ µ}2 ď Uballptq,
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which is a contradiction. Thus, TestF-CB returns either True or ?.
Next, we show that TestF-CBptq “ True for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2q
K

δ
q

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uconpρq ă
distpµ, BRq

2 “
minsPrMs bs ´ aJs µ

2 .

where the equality follows by Lemma F.3. By Lemma F.11,

ρ ď cσ2 distpµ, BRq´2 logp logp distpµ, BRq´2qKM

δ
q

for some universal positive constant c. Let t ě ρ. Fix r P rM s. Then, by event B,

aJr pµt ` Uconpt, δq ď a
J
r µ` 2Uconptq

ď aJr µ` br ´ a
J
r µ

“ br.

Thus, TestF-CBptq “ True.
Step 3: µ P Rc. Suppose µ P Rc. Towards a contradiction, suppose that TestF-CBptq returns True. Then,

for all s P rM s, aJs pµt ` Uconptq ď bs. Then, by the event B,

bs ě a
J
s pµt ` Uconptq ě a

J
s µ

which contradicts the assumption that µ R R. Thus, TestF-CBptq only returns ? or False.
Next, we show that TestF-CBptq returns False for all

t ě cD distpµ, BRq´2 logplogp distpµ, BRq´2qK

δ
q

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uballpρq ă
distpµ, BRq

2 .

By Lemma F.11, ρ ď cσ2D distpµ, BRq´2 logp logp distpµ,BRq´2
q2K

δ q for some universal positive constant
c. Let t ě ρ. Towards a contradiction, suppose that TestF-Bptq “ ?. Then, distppµt, Rq ď Uballptq and
distppµt, Rcq ď Uballptq, so there exists x P BR such that }pµt ´ x}2 ď Uballptq. Then, by the triangle

inequality and event B,

}µ´ x}2 ď }µ´ pµt}2 ` }pµt ´ x}2
ď Uballptq ` Uballptq

ă distpµ, BRq
ď }µ´ x}2 ,

which is a contradiction. Thus, for all t ě ρ, TestF-CBptq returns False. The result follows.
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D.3 Proof of Upper Bound for TF-LUCB-C
First, we prove a more general version of Theorem D.4 that allows for any polyhedron.

Theorem D.3. Let δ ą 0, P “ tx P RD : Ax ď bu, and pν, P, r,mq P M. For all i P rKs such that
µi R P , let ∆̃i “ maxsPrMs aJs µi ´ bs. With probability at least 1´ δ, TF-LUCB-C returns TOPτ such that
TOPτ “ OPT and

τ ď min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTr
Jpµj ´ µiq,

K

δ
q `

ÿ

iPI

F p∆̃i,
KM

δ
q (77)

`
ÿ

iPOPT

maxpF pmin
jPS

rJpµi ´ µjq,
KM

δ
qq, F p distpµi, BP q,

KM

δ
qq

ı

. (78)

where c is a universal positive constant.

Proof. By Theorem 3, it suffices to show that for any pξ,Rq P Npoly where ξ is σ-sub-Gaussian and has
mean µ P RD, with probability at least 1´ δ

2K , if µ P R, then TestF-C only returns either ? or True and for
all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2q
K

δ

where c is a universal positive constant, TestF-Cptq returns True, and if µ R R, then TestF-C only returns
either ? or False and for all

t ě cσ2∆̃´2 logplogp∆̃i
KM

δ
q

where ∆̃ “ maxsPrMs aJs µ´ bs and c is a universal positive constant, TestF-Cptq returns False.
Step 1: Define the event. Let pµt denote the empirical mean of ξ after t samples. Define the event

B “ t@t P N,@s P rM s : |aJs ppµt ´ µq| ď Uconpt, δqu.
Observe that since for any s P rM s, }as}2 “ 1 and νi is σ-sub-Gaussian, ifX „ νi, then

›

›aJsX
›

›

ψ2
ď }X}ψ2

ď σ

so that aJsX is σ-sub-Gaussian.
Then, by Lemma F.10,

PrpBcq “ PrpDt P N, Ds P rM s : |aJs ppµt ´ µq| ą Uconpt, δqq

“M PrpDt P N : |aJs ppµt ´ µq| ą Uconpt, δqq

ďM
δ

2KM

“
δ

2K .

So, PrpBq ě 1´ δ
2K . For the remainder of the proof, we suppose that B occurs.

Step 2: µ P R. Suppose µ P R. Towards a contradiction, suppose that TestF-Cptq “ False. Then, there
exists s P rM s such that aJs pµt ´ Uconpt, δq ą bs. Then, by the event B,

bs ă a
J
s pµt ´ Uconpt, δq ď a

J
s µ
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which contradicts the assumption that µ P R. Thus, TestF-C only returns either ? or True.
Next, we show that TestF-Cptq “ True for all

t ě cσ2 distpµ, BRq´2 logplogp distpµ, BRq´2q
K

δ

where c is a universal positive constant. Let ρ denote the smallest integer such that

Uconpρ, δq ă
distpµ, BRq

2 “
minsPrMs bs ´ aJs µ

2 .

where the equality follows by Lemma F.3. By Lemma F.11,

ρ ď cσ2 distpµ, BRq´2 logp logp distpµ, BRq´2qKM

δ
q

for some universal positive constant c. Let t ě ρ. Fix r P rM s. Then, by the event B,

aJr pµt ` Uconpt, δq ď a
J
r µ` 2Uconpt, δq

ď aJr µ` br ´ a
J
r µ

“ br.

Thus, TestF-Cptq “ True.
Step 3: µ P Rc. Next, suppose µ P Rc. Let s P rM s such that ∆̃ “ aJs µ´ bs. Towards a contradiction,

suppose that TestF-Cptq returns True. Then, aJs pµt ` Uconpt, δq ď bs. Then, by the event B,

bs ě a
J
s pµt ` Uconpt, δq ě a

J
s µ

which contradicts the assumption that µ R R and our choice of s P rM s. Thus, TestF-Cptq only returns ? or
False.

Next, we show that TestF-Cptq “ False for all t ě cσ2∆̃´2 logp logp∆̃´2
qKM

δ q where c is a universal
positive constant. Let ρ denote the smallest integer such that

Uconpτ, δq ă
∆̃
2 .

By Lemma F.11, ρ ď cσ2∆̃´2 logp logp∆̃´2
qKM

δ q for some universal positive constant c. Let t ě ρ. Then, by
the event B

aJs pµt ´ Uconpt, δq ě a
J
s µ´ 2Uconpt, δq

ě aJs µ´ pa
J
s µ´ bsq

“ bs.

Thus, TestF-Cptq “ False.

In general, ∆̃i can be arbitrarily smaller than distpµi, P q, as indicated by the following Proposition.

Proposition D.1. For all M ą 0 and for all ε ą 0, there exists a polyhedron P “ tx P RD : Ax ď bu and
x0 P RD such that distpx0, P q ěM and maxi“1,...,M distpx0, tx P RD : aJi x ď biuq ď ε.
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Proof of Proposition D.1. Consider the case D “ 2. Fix M ą 0 and ε ą 0. Consider

Pα “ tx P R2 : eJ2 x ě 0, pαe1 ` p1´ αqe2q
Jx ě 0u

where α P p0, 1q. Let x0 “ ´Me1. Then, for sufficiently small α P p0, 1q, we have that distpx0, P q ěM
and distpx0, tx P RD : pαe1 ` p1´ αqe2q

Jx ě 0uq ď ε

However, the Theorem D.4 shows that it has good performance in the setting where aJi aj “ 0 for all
i ‰ j P rKs.

Theorem D.4. Let δ ą 0, P “ tx P RD : Ax ď bu such that for any l ‰ k P rKs, aJl ak “ 0, and
pν, P, r,mq P M. For each i P rKs such that µi R P , define vi “ |tj : aJj µi ą bju|. With probability at
least 1´ δ, TF-LUCB-C returns ppO,pS,pIq such that pO “ OPT, pS Ă SUBOPT,pI Ă INFEAS, and τ ď

min
pS,IqPValid-Partitions

cσ2
”

ÿ

iPS

F pminjPOPTr
Jpµj ´ µiq,

K

δ
q `

ÿ

iPI

viF p distpµi, P q,
KM

δ
q (79)

`
ÿ

iPOPT

maxpF pminjPSrJpµi ´ µjq,
KM

δ
q, F p distpµi, BP q,

KM

δ
q

ı

. (80)

Proof of Theorem D.4. Let l P rKs such that µl R P . Without loss of generality, by relabeling a1, . . . ,aM ,
let

rrs “ tj P rKs : aJj µi ą bju.

Define

Si “ tx P RD : aJi x “ biu

S “ Xi“1,...,rSi

We will show that

distpµl, P q2 ď distpµl, Sq2 ď r max
i“1,...,r

distpµl, Siq2;

Then, the result will following by plugging the above inequality into the upper bound (78) in the statement of
Theorem D.3. By relabeling the subspaces, we may assume without loss of generality that

max
i“1,...,r

distpµl, Siq “ distpµl, S1q.

Define

x0 “ µl,

x1 “ ProjS1
px0q,

xi`1 “ ProjSi`1
pxiq.

We claim that for all i P rrs, xi “ x0 `
ři
j“1pbj ´ a

J
j x0qaj . We prove this inductively. By the closed

form solution of the distance from a point to a hyperplane and }aj}2 “ 1 for all j P rM s [1],

x1 “ x0 ` pb1 ´ a
J
1 x0qa1,
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which shows that base case. Next, we show the inductive step; suppose xi “ x0 `
ři
j“1pbj ´ a

J
j x0qaj .

Then,

xi`1 “ xi ` pbi`1 ´ a
J
i`1xiqai`1

“ x0 `
i
ÿ

j“1
pbj ´ a

J
j x0qaj ` pbi`1 ´ a

J
i`1rx0 `

i
ÿ

j“1
pbj ´ a

J
j x0qajsqai`1

“ x0 `
i`1
ÿ

j“1
pbj ´ a

J
j x0qaj

where we used the assumption that aJi`1aj “ 0 for all j ‰ i ` 1. Thus, the claim follows. Note that this
implies that xr P S.

Next, we note that for i ‰ j,

pxi ´ xi`1q
Jpxj ´ xj`1q “ r´pbi`1 ´ a

J
i`1x0qai`1s

Jr´pbj`1 ´ a
J
j`1x0qaj`1s “ 0.

Then, by the pythagorean theorem,

distpx0, Sq
2 ď }x0 ´ xr}

2
2

“ }px0 ´ x1q ` px1 ´ x2q ` . . .` pxr´1 ´ xrq}
2
2

“

r
ÿ

i“1
}xi´1 ´ xr}

2
2

ď r distpx0, S1q

“ r max
i“1,...,r

distpx0, Siq.

Next, we show that distpµl, P q ď distpµl, Sq. It suffices to show that xr P P . For s P rrs, aJs xr “ bs
by construction, so let s P rM szrrs. Then, since aJs ak “ 0 for all k P rrs, it follows that

aJs xr “ a
J
s x0 `

r
ÿ

j“1
pbj ´ a

J
j x0qa

J
s ai ď bs ` 0.

Thus, it follows that distpµl, P q ď distpµl, Sq.

E Alternative Lower Bound
To begin, we discuss our conjecture that there is a small gap between δ- PAC and δ- PAC-EXPLANATORY
algorithms. Essentially a δ- PAC algorithm that is not δ- PAC-EXPLANATORY is allowed to rule out
suboptimal feasible arms by incorrectly concluding that they are infeasible and to make the analogous mistake
for infeasible arms with reward greater than maxpmqjPFEASr

Jµj . We do not believe that this affords significant
savings in sample complexity since δ- PAC algorithms typically use confidence bounds and to satisfy the
δ- PAC criterion, these confidence bounds must be strong enough to determine that arms in OPT are feasible
and have optimal rewards and to rule out every arm in OPTc as either suboptimal or infeasible–all without
prior knowledge of the number of infeasible or suboptimal arms. Nevertheless, we leave this as an open
question.
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Next, we discuss the differences between Theorems 1 and 2. Since any δ- PAC-EXPLANATORY algo-
rithm wrt M is δ- PAC wrt M, we expect the lower bound in Theorem 1 to be at least as large as the lower
bound in Theorem 2, and this is in fact the case. The main difference between the bounds occurs in the
terms corresponding to i P OPT. The term minjPOPTc X FEAS r

Jpµi ´ µjq in Theorem 2 is replaced with
minjPS rJpµi ´ µjq where S Ě OPTcXFEAS. Essentially, in Theorem 1, it is required to show that every
arm in OPT has reward greater than all arms that are ruled out as suboptimal (i.e., belong to S), whereas in
Theorem 2, these arms must only be shown to have reward greater than arms in FEASXOPTc. We conjecture
that Theorem 2 is loose in this respect since intuitively if an algorithm rules out an arm by concluding that it
is suboptimal, then regardless of whether the arm is feasible, the algorithm must determine that the arms in
OPT have reward greater than it. To see the difference between theorems 1 and 2, consider the case where
K “ 3, m “ 1, rJµ1 ą r

Jµ2 ą r
Jµ3, arms 1 and 3 are feasible and arm 2 is feasible. If arm 2 is very

close to the boundary, then it may be much easier to show that arm 2 is suboptimal than to show that it is
infeasible. In this case, the term reflecting the difficulty of showing that arm 1 is optimal will differ in the two
theorems. Specifically, in this case, OPTcXFEAS “ t3u and S “ t2, 3u, so

min
jPOPTc X FEAS

rJpµ1 ´ µjq “ r
Jpµ1 ´ µ3q ą r

Jpµ1 ´ µ2q “ min
jPS

rJpµi ´ µjq.

Next, we prove Theorem 2. The proof has many similarities with the proof of Theorem 1. Recall the
notation that for a given problem pν, P, r,mq, we define

FEASpν, P, r,mq “ ti P rKs : µi P P u, INFEASpν, P, r,mq “ FEASpν, P, r,mqc,

OPTpν, P, r,mq “ ti P FEASpν, P, r,mq : rJµi ě maxpmqjPFEASpν,P,r,mq r
Jµju,

SUBOPTpν, P, r,mq “ ti P rKs : rJµi ă maxpmqjPFEASpν,P,r,mq r
Jµju.

Proof of Theorem 2. Fix δ ą 0. Let pν, P, r,mq satisfy the hypotheses of the Theorem statement; note that
these properties imply that pν, P, r,mq P M. Let A denote a δ- PAC algorithm with stopping time τ .

In each of the next steps, we will define a new problem to obtain a lower bound. To avoid notational
clutter, we will redefine the symbols µ1i, ν

1
i, and νpiq in each step. The context should make their meaning

clear.
Step 1.a: reward bound for i P OPT. Fix i P OPT. First, we show that

EνrNipτqs ě 2 lnp 1
2.4δ qr min

jPFEASXOPTc
rJpµi ´ µjq ` εs

´2

for a sufficiently small ε ą 0. If FEASXOPTc “ H, minjPFEASXOPTc r
Jpµi ´ µjq “ ´8 by definition

and there is nothing to show. So, suppose that FEASXOPTc ‰ H. Define

j0 “ arg max
jPFEASXOPTc

rJµj .

Define for all j P rKs

µ1j “

$

’

&

’

%

˜

µi,1 ´ µj0,1 ´ ε

µi,2:D

¸

if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.
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where ε ą 0 is chosen sufficiently small such that for any δ P r0, εq rJµ1i ` δ ‰ rJµ1j for all j ‰ i (which
is possible since rJµl ‰ rJµk for all l ‰ k P rKs). Define νpiq “ pν11, . . . , ν

1
Kq and consider the problem

pνpiq, P, r,mq. We claim that pνpiq, P, r,mq P M. Since µi R BP and BP “ BpR ˆ P 1q “ R ˆ BP 1 for
some P 1 Ă RD´1, µ1i R BP . Further, by construction, rJµ1i ‰ r

Jµ1j for all j ‰ i. Thus, none of the arms
have means on the boundary of P and all of the rewards of the arms are distinct, so pνpiq, P, r,mq P M.

Consider the event B “ ti P pOu. Define OPTi “ OPTpνpiq, P, r,mq and FEASi “ FEASpνpiq, P, r,mq.
Observe that i R OPTi since j0 P FEASi and rJµ1i ă r

Jµ1j0
“ maxjPFEASXOPTc r

Jµj ., so that there are
m feasible arms with reward greater than rJµ1i.

Then, since A is δ- PAC wrt to M, pνpiq, P, r,mq P M, and arm i R OPTi, we have that

PrνpiqpBq ď PrνpiqpOPT ‰ pOq ď δ. (81)

Further, since A is δ- PAC wrt M,

Prνpi P pOq ě PrνpOPT “ pOq ě 1´ δ. (82)

Then,

1
2 rr

Jpµi ´ µj0q ` εs
2EνrNipτqs “ KLpνi, ν1iqEνrNipτqs (83)

ě dpPrνpBq,PrνpiqpBqq (84)
ě dpPrνpBq, δq (85)

ě dp
1´ δ

2 , δq (86)

ě lnp 1
2.4δ q. (87)

Line (83) follows by the formula for the KL-divergence of two multivariate normal distributions, (84) follows
by Lemma F.1, (85) follows since x ÞÑ dpx, yq is increasing when x ą y, (81), (82), and δ ă .1, (86) follows
since y ÞÑ dpx, yq is decreasing when x ą y, (81), (82), and δ ă .1, and (87) follows by Lemma F.8. The
claim follows by rearranging the inequality.

Step 1.b: feasibility bound for i P OPT. A similar argument to step 2.b from the proof of Theorem 1
yields

1
2 p distpµi, BP q ` εq2EνrNipτqs ě lnp 1

2.4δ q. (88)

Step 2: i P FEASXOPTc.
This step is very similar to step 3 of the proof of Theorem 1 and yields

lnp 1
2.4δ q ď

1
2 rr

Jpµj0 ´ µiq ` εs
2EνrNipτqs. (89)

Step 3: i P INFEASXSUBOPTc. Since P ‰ RD and P is nonempty, by Lemma F.6 BP is nonempty.
Since in addition BP is closed, by Lemma F.2, there exists τi P ProjBP pµiq. By definition of M, since
τi P BP , for every ε ą 0, Bεpτiq X P ˝ ‰ H. Thus, for sufficiently small ε ą 0, there exists a direction
v P RD with }v}2 “ 1 such that τi` εv P P ˝. Since by definition of M, P “ RˆP 1 for some P 1 Ă RD´1,
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we can choose v such that v1 “ 0. Define for all j P rKs

µ1j “

#

τi ` εv if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.

Define νpiq “ pν11, . . . , ν
1
Kq and consider the problem pνpiq, P, r,mq. It follows that pνpiq, P, r,mq P M by a

similar argument that showed in step 2.b of the proof of Theorem 1 that when i P OPT, pνpiq, P, r,mq P M.
Define the eventB “ ti R pOu. Define OPTi “ OPTpνpiq, P, r,mq and SUBOPTi “ SUBOPTpνpiq, P, r,mq.

Then, i P OPTi since µ1i P P and i P SUBOPTci implies that rJµ1i ě maxpmqlPFEAS r
Jµ1l. Thus, since A is

δ- PAC wrt M,

PrνpiqpBq ď PrνpiqppO ‰ OPTq ď δ, and PrνpBq ě 1´ δ.

Therefore, by a series of inequalities similar to those in (22)-(25) in ste 2.b of the proof of Theorem 1,

lnp 1
2.4δ q ď

1
2 p distpµi, P q ` εq2EνrNipτqs. (90)

Step 4: i P INFEASXSUBOPT. If INFEASXSUBOPT “ H, there is nothing to show. Thus, we may
suppose without loss of generality that INFEASXSUBOPT ‰ H. Then, since in particular SUBOPT ‰ H,
there are m feasible arms and we may define

j0 “ arg maxpmqlPFEASr
Jµl.

By the same argument at the beginning of Step 3, there exists τi P ProjBP pµiq and for sufficiently small
ε ą 0, there exists a direction v P RD with }v}2 “ 1 and v1 “ 0 such that τi ` εv P P ˝. Define for all
j P rKs

µ1j “

$

’

&

’

%

˜

µi,1 ` µj0,1 ` ε

τi,2:D ` εv2,D

¸

if j “ i

µj if j ‰ i

ν1j “ Npµ1j , IDq.

where we choose ε ą 0 sufficiently small so that for any δ P r0, εq, rJµ1i ´ δ ‰ rJµ1j for all j ‰ i (which
is possible since rJµl ‰ rJµk for all l ‰ k P rKs). Then, define νpiq “ pν11, . . . , ν

1
Kq and consider the

problem pνpiq, P, r,mq. Using arguments similar to those in step 1, it follows that pνpiq, P, r,mq P M.
Consider the event B “ ti R pOu. Then, PrνpBq ě 1 ´ δ. Define for the sake of brevity OPTi “

OPTpνpiq, P, r,mq. Observe that µ1i P P and rJµ1i ą r
Jµ1j0

, so that i P OPTi. Then, since A is δ- PAC wrt
M, PrνpiqpBq ď δ. Then,

lnp 1
2.4δ q ď KLpνi, ν

pεq
i,P,rqEνrNipτqs (91)

“
1
2 p distpµi, P q ` εq2 ` rrtpµi ´ µj0q ` εs

2sEνrNipτqs (92)

ď maxpp distpµi, P q ` εq2, rrtpµi ´ µj0q ` εs
2qEνrNipτqs (93)
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where line (91) follows by a series of inequalities similar to (83)-(87), and line (92) follows by the definition
of KL divergence of multivariate normal distributions.

Step 5: Putting it together. Using Eνrτ s “
řK
i“1 EνrNipτqs and inequalities (87). (88), (89), and (90),

we establish for all sufficiently small ε ą 0,

Eνrτ s ě 2 lnp 1
2.4δ q

”

ÿ

iPOPT

maxpr min
jPOPTc X FEAS

rJpµi ´ µjq ` εs
´2, r distpµi, BP q ` εs´2q

`
ÿ

iPOPTc X FEAS

rmin
jPOPT

rJpµj ´ µiq ` εs
´2 `

ÿ

iPINFEASX SUBOPTc
r distpµi, P q ` εs´2

`
ÿ

iPINFEASX SUBOPT

1
2 minprmin

jPOPT
rJpµj ´ µiq ` εs

´2, r distpµi, P q ` εs´2q
ı

.

Since this bound holds for all ε ą 0 sufficiently small, letting ε ÝÑ 0 on the RHS of the above inequality
establishes the result.

F Technical Lemmas
We use the following lemma from Kaufmann et al. [4]. Although they prove it for the case where arms
are associated with scalar distributions, the proof generalizes to multi-dimensional distributions by simply
replacing the scalar-valued distributions in the proof with vector-valued distributions. Let It P rKs denote
the arm chosen by an agent at time t andXt „ νIt . Let Ft “ σpI1,X1, . . . , It,Xtq, i.e., the sigma-algebra
generated by I1,X1, . . . , It,Xt.

Lemma F.1. Let ν and ν1 be two bandit models with K arms such that for all a, the distributions νa and ν1a
are mutually absolutely continuous. Let τ denote a stopping time wrt pFtq. Then,

K
ÿ

i“1
EνrNipτqsKLpνa, ν1aq ě sup

EPFτ
dpPrνpEq,Prν1pEqq

Lemma F.2. Let x P RD and A Ă RD be a closed nonempty set. Then, ProjApxq is nonempty.

Proof. Let r ą 0 large enough such that B̄rpxqXA ‰ H. Then, observe that there exists y P ProjAXB̄rpxqpxq
since AX B̄rpxq is a compact set and }¨}2 is continuous. Towards a contradiction, suppose there exists z P A
such that

}z ´ x}2 ă }y ´ x}2 .

Then, z P AX B̄rpxq, which implies that y R ProjAXB̄rpxqpxq, a contradiction. Thus, for all z P A,

}y ´ x}2 ď }x´ y}2 .

Thus, y P ProjApxq.

Lemmas F.3 and F.4 appear in Katz-Samuels and Scott [3]. For the sake of completeness, we restate the
proof.
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Lemma F.3. Let P “ tx P RD : Ax ď bu with A P RMˆD. Let µ P P . Then,

dispµ, BP q “ min
i“1,...,M

dispµ, tx : aJi x “ biuq.

Proof. It is not hard to establish that BP “ P X pYMi“1tx : aJi x “ biuq. We claim that

dispµ,YMi“1tx : aJi x “ biuq “ dispµ, P X pYMi“1tx : aJi x “ biuqq.

Since YMi“1tx : aJi bx “ biu is closed, there exists y P YMi“1tx : aJi bx “ biu such that

}µ´ y}2 “ dispµ,YMi“1tx : aJi bx “ biuq.

We claim that y P P . Suppose not (towards a contradiction). Then, there exists θ P p0, 1q such that
z “ p1´ θqµ` θy P BP . Then,

dispµ, pYMi“1tx : aJi x “ biuqq ď }z ´ µ}2 ă }y ´ µ}2 “ dispµ,YMi“1tx : aJi bx “ biuq,

which is a contradiction, establishing the claim. Then,

min
i“1,...,M

dispµ, tx : aJi x “ biuq “ dispµ,YMi“1tx : aJi x “ biuq

“ dispµ, P X pYMi“1tx : aJi x “ biuqq

“ dispµ, BP q.

Lemma F.4. Let ε ą 0 and Nε be an ε-net of SD´1. For any y P RD,

}y}2 ď
1

1´ ε sup
zPNε

yJz.

Proof. Let z0 P Nε such that
›

›

›

y
}y}2

´ z0

›

›

›

2
ď ε. Then, by Cauchy-Schwarz,

}y}2 “
yJy

}y}2
“ yJp

y

}y}2
´ z0q ` y

Jz0 ď }y}2

›

›

›

›

y

}y}2
´ z0

›

›

›

›

2
` yJz0 ď ε }y}2 ` y

Jz0.

Rearranging the inequality, we obtain

}y}2 ď
1

1´ εy
Jz0 ď

1
1´ ε sup

zPNε

yJz.

The following Lemma appears in Vershynin et al. [5] (see Corollary 4.2.13).

Lemma F.5. Let ε ą 0 and Nε be a minimal ε-net of SD´1. Then, |Nε| ď p
2
ε ` 1qD.

Lemma F.6. Suppose A Ă RD is nonempty and A ‰ RD. Then, A has nonempty boundary.
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Proof. Suppose that A has empty boundary. Then, for every x P A, there exists a sufficiently small ball B
containing x such that B Ă A and for every y P Ac, there exists a sufficiently small ball B1 containing y
such that B1 Ă Ac. Then, A and Ac are both open sets, which contradicts the assumption that A is nonempty
and A ‰ RD.

Recall that dpx, yq – x logpxy q ` p1´ xq logp 1´x
1´y q.

Lemma F.7. For x ď .1,

dp
1´ x

2 , xq “
1´ x

2 lnp1´ x2x q `
1` x

2 lnp 1` x
2p1´ xq q ě

1
15 lnp 1

2x q.

Proof. We note that the term

1` x
2 lnp 1` x

2p1´ xq q “
1` x

2 plnp1` xq ´ lnp2p1´ xqqq

is increasing in x P p0, 1q. Thus, for all x P p0, 1q,

1` x
2 plnp1` xq ´ lnp2p1´ xqqq ě 1

2 lnp1{2q ě ´.35.

Next, for x ď .1,

1´ x
2 lnp1´ x2x q “

1´ x
2 rlnp1´ xq ` lnp 1

2x qs

ě
1´ x

2 rlnp0.9q ` lnp 1
2x qs

ě
1
2 ¨ p´0.106q ` 1´ x

2 lnp 1
2x q

ě
1
2 ¨ p´0.106q ` 1

3 lnp 1
2x q.

Then, putting it together, for x ď .1,

1` x
2 lnp 1` x

2p1´ xq q `
1´ x

2 lnp1´ x2x q ě
1
3 lnp 1

2x q ´ 0.35´ 1
2 ¨ p0.106q

ě
1
3 lnp 1

2x q ´
4
15 lnp 1

2x q

“
1
15 lnp 1

2x q.

where we used the fact that 4
15 lnp 1

2x q ě 0.403 for all x ď 0.1.

The following Lemma is from Kaufmann et al. [4].

Lemma F.8. For any x P r0, 1s, dpx, 1´ xq ě lnp 1
2.4x q.

Lemma F.9. Let P Ă RD and let x P P and y P P c. Then, there exists θ P r0, 1s such that θx`p1´ θqy P
BP .
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Proof. Since x P P and y P P c, by Lemma F.6, BP ‰ H. Consider the following sequence, which resembles
binary search.

x0 “ x

x1 “ y

x2 “
1
2 px` yq

xn “

" 1
2xn´1 `

1
2xminpk:@lPtk`1,...,n´1u,xlPP q : xn´1 P P

1
2xn´1 `

1
2xminpk:@lPtk`1,...,n´1u,xlPP cq : xn´1 P P

c .

txnu is clearly a Cauchy sequence so that it has a a limit x̄ “ θx` p1´ θqy P BP for some θ P r0, 1s. If for
every N P N, there exist n,m ě N such that xn P P and xm P P c, then it is clear that x̄ P BP . Suppose
that there exists N such xN P P and for every n ą N , xn R P (the other case is similar). Then, it is clear
that x̄ “ xN and that every open ball containing x̄ contains some point not in P , so that x̄ P BP .

We use the anytime confidence interval from Kaufmann et al. [4].

Lemma F.10. Let X1, X2, . . . be i.i.d. zero-mean sub-Gaussian random variables with scale σ ą 0 and
δ P p0, 1q. Then,

PrpDt : |1
t

J
ÿ

s“1
Xs| ě σ

c

2 logp1{δq ` 6 log logp1{δq ` 3 log logpetq
t

q ď δ.

Recall that Upt, δq “ σ
b

2 logp1{δq`6 log logp1{δq`3 log logpetq
t . We use the following fact from Jamieson

and Jain [2].

Lemma F.11. Let ∆ P p0, 1q and δ P p0, 1q. There is a universal constant c ą 0 such that if

N ě c∆´2 logp logp∆´2q

s
q

then UpN, sq ď ∆.

G TF-LUCB with Tolerance
In this section, we present a variant of TF-LUCB that tolerates some violation of the constraints and some
suboptimality: TF-LUCB-Tol. TF-LUCB-Tol also takes as input two scalars εP and εr, which quantify
how much the algorithm tolerates a violation of the constraints and suboptimality, respectively. The main
difference is that TestF-Tol also takes as input εP and the stopping condition associated with the rewards is
now

min
iPTOPt

rJpµi,Niptq ´ UrpNiptq, δq ` εr ě max
jPTOPct XEt

rJpµj,Njptq ` UrpNjptq, δq.

Next, we introduce variants of TestF-B and TestF-C that allow for a tolerance. TestF-B-Tol now returns
True if BUballpt,δqppµi,tq intersects P and P c and Uballpt, δq ď

εP
2 . Since the diameter of BUballpt,δqppµi,tq is
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Algorithm 1 TF-LUCB-Tol: Top-m Feasible Upper Confidence Bound algorithm

1: Input: TestF, sub-Gaussian norm bound σ, confidence δ, εP , εr
2: for t “ 1, 2, . . . do
3: Ft ÐÝ ti P rKs : TestFpi,Niptq, εP q “ Trueu # arms that are determined to be feasible whp
4: Gt ÐÝ ti P rKs : TestFpi,Niptq, εP q “ ?u# arms that have not be determined to be feasible or

infeasible whp
5: Et ÐÝ Ft YGt # arms that are not ruled out as infeasible whp
6: TOPt ÐÝ arg maxZĂEt,|Z|“minpm,|Et|q

ř

iPZ r
J
pµi,Niptq

7: if TOPt “ Ft and Ft “ Et
8: return pTOPt,TOPct XEt, E

c
t q

9: if TOPt Ă Ft and miniPTOPt r
J
pµi,Niptq ´ UrpNiptq, δq ` εr ě maxjPTOPct XEt r

J
pµj,Njptq `

UrpNjptq, δq
10: return pTOPt,TOPct XEt, E

c
t q

11: if TOPt Ă Ft
12: ht “ arg miniPTOPt r

J
pµi,Niptq ´ UrpNiptq, δq

13: if TOPt Ć Ft
14: ht “ arg miniPTOPt XGt r

J
pµi,Niptq ´ UrpNiptq, δq

15: if TOPct XEt ‰ H
16: lt “ arg maxjPTOPct XEt

rJpµj,Njptq ` UrpNjptq, δq
17: Pull arm lt
18: Pull arm ht

2Uballpt, δq, this guarantees that on an event where the confidence bounds work appropriately, we only accept
µi such that distpµi, P q ď εP . TestF-C-Tol tolerates violations on a constraint-basis instead. Now, it accepts
arms if Uconpt, δq ď

εP
2 . Thus, assuming an event on which the confidence bounds work appropriately, it only

tolerates mistakes on arms such that for every constraint j P rM s, aJj µi ď bj ` εP .

Algorithm 2 TestF-B-Tol:

Input: arm index i, number of pulls t, εP
if distppµi,t, P cq ą Uballpt, δq

return True
if distppµi,t, P q ą Uballpt, δq

return False
if Uballpt, δq ď

εP
2

return True
else

return ?

Algorithm 3 TestF-C-Tol:

Input: arm index i, number of pulls t, εP
if Apµi,t ` Uconpt, δq1 ď b

return True
if Apµi,t ´ Uconpt, δq1 � b

return False
if Uconpt, δq ď

εP
2

return True
else

return ?
Proving the upper bound for this algorithm would have a similar structure to what we have done in this

paper. One subtlety is that finding the top m feasible arms depends on which arms we consider to be feasible
so that accepting as feasible an arm that is in fact infeasible might make the problem more difficult. We
conjecture that the upper bound would reflect this subtlety. We leave the proof of an upper bound of this to
future work.

However, as a practical consideration, we also note that accepting as feasible an arm that is in fact
infeasible might make the problem much easier. We conjecture that in most applications, there is no a priori
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reason to believe that doing this would make the problem easier or more difficult. Furthermore, this issue
could be somewhat alleviated by allowing a tolerance for suboptimality.

H Pseudocode for algorithms TF-AE and FFAF

Algorithm 4 TF-AE: Top-m Feasible Action Elimination

1: Input: TestF, sub-Gaussian norm bound σ, confidence δ
2: tÐÝ 1
3: while True do
4:
5: Ft ÐÝ ti P rKs : TestFpi,Niptqq “ Trueu # arms that are determined to be feasible whp
6: Gt ÐÝ ti P rKs : TestFpi,Niptqq “ ?u# arms that have not be determined to be feasible or infeasible

whp
7: Et ÐÝ Ft YGt # arms that are not ruled out as infeasible whp
8: Ht ÐÝ ti P rKs : |tj P Ft : rJpµj,Njptq ´ UrpNjptq, δq ě rJpµi,Niptq ` UrpNiptq, δqu| ă mu
9: Qt ÐÝ Et XHt

10: for i P Qt do
11: pull arm i
12: tÐÝ t` 1
13: if Et “ Ft and |Ft| ă m
14: return Ft
15: if Qt Ă Ft and |Qt| “ m
16: return Qt

For FFAF, we require that it find the the feasible arms with probability at least 1´ δ
2 and, then, to find the

best arms among those with probability at least 1´ δ
2 . Thus, we require that TestF output the correct answer

with probability at least 1´ δ
2K . We modify the confidence bound for the rewards in the second stage since

in that stage there are only |Ft| arms among which the m arms with the largest rewards must be identified.
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ř

iPZ r
J
pµi,Niptq

13: if miniPTOPt r
J
pµi,Niptq ´ UrpNiptq, δq ě maxjPTOPct XFt r

J
pµj,Njptq ` UrpNjptq, δq

14: return TOPt
15: ht “ arg miniPTOPt r

J
pµi,Niptq ´ UrpNiptq, δq

16: lt “ arg maxjPTOPct XFt
rJpµj,Njptq ` UrpNjptq, δq

17: Pull arms ht and lt
18: tÐÝ t` 1

[5] R. Vershynin, P. Hsu, C. Ma, J. Nelson, E. Schnoor, D. Stoger, T. Sullivan, and T. Tao. High-dimensional
probability: An introduction with applications in data science. 2017.

31


	Outline and Notation
	Lower Bound
	Proof of Theorem 3
	Main Lemmas

	Upper Bounds for Three Instances of TF-LUCB
	Proof of Upper Bound for TF-LUCB-B
	Proof of Upper Bound for TF-LUCB-CB
	Proof of Upper Bound for TF-LUCB-C

	Alternative Lower Bound
	Technical Lemmas
	TF-LUCB with Tolerance
	Pseudocode for algorithms TF-AE and FFAF

