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Abstract

Rao-Blackwellisation is a technique that
provably improves the performance of Gibbs
sampling by summing-out variables from the
PGM. However, collapsing variables is com-
putationally expensive, since it changes the
PGM structure introducing factors whose
size is dependent upon the Markov blanket of
the variable. Therefore, collapsing out sev-
eral variables jointly is typically intractable
in arbitrary PGM structures. In this pa-
per, we propose an adaptive approach for
Rao-Blackwellisation, where we add paral-
lel Markov chains defined over different col-
lapsed PGM structures. The collapsed vari-
ables are chosen based on their convergence
diagnostics. However, adding a new chain re-
quires burn-in, thus wasting samples. To ad-
dress this, we initialize the new chains from
a mean field approximation for the distribu-
tion, that improves over time, thus reduc-
ing the burn-in period. Our experiments on
several UAI benchmarks shows that our ap-
proach is more accurate than state-of-the-art
inference systems such as Merlin that imple-
ments algorithms that have previously won
the UAI inference challenge.

1 Introduction

Probabilistic graphical models (PGMs) [15] are rou-
tinely used in several practical problems such as com-
puter vision [22], computational biology [6], medical
diagnosis [23], natural language processing [19], etc.
A core problem in PGMs is probabilistic inference,
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which is required both for learning graphical models
as well as for prediction. However, exact probabilistic
inference is typically intractable for most PGM struc-
tures. Therefore, approximate inference methods such
as sampling or belief propagation [25] are almost al-
ways used for practical problems. Gibbs sampling [8]
is arguably one of the most popular MCMC sampling-
based approaches for approximate inference in PGMs.

However, despite its widespread use, Gibbs sampling
is well-known to have difficulties when the distribu-
tion has highly-correlated variables, since the sampler
tends to get struck in local modes of the distribu-
tion. Rao-Blackwellisation is a strategy that signifi-
cantly improves the convergence of of Gibbs sampling
on hard-to-sample multimodal distributions with cor-
related variables. However, though Rao-Blackwellised
Gibbs sampling is provably better than ordinary Gibbs
sampling [16], performing Rao-Blackwellisation effec-
tively and in a scalable manner is a challenging prob-
lem. Specifically, we consider Rao-Blackwellisation (or
collapsing) in discrete PGMs. In this case, we need to
sum-out variables from the PGM, and this implicitly
changes the structure of the PGM. More specifically,
collapsing a variable creates a factor over all variables
in its Markov blanket. Therefore, it is intractable to
collapse variables arbitrarily from the PGM. At the
same time, collapsing specific variables in the distri-
bution could be more beneficial w.r.t convergence of
the sampler. Previous approaches [12, 20, 2] have
utilized the structure of the PGM to perform Rao-
Blackwellisation tractably. For example, Hamze and
Defreitas [12] partition checkerboard Markov Random
Fields (MRFs) into disjoint trees, where they sample
one tree and conditioned on this, estimate the joint dis-
tribution tractbly over the other using belief propaga-
tion. Similarly, Bidyuk and Dechter [2] sample a cutset
of the PGM such that the induced width on the re-
maining variables is bounded by a constant. However,
though these approaches leverage structural proper-
ties of the PGM, they do not exploit sampler history
to determine the optimal variables to collapse. At the
same time, adaptive sampling approaches [1] have been
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successful in improving convergence in MCMC-based
samplers by exploiting sampler history. In this paper,
we present an adaptive sampler for Rao-Blackwellised
Gibbs sampling that collapses variables in parallel
based on their convergence properties.

Our main idea is quite straightforward. We adapt the
sampler to collapse slowly converging variables. How-
ever, since it may be intractable to collapse all such
variables sequentially, we collapse them in parallel.
Specifically, we alternate between two steps. In the
first step, we choose the optimal variables to collapse
based on their convergence statistics, given tractabil-
ity constraints. In the second step, we add parallel
Gibbs samplers with the selected variables collapsed
out, and re-compute the convergence statistics. Our
final sampler is a mixture of parallel Markov chains
where each Markov chain is constructed around a dif-
ferent collapsed PGM structure, but with all marginals
converging to the same invariant distribution. A key
issue with parallel sampling is that every time we add
a new sampler, we need to initialize its state. Typi-
cally, Gibbs samplers initialize parallel chains by sam-
pling from a uniform distribution over its state space.
However, in such a case, the benefit of adding new col-
lapsed samplers is offset by time spent in the burn-in
period of the new chain before useful samples can be
generated from the collapsed sampler. To address this,
we initialize the state of the sampler based on a mean
field approximation of the distribution. The parame-
ters of this approximation are improved progressively
resulting in better initialization points of the sampler
and smaller mixing times.

We evaluate our approach with UAI benchmarks on
marginal inference tasks. Our comparison with Mer-
lin [17], a PGM inference system clearly shows that
our proposed approach is more accurate than state-of-
the-art marginal inference solvers.

2 Background

2.1 Discrete Probabilistic Graphical Models

Probabilistic Graphical models (PGMs) [21, 4, 15]
unify graph theory with probabilistic reasoning. The
two main categories of PGMs are Bayesian networks
which are directed models and Markov networks which
are undirected models. Below, we give a brief overview
of Markov networks, since from an inference perspec-
tive, they are both equivalent to each other [4, 15], and
similar algorithms are used in both networks.

A (discrete) PGM or a Markov network, denoted by
M is a pair 〈X,Φ〉 where X = {X1, . . . , Xn} is a set of
discrete variables (i.e., they take values from a finite
domain) and Φ = {φ1, . . . , φm} is a set of positive

real-valued functions (or potentials). Each function is
defined over one or more variables and the scope of a
function is the union of all the variables occurring in
φ. M represents a probability distribution called the
Gibbs distribution which is the normalized product of
all its potentials as given by the following equation.

P (x) =
1

Z

∏
φ∈Φ

φ(x) (1)

where x is an assignment of values to all variables in X,
φ(x) evaluates the factor φ with the values to variables
in its scope specified by x, and Z is a normalization
constant called the partition function.

2.2 Gibbs Sampling

Given a PGM M = 〈X,Φ〉 and observed evidence E,
Gibbs sampling begins by initializing all non-evidence
variables randomly. In each iteration, we generate a
new sample from the previous sample by selecting ex-
actly one variable X and sampling it from its condi-
tional distribution P (X|X \X). Note that in Markov
networks, it is typically easy to compute this condi-
tional probability since given its Markov blanket, a
variable is conditionally independent of all other vari-
ables in the PGM. Marginal probabilities can be es-
timated from Gibbs samples using standard Monte
Carlo estimators.

Rao-Blackwellisation or collapsing is a technique for
improving the accuracy of Gibbs sampling. Collaps-
ing operates by summing-out or marginalizing a subset
of variables, say X′, from the PGM. Gibbs sampling
is then performed on this smaller PGM, and this re-
duces variance of estimates because only a sub-space
is sampled. Collapsing a variable in a PGM is typi-
cally computationally expensive since it creates a new
factor (or in terms of the graph, a clique) over all its
neighboring variables.

3 Related Work

Liu [16] showed that Rao-Blackwellised Gibbs is prov-
ably better than random scan Gibbs sampling, and
therefore samplers should always try to collapse vari-
ables when possible. Thus, several previous ap-
proaches have been proposed for Rao-Blackwellised
Gibbs sampling in discrete PGMs. Most of these
approaches are non-adaptive samplers that only ex-
ploit the structure of the Markov network to col-
lapse a subset of variables tractably. Specifically,
Paskin [20] proposed sample propagation, an efficient
Rao-Blackwellisation technique for PGMs. Specifi-
cally, sample propagation builds samples some vari-
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ables and performs exact inference over the others us-
ing a junction tree by passing messages efficiently that
does not require running the full junction tree (over
the collapsed variables) for each sample. Hamze and
Defreitas [12] build a Rao-Blackwellised sampler over
Ising models, where the PGM is partitioned into two
parts, one of which is sampled, and conditioned on
this, the exact marginal is computed over the the re-
maining tree-structured induced graph. Bidyuk and
Dechter [2] proposed cutset-sampling, where they sam-
pled a cutset such that the induced width of the re-
maining network is bounded, and can be solved ex-
actly. Adaptive approaches include the splash Gibbs
sampler by Gonzalez et al. [11], where they use a
likelihood estimator to compute the optimal variables
to sample jointly (blocking), also known as splashes.
They run parallel chains to sample from different
splashes where the splashes constructed to maintain
ergodicity of the sampler. Venugopal and Gogate [24]
and Islam et al. [13] proposed approaches to learn
correlations, and used these to collapse the sampler
efficiently. However, they considered a single col-
lapsed PGM structure which is inherently limited since
jointly collapsing several variables quickly becomes in-
tractable. Whereas, in our approach, we sample from
multiple collapsed structures in parallel.

4 Adaptive Rao-Blackwellisation

We motivate our approach using a simple example.
Consider a pairwise Markov network shown in Fig. 1
(a). Let the variables X2, X5 and X8 are correlated
with (X1, X3), (X4, X6) and (X7, X9) respectively. In
this case, collapsing X2, X5 and X8 is likely to improve
the mixing time of the sampler. However, collapsing
all three variables in the PGM yields a factor with
six variables. Specifically, after collapsing, there is a
clique over the variables X1, X3, X4, X6, X7 and X9.
Now, suppose we add a constraint that we can only
construct factors of four variables or less for compu-
tational reasons, then, clearly, X2, X5 and X8 cannot
be collapsed in the same chain. An alternate strategy
is to then spawn two parallel Gibbs samplers corre-
sponding to the Markov networks shown in Fig. 1 (b)
and (c). Specifically, in Fig. 1 (b), X2 and X8 is col-
lapsed, and in Fig. 1 (c) the variable X5 is collapsed.
Our final sampler is now a mixture of the two parallel
collapsed samplers.

Formally, given a PGMM = 〈X,Φ〉, we will partition
the variables X into two sets, one set is collapsed or
marginalized-out of M, and the other set of variables
are sampled. However, we need to choose the variables
to collapse carefully such that it improves mixing time
of the sampler. We can formulate this as follows.

min
X′⊆X

tmix(P−X′ , ε)

where tmix(P−X′ , ε) is the mixing time of the Gibbs
sampler where variables X′ have been collapsed out
of M. In general, we can define the mixing time as
the minimum number of time steps before the total
variational distance between the true and approximate
distribution is less than a constant. Specifically,

tmix(P−X′ , ε) = min

{
t : max

µ
||P (t)
−X′µ− PM||TV ≤ ε

}
where ε is a constant, P (t) is the transition ma-
trix after t time steps of the sampler defined on the
PGM obtained by collapsing variables X′ from M,

||P (t)
−X′µ−PM||TV is the total variational distance be-

tween the approximate distribution estimated by the

sampler after t time steps, given by P
(t)
−X′µ and the

true stationary distribution PM. Thus, our task is to
select the optimal subset of collapsed variables that
minimizes mixing time of a sampler, that samples the
remaining variables in the PGM.

However, it is notoriously hard to analytically derive
the mixing time for arbitrary PGM structures. There-
fore, a standard approach used to analyze whether a
sampler has mixed or not is to use convergence diag-
nostics derived from the drawn samples. In principle,
though any convergence diagnostic can be used, in this
paper, we adopt a popular approach known as the Gel-
man and Rubin (GR) diagnostic [7]. Specifically, given
multiple chains from different starting points, for a
specific parameter θ that is estimated by the sampler,
we estimate the between-chain as well as the within-
chain variances, and combine the variances together.
For mixed chains, the within as well as in-between
variances for θ would be small. In our case, we use
the diagnostic to determine whether the single-variable
marginal probability estimates for each variable in the
PGM has converged. However, since we are assuming
a discrete PGM, it turns out that the standard GR di-
agnostic does not work effectively with limited sample-
sizes [3, 5]. Since our aim is to get an accurate estimate
of the convergence diagnostic as quickly as possible, we
use a variant of the GR scheme based on the methods
proposed by Deonovic and Smith [5]. Specifically, for
each variable, we compute convergence of its marginal
probability within and between Markov chains using
the Hellinger distance, which is a popular symmetric
distance measure for discrete distributions. We then
compute the PSRF (potential scale reduction factor)
as in the GR diagnostic. Larger values will mean that
the chain has not converged. Using this, we search for
a subset of variables to collapse such that the sum of
the GR diagnostic scores computed for the marginal
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(c)

Figure 1: (a) Original PGM (b) X2 and X8 collapsed (c) X5 collapsed

estimates on the un-collapsed variables is minimized.
Specifically,

min
X′⊆X

∑
X∈X\X′

GR(P−X′(X)) (2)

where P−X′(X) is the marginal probability estimate
for variable X obtained by running the sampler on the
PGM where X′ has been collapsed.

Solving the above optimization problem is clearly com-
putationally hard. Specifically, we need to enumerate
over all possible subsets of X, and corresponding to
each of the subsets, we need to first collapse the PGM
and then compute the GR statistics for un-collapsed
variables after running the sampler for a fixed number
of time steps. Instead, we develop a more efficient co-
ordinate descent approach to optimize Eq. (2), where
we alternate between the following steps. We fix the
GR statistics for all variables and choose the optimal
subset of variables (X′) to collapse. We marginalize
variables X′ from the PGM, and spawn a new Gibbs
sampler that estimates the marginals P−X′(X), where
X is an un-collapsed variable. After running the sam-
pler for a fixed number of time steps, we recompute the
GR statistics and repeat the aforementioned steps.

However, note that the unconstrained problem spec-
ified in Eqn. (2) can lead to a trivial solution where
all the variables are selected for collapsing. That
is, the mixing time of the sampler is obviously min-
imzed when there are no variables to sample. How-
ever, clearly in arbitrary PGM structures, it is com-
putationally intractable to marginalize all variables.
Therefore, we introduce a tractability constraint where
the minimum width of the collapsed variables should
be bounded by a constant. Specifically, given X′ ⊆ X,
the width is defined over an ordering of X′, π(X′) as
the maximum factor-size that is obtained by collapsing
variables sequantially in the order π(X′). The mini-
mum width is the smallest width over all possible or-
derings of X′. We add a constraint to Eq. (2) that the

minimum width of the variables chosen for collapsing
must be bounded by a constant. That is, w(X′) ≤
α. However, adding this constraint implies that we
need to compute the minimum width by enumerat-
ing all possible orderings of the subset in the worst
case. In general, computing the minumum-width is
known to be computationally intractable. Instead, we
use well-known heuristics that yield an upper bound to
w(X′), such as the min-degree or the min-fill heuristic.
Note that more accurate branch-and-bound based es-
timates [9] for w(X′) can also be computed, however,
they are computationally more expensive.

Our approach to solve Eq. (2) with the tractability
constraint proceeds as follows. To start with, we as-
sume that every variable in M converges at the same
rate, i.e., the GR statistics for each marginal proba-
bility in X are equal. In iteration t, conditioned on
the GR statistics, we partition X into the variables

that are sampled, X
(t)
s , and the variables that are col-

lapsed, X
(t)
c , using a greedy approach. Specifically, we

select the variable X that has maximum GR value and
where w(X) ≤ α, and add it to X

(t)
c , until we can add

no more variables. We then spawn Gibbs samplers to
sample from P−X(t)

c
, and, using samples from them,

we update the GR statistics for all variables in X
(t)
s .

Based on the new GR statistics, we recompute X
(t+1)
c

and X
(t+1)
s .

4.1 Estimating Marginals

Let x̄
(t)
ij represent the j-th sample generated from the

i-th sampler spawned in iteration t after the sampler

is assumed to have converged. The marginals for X
(t)
c

are computed exactly, while the marginals for X
(t)
s are

estimated from x̄
(t)
ij . Note that once we can collapse a

variable in one of our iterations, we have access to its
exact marginals and do not need to use a sampling-
based estimator for that variable. For variables that
cannot be collapsed in any iteration, we estimate the
marginal probabilities for the sampled variables using
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a mixture estimator as,

P̂ (X) =
1

T ∗K ∗M

T∑
t=1

K∑
i=1

M∑
j=1

P−X(t)
c

(X|x̄(t)
ij \X)

where K is the number of parallel chains in each iter-
ation, M is the number of samples collected per chain
and T is the number of iterations.

Note that our sampler modifies the transition kernel
each time by changing the variables that are collapsed.
Specifically, P−X(t)

c
() changes as t changes. This re-

sults in the overall sampler being non-ergodic. Specifi-
cally, Gonzalez et al. [11] showed that continuous adap-
tation of the transition probability based on the pre-
vious state of the sampler yields a non-ergodic Gibbs
sampler. Further, they showed that using vanishing
adaptation, i.e., stopping the adaptation over time pre-
serves ergodicity of the sampler. To use this result, we
stop adaptation after a finite number of steps. Specif-
ically, let GR(X)(t) be the GR statistic for variable X
after iteration t, we update this in iteration t+ 1 as β
GR(X)(t+1) + (1 − β) GR(X)(t), and β is decreased
in each iteration.

Proposition 1. As T → ∞, for each variable X in
M, the estimated marginal P̂ (X) → PM(X), where
PM(X) is the true marginal distribution for X.

Proof. (Sketch) Let PM be the distribution repre-
sented by M. In iteration t, the Gibbs sampler is

constructed on the PGM with X
(t)
c collapsed. That is,

we draw samples from P (X
(t)
s =

∑
x̄∈X(t)

c
P (X

(t)
s , x̄).

There are two possible cases. Let X be a variable that
is collapsed in some iteration. This means, we compute
the exact marginal for X. Therefore, P̂ (X) = PM(X).
Suppose X is not collapsed in any iteration. Then, the

estimate for X is derived by the samples from P (X
(1)
s ,

. . . P (X
(T )
s . Since each collapsed distribution leaves

the marginal distribution for X invariant, and as T →
∞, X

(t−1)
s = X

(t)
s (vanishing adaptation), from Gon-

zalez et al. [11], it follows that P̂ (X) → PM(X).

4.2 Initializing the Markov Chains

In each iteration, we add Gibbs samplers for the col-
lapsed PGM. The common approach to initialize the
samplers is to initialize assignments to the variables
randomly. However, such an initialization would re-
quire a full burn-in before samples can used for es-
timating the marginal probabilities. Thus, as we add
more parallel samplers, we are effectively wasting more

Algorithm 1: Adaptive RB

Input: M (X,Φ), α
Output: Marginal probabilities for each variable in the

PGM
// Initialize GR stats

1 for each Xi in X do

2 GR(1)(Xi) = C

3 Initialize burn-in B
4 Initialize adaptation parameter β
5 for t = 1 to T do

// Compute the optimal collapsed variables

6 X
(t)
c , X

(t)
s = Greedy-select based on GR(t) where

w(X
(t)
c ) ≤ α

7 Collapse M to represent P−X
(t)
c

(X
(t)
s )

8 Initialize K parallel Gibbs samplers by sampling from

the current marginal estimates for P̂ (Xi) . . . P̂ (Xn)
// Estimate the marginals

9 for i = 1 to M do
10 if i ≥ B then

11 for X ∈ X
(t)
s do

12 Update P̂ (X)

13 for X ∈ X
(t)
c do

14 Compute exact marginals and store in P̂ (X)

15 for X ∈ X
(t)
s do

16 GR(t)(X) = β GR(t)(X) + (1− β)GR(t−1)(X)

17 Decrease β and B

18 Return P̂ (Xi) . . . P̂ (Xn)

samples during the burn-in period, which affects scala-
bility of the sampler. To address this problem, we use
an importance distribution to initialize the sampler
where we learn the parameters of the importance dis-
tribution based on results obtained from the previous
samplers. Specifically, we assume that our importance
function is fully factorized over the estimated marginal
probabilities, i.e., we assume a mean-field approxima-
tion of the joint distribution.

PM(X) ≈ QM(X) =
∏
Xi∈X

P̂ (Xi)

In each iteration, we initialize the Gibbs sampler
by sampling assignments from

∏
X∈X P̂ (X). As the

marginal estimates become more accurate, the mean-
field approximation for the joint distribution improves.
Specifically, the KL-distance between the original dis-
tribution and the mean field approximation is given
by,

KL(QM||PM) =
∑
X

QM(X) log
PM(X)

QM(X)

Using variational inference [14], the optimal param-
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eters for QM can be obtained by maximizing the
Evidence-lower bound (ELBO) which is equivalent to
minimizing the KL-divergence between the mean-field
approximation and the original distribution. Typi-
cally, this is done using a co-ordinate descent proce-
dure where we compute the optimal distribution for
each variable in the mean-field approximation inde-
pendent of the distributions over the other variables.
Analytically computing the mean field parameters for
a variable in the PGM requires the multiplication of
all factors that the variable is involved in. Specifically,
if a variable has N variables in its Markov blanket,
and is involved in F factors and can take K values,
computing the distribution analytically has a complex-
ity O(KFNK). For PGMs where variables have large
Markov blankets, this can be an expensive operation.
Therefore, we can think of our approach as a way to es-
timate the parameters of the approximation QM from
the samples.

Formally, let Q∗ be a locally optimal solution for the
minimization problem, minQ∈F KL(Q||PM), where F
is the family of all possible mean-field approximations
for PM. We can show that

Proposition 2. As T → ∞, QM → Q∗

Proof. Let Q ∗ (X) = q1(X1) . . . qn(Xn). The ELBO
optimization problem is given by,

min
q1...qn

EQ∗(X)[log P̄M(X)− logQ ∗ (X)]

where P̄M(X) is the un-normalized probability, which
is product of all factors, i.e.,

∏m
i=1 φi(X). Using the

closed form solution (cf. [14]) to the above problem,
we have,

log qj(Xj) ∝ Eq−j [logP̄M(Xj)]

where Eq−j
denotes that the expectation is computed

while keeping all the distributions except qj fixed.
P̄M(xj) is the product of all factors containing vari-
able xj . From Proposition 1, the sampled marginals
approach the true marginals as T → ∞. Thus, as T
→ ∞, ∀i, P̂ (Xi) → P (Xi) ∝ qi(Xi). Therefore, QM
→ Q∗.

Thus, after each iteration of our algorithm, the KL di-
vergence between the true distribution and the mean-
field approximation is guaranteed to decrease. Thus,
as we converge towards more accurate marginal es-
timates, we reduce the burn-in time in each iteration
and waste fewer samples in parallel chains added to the
sampler. Note that, even though we may converge to a
locally optimal mean-field approximation, recall that
we only initialize the un-collapsed variables. Collaps-
ing out different subsets of variables should help the

sampler jump across local modes. Our experiments
confirm this, where we are able to converge to the true
estimates even though we use very small burn-in as
we add parallel samplers. A more detailed theoretical
analysis of this is part of our future work. To summa-
rize, Algorithm 1 illustrates our complete sampler.

5 Experiments

5.1 Setup

We evaluated our approach on the UAI 2014 marginal
inference competetion tasks [10]. We experimented
with several problems and present a subset of our
results here. Specifically, we present results from
sample problems in Alchemy, CSP, Grids, Pedigree
and Promedus. Alchemy specifies statistical relational
models, CSP specifies constraint satisfaction problems,
Grids are Ising models, Pedigree models are used in
linkage analysis in biology and Promedus are models
used for medical diagnosis. Each of these benchmarks
have PGMs of different structures. The true marginal
probabilities for these tasks are available in the UAI
repository. We measure performance of each algorithm
using the Hellinger distance between the approximate
marginal and the true marginal. Specifically, given
a variable Xi, where the marginal distribution P (Xi)
is given by the values (p1, · · · , pm), and the marginal
estimate for Xi, P̂ (Xi) is given by (p̂1, · · · , p̂m), the
Hellinger distance between the two marginal distribu-
tions is,

H(P̂ (Xi), P (Xi)) =
1√
2

√√√√ m∑
j=1

(
√
p̂j −

√
pj)2

Note that we divide by
√

2 so that the error metric
is 0 ≤ H(·, ·) ≤ 1. Then for the n variables in the
PGM denoted by X, the Maximum Hellinger metric
E = maxX̂i,Xi∈XH(P̂ (Xi), P (Xi)). For ease of com-

parison, we used −log2(E). The negative log of the
Maximum Hellinger distance is presented in all our
tables and figures. Thus, higher values are better.

We implemented our Adaptive Rao-Blackwellisation
(ARB) algorithm in the Go programming language due
to its support for parallelization. Note that since all
the benchmarks can be solved by exact inference (to
obtain the true marginals), all variables can be col-
lapsed jointly which would simply give us the exact
marginal results. Therefore, we use the following pro-
cess to design the collapsed chains.

After a specified number of iterations (c), we calculate
a convergence score per variable, select a variables to
collapse, and create new chains with those variables



Craig Kelly, Somdeb Sarkhel, Deepak Venugopal

collapsed. This adaptive process continues for s
2 sec-

onds, where s is the maximum time in seconds for
sampling. From that time until s seconds (or until
the sampler converges), the chains are not altered and
sampling continues normally with no adaptive steps.
In our tests we used the settings b = 2, a = 4, c = 2000,
and s = 300: so we began with 2 uncollapsed samplers
and added 4 collapsed samplers after every 2000 iter-
ations. This continued for at most 150 seconds (s/2),
after which we continued to draw samples for at most
150 seconds.

We compared our results to Merlin [17] which imple-
ments Iterative Join-Graph Propagation (IJGP, see
[18]). It should be noted that IJGP is a state-of-
the-art system for marginal inference and has in fact
won the UAI inference competition in several cate-
gories. We used the Merlin library’s default setting for
IJGP. In all cases, Merlin converged extremely quickly,
and therefore, their results do not show changes over
time. We also implemented a non-adaptive Rao-
Blackwellised Gibbs sampler (RC) that tractably col-
lapses a subset of variables beforehand. This approach
is similar to the one taken by several existing meth-
ods for Rao-Blackwellisation [12, 2]. Once again, in
order to ensure that we do not collapse all variables,
and for a fair comparison, we collapsed the same num-
ber of variables as in ARB. Further, we generated the
same number of parallel chains as in ARB (but with-
out adaptation) for a fair comparison. We allowed our
samplers to run for a maximum of 600 seconds or un-
til convergence. We ran our experiments in an Ubuntu
18.04 environment on a physical machine with 16GB of
RAM and 6 CPU’s. The CPU’s each have 2 hardware
threads, for a total of 12 hardware threads available to
our implementation.

5.2 Results

Our results are shown in Fig. 2. As shown here, in
a majority of the cases, ARB is the best performing
method. The results are also summarized in Table 1
that specifies the numerical value for the maximum
Hellinger error. The benchmark problems in Grids,
CSP and Alchemy (shown only in table for lack of
space) converged very fast for all algorithms. On CSP
the performance of ARB and RC were more or less sim-
ilar, while on the others ARB outperformed the other
methods. On the Promedas and Pedigree benchmarks,
ARB was the best performer followed by RC. Merlin
converged much faster but could not improve on its
results, and therefore had lower accuracy.

In addition, the relative difficulty of the larger bench-
marks (Promedas) allowed us to evaluate our use of
mean-field approximation for chain initialization. As
mentioned above, during our adaptive phase, new

Table 1: UAI Benchmark Results, negative log of Max-
imum Hellinger (higher is better). RC is Random Col-
lapsed Gibbs Sampling, and ARB is our Adaptive Rao-
Blackwellisation technique. Best result is in bold.

Model Merlin RC ARB
Alchemy 11 2.683 4.018 4.018
CSP 11 1.128 1.870 1.870
CSP 12 0.746 1.910 1.860
CSP 13 1.009 1.883 1.785
Grids 11 0.039 0.583 1.253
Grids 12 0.043 0.707 1.211
Grids 13 0.010 0.596 0.879
Pedigree 11 0.128 0.680 0.795
Pedigree 12 0.459 0.742 0.984
Pedigree 13 0.001 0.278 0.711
Promedus 11 0.093 1.132 1.421
Promedus 12 0.185 0.643 1.483
Promedus 13 0.230 1.087 1.211

chains are created by collapsed variables chosen with
a convergence diagnostic score. However, the burn-in
is reduced since the initialization is performed with
a mean-field approximation using the marginal esti-
mates. The Promedas results shows that on larger
benchmarks, error was continuously decreasing as
more chains were added even as the burn-in period
was dropping. If the new chains had started in poorly
chosen areas of the sample space, then on decreasing
burn-in as iterations progressed, we should have had
poorer samples which would have caused consistent
dips in our accuracy whenever a parallel chain was
added, followed by a recovery period where the accu-
racy would improve as the sample quality improves.

6 Conclusion

Collapsing variables in a discrete PGM is expensive
since it changes the PGM structure. In this paper,
we presented an adaptive Rao-Blackwellised sampler,
where, instead of collapsing several variables sequen-
tially in a single Gibbs sampler (which may be in-
tractable), we construct parallel chains for tractable
collapsed structures by identifying the optimal vari-
ables to collapse based on convergence diagnostics.
However, adding parallel chains wastes samples since
the samplers need to be burned-in. We initialized
new samplers using the marginal estimates that corre-
sponds to an increasingly accurate mean-field approxi-
mation of the distribution, which reduces burn-in time.
Our experiments on UAI benchmarks clearly showed
that our approach is more accurate than state-of-the-
art methods. Future work includes applying our ap-
proach to continuous PGMs and other inference tasks.
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Figure 2: Comparison of ARB, Merlin and RC. X axis is time in seconds; Y axis is negative log of Maximum
Hellinger distance (bigger is better). Note that X axes vary by model.
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