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Abstract

Research in both machine learning and psychol-
ogy suggests that salient examples can help hu-
mans to interpret learning models. To this end,
we take a novel look at black box interpretation
of test predictions in terms of training examples.
Our goal is to ask “which training examples are
most responsible for a given set of predictions”?
To answer this question, we make use of Fisher
kernels as the defining feature embedding of each
data point, combined with Sequential Bayesian
Quadrature (SBQ) for efficient selection of ex-
amples. In contrast to prior work, our method is
able to seamlessly handle any sized subset of test
predictions in a principled way. We theoretically
analyze our approach, providing novel conver-
gence bounds for SBQ over discrete candidate
atoms. Our approach recovers the application of
influence functions for interpretability as a special
case yielding novel insights from this connection.
We also present applications of the proposed ap-
proach to three use cases: cleaning training data,
fixing mislabeled examples and data summariza-
tion.

1 Introduction

It has long been established that using examples to enable
interpretability is one of the most effective approaches for
human learning and understanding [21, 4, 15]. The ability
to interpret using examples from the data can lead to more
informed decision based systems and a better understanding
of the inner workings of the model [17, 16]. In this work,
we are interested in finding data points or prototypes that
are “most responsible” for the underlying model making
specific predictions of interest. To this end, we develop a
novel method that is model agnostic and only requires an
access to the function and gradient oracles.
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In a more formal sense, we aim to approximate the empiri-
cial test data distribution using samples from the training
data. Our approach is to first embed all the points in the
space induced by the Fisher kernels [13]. This provides
a principled way to quantify closeness of two points with
respect to the similarity induced by the trained model. If
two points in this space are close, then intuitively the model
treats them similarly. We formally show that influence func-
tion based approach to interpretability [17] is essentially
doing the same thing.

Thus, our goal is to find a subset of the training data such
that, when also embedded in a model-induced space, is close
to the test set in the distribution sense. We build this subset
from the training data sequentially using a greedy method
called Sequential Bayesian Quadrature (SBQ) [22]. SBQ is
an importance-sampling based algorithm to estimate the ex-
pected value of a function under a distribution using discrete
sample points drawn from it. To the best of our knowledge
SBQ has not been used in conjunction with Fisher kernels
for interpretability. Moreover, we leverage recent research
in discrete optimization to provide novel convergence rates
for the algorithm over discrete atomic sets. Our analysis
also yields novel and more scalable algorithm variants of
SBQ with corresponding constant factor guarantees.

Our key contributions are as follows:

e We propose a novel method to select salient training
data points that explain test set predictions for black
box models.

e To solve the resulting combinatorial problem, we de-
velop new faster convergence guarantees for greedy
Sequential Bayesian Quadrature on discrete candidate
sets. One novel insight that results is the applicabil-
ity of more scalable algorithm variants for SBQ with
provable bounds. These theoretical insights may be of

independent interest.
e We recover the influence function based approach

of Koh & Liang [17] as a special case. This connection
again yields several novel insights about using influ-
ence functions for model interpretation and training
side adversarial attacks. Most importantly, we establish
the importance of the Fisher space for robust learning
that can hopefully lead to promising future research
directions.
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e To highlight the practical impact of the our inter-
pretability framework, we present its application to
three different real world use-cases.

Related work: There has been a lot of interest lately in
model interpretation in various ways and their correspond-
ing applications. Thus, we focus our related work on the
subset of most closely related research. Our approach has
a similar motivation as Koh & Liang [17], who proposed
the use of influence functions for finding the most influ-
ential training data point for a test data point prediction.
The intuition revolves around infinitesimally perturbing the
training data point and evaluating the corresponding impact
on the test point. The method is only designed for single
data points — thus their extension to selecting multiple data
points required an unmotivated heuristic approach. A com-
plementary line of research revolves around feature based
interpretation of models. Instead of focusing on choosing
representative data points, the goal is to reveal which fea-
tures are important for the prediction Ribeiro et al. [24].
Recently, Kim et al. [16] also made use of the unweighted
MMD function to propose selection of prototypes and crit-
icisms. While their approach can be used for exploratory
analysis of the data, it has not been extended for explaining
a model. Their focus, moreover, is on the use of criticisms
in addition to examples as a vital component of exploring
datasets.

Fisher kernels were proposed to exploit the implicit em-
bedding of a structured object in a generative model for
discriminative purposes [13], and have since been applied
successfully in a variety of applications [23]. The goal is
to design a kernel for generative models of structured ob-
jects that captures the “similarity” for the said objects in
the corresponding embedding space. The kernel itself can
then be used out of the box in discriminative models such
as Support vector machines.

2 Background

In this section, we provide an overview of the technical
background required for our setup. We begin by fixing
some notation. We represent sets using sans script fonts e.g.
A, B. Vectors are represented using lower case bold letters
e.g. X,y, and matrices are represented using upper case
bold letters e.g. X,Y. Non-bold face letters are used for
scalars e.g. j, M, r and function names e.g. f(-).

2.1 Fisher Kernels

The notion of similarity that Fisher kernels employ is
that if two objects are structurally similar, then slight per-
turbations in the neighborhood of the fitted parameters
0 := arg maxlog p(X|0), would impact the fit of the two
objects similarly. In other words, the feature embedding

f, .= %@Xile)\e:é, for an object X; — f; can be in-

terpreted as a feature mapping which can then be used to
define a similarity kernel by a weighted dot product:

Ii(XZ‘, X]) = fZ-TIilfj,

) T
where the matrix Z := ]Ep(x)[dloggéx‘a) 81°85§X'9)] is

the Fisher information matrix. The information matrix
serves to re-scale the dot product, and is often taken as iden-
tity as it loses significance in limit [13]. The corresponding
kernel is then called the practical Fisher kernel and is often
used in practice. We note, however, that dropping Z had
significant impact on performance in our method, so we em-
ploy the full kernel. However, the practical Fisher Kernel is
important to mention here. As we show in Section 5, using
the practical Fisher Kernel recovers the influence function
based approach to interpretability [17] as a special case. An-
other interpretation of the Fisher kernel is that it defines the
inner product of the directions of gradient ascent over the
Riemannian manifold that the generative model lies in [25].

While appropriate feature mapping is crucial for predictive
tasks, we observe that it is also is vital for interpretability.
Fisher kernels are ideal for our task because they seamlessly
extract model-induced data similarity from trained model
that we wish to interpret. To further motivate that such a
task can not be trivially performed by a something like a
parameter sweep over RBF kernels i.e. without supervision,
we perform a simple toy experiment illustrated in Figure 1.

2.2 Bayesian Quadrature

Bayesian quadrature [22] is a method used to approximate
the expectation of a function by a weighted sum of a few
evaluations of the said function. Say a function f : X — R
is defined on a measurable space X C R?. Consider the
integral:

E[f(x)] = / FpEdx~ Y wif(x), ()
& i=1

where w; are the weights associated with function evalu-
ations at x;. Using w; = 1/n and randomly sampling x;
recovers the standard Monte Carlo integration. Other meth-
ods include kernel herding [3] and quasi-Monte carlo [7],
both of which use w; = !/n but use specific schemes to
draw x;. Bayesian quadrature allows one to consider a
non-uniform w; given a functional prior for f(-). The sam-
ples x; can then be chosen as the ones that minimize the
posterior variance [12] as we shall see in the sequel. The
corresponding weights can be calculated directly from the
posterior mean. We impose a Gaussian Process prior on the
function as f ~ GP(0, k) with a kernel function k(-, -). The
algorithm SBQ proceeds as follows. Say we have already
chosen n points: x;,4% € [n]. The posterior of f given the
evaluations f(x;) has the mean function:
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Figure 1: A toy experiment to illustrate the usefulness of Fisher space mapping. [Left] 1200 samples on U[1,2] x U[1,2]
with two labels - Green and Red as illustrated. A specific green point X is selected for further experiment. [Mid] Closest
40 (Set A) and farthest 40 points (Set B) in terms of RBF kernel similarity. A distance based kernel such as RBF would
yield these points as most and least similar to X respectively. [Right] Closest 40 (Set A’) and farthest 40 (Set B’) to X in
terms of the Fisher kernel similarity computed from a fitted logistic regression model. The decision boundary for the logistic
regression is also presented. It predicts everything below it as red, and everything above it as green. The Fisher “closeness”
here takes into account the label of the points as well as the log-likelihood gradient on the contour of the loss function and
its direction for each point. Note that for points exactly on the boundary, their gradient and Fisher similarity with all other

points will be 0.

f(x) =k"K™'f,

where f is the vector of function evaluations f(x;), k is the
vector of kernel evaluations k(x,x;), and K is the kernel
matrix with K;; := k(x;,x;).

We now focus on sampling the points x;. The quadrature
estimate provides not only the mean, but the full distribution
as its posterior. The posterior variance can be written as:

COV(X>y) = k(X7Y) - ]{J(X, X>K_1k(X’y)a

where X is the matrix formed by stacking x;, and the kernel
function notation is overloaded so that (X, y) represents
the column vector obtained by stacking k(x;,y). The pos-
terior over the function f also yields a posterior over the ex-
pectation over f defined in (1). For convenience, define the
set S; 1= {x1,X2,...,%;}. Say Z(S;) = >, w; f(x;).
Then, it is straightforward to see E[Z(S,)] = z K 1f,
where z; := [ k(x,x;)p(x)dx. Note that the weights in (1)

can be written as w; = ), 7, (K~1,5.

We can write the variance of Z(S,,) as:

var(2(5,)) = [ [ e yipeoply)xdy — 2 K.
2)
The algorithm Sequential Bayesian Quadrature (SBQ) sam-
ples for the points x; in a greedy fashion with the goal of

minimizing the posterior variance of the computed approxi-
mate integral:

Xn41 ¢ argminvar(Z(S, U {x})).
xeX

3 Prototype Selection using Fisher Kernels

In this section, we present our method to select sample
representatives using Fisher kernels. For a loss function
£(0,x), where 0 are the parameters of the model and x is
the data, to train a parametric model one would minimize
the expected loss:

minEp(x)é(Q,x), (3)

where p(x) is the data distribution. Since we usually do not
have access to the true data distribution, p(x) is typically
the empirical data distribution p(x) = +4§(x), where §(-) is
1 if x exists in the dataset, and 0 otherwise, and n is the size
of the dataset. Our goal in this work is to approximate the
integral (3) over the test or validation set (which specifies
the distribution p for us) using a weighted sum of a few
points from the training dataset (1). Note that while the
training samples in general have measure O in the test or
the validation set distribution in the euclidean space, the
smoothening GP prior over the embedding space still allows
for samples to be generated from the former to approximate
the latter.

For the kernel function in the GP prior in Bayesian Quadra-
ture, we use the Fisher kernel of the trained parametric
model. SBQ selection strategy inherently establishes a trade
off between selecting data points that are representative of
the parametric fit and diversity of the selected points. To
see this, consider the SBQ cost function (2). At every new
selection x;1, one one hand, the cost function rewards
the selection of data points which are clustered closer to-
gether in the feature mapping space to increase the value
of z which in turn decreases variance. However, on the
other hand, selecting points close to each other decreases
the eigenvalues of K—! thereby increasing variance [12].
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Thus, the SBQ seeks a tradeoff between these terms.

3.1 An Efficient Greedy Algorithm

In this section, we provide a practical greedy algorithm to
select representative prototypes using SBQ to optimize (2).
Note that the first term is constant w.r.t to S,,. Moreover,
recall that the target distribution for us isp(x) = L§(x),
where n is the size of the test/validation set. Thus, we
can re-write z; = + Z?zl k(x;,x;) for each ¢ in training
and each j in the test set. This can be pre-computed by a
row or column sum over the kernel of the entire dataset in
O(nt) time and stored as vector of size ¢ to speed up later
computation, where ¢ is the size of the training set. Our
greedy cost function at step j + 1 is thus:

i*,, < arg max zd [Kod]zs. 4
41 gie[t]\Sj s [Kss|zs 4)
S:S]‘Ui

The solution set is then updated as S; 1 = S; U {i} 4}
The optimization (4) requires an inverse of the kernel matrix
of already selected data points which can be computation-
ally expensive. However, we can use the following result
from linear algebra about block matrix inverses to speed up
operations.

Proposition 1. For an invertible matrix A, a column vector
b, and a scalar ¢, letd = ¢ — b A~ b, then

A b]™" 1[dA'+A'bbTA! A'b
bT ¢ T4 b A 1

Proposition 1 allows us to build the inverse of the kernel
K in (4) greedily. The full algorithm is presented in Algo-
rithm 1.

Algorithm 1 obviates the need for taking explicit inverses
and only requires an oracle access to the kernel function.
The algorithm itself is inherently embarrassingly paralleliz-
able over multiple cores. We study guarantees for the algo-
rithm in Section 4 which also motivates its more scalable
variants.

4 Analysis

The greedy algorithm described in Algorithm 1 while be-
ing simple also has interesting optimization guarantees that
make it attractive to use in practice. In this section, we
provide convergence guarantees for the cost function (2) as
n increases. Typically for functions like these in the general
case, the candidate set of atoms used to build the approxi-
mation is uncountably infinite - any possible sample from
the underlying density is a candidate. As such, the con-
vergence results are based on using Frank-Wolfe analysis
on the marginal polytope [2]. However, for us the underly-
ing set of candidate atoms are discrete points, which are at
worst countably infinite. As such, for this special case, it

Algorithm 1 Greedy Prototype Selection

1: INPUT: Data {x;}, kernel function k(- -), number of
selections to make k, ¢ is the size of the training set

2: /[Pre-compute z;
1

3: z; = 3 >, k(x;,%;)Vi € training and j € test

4: // Build solution set S greedily. Maintain current in-
verse(K) at each iteration as invK

5: S=10,invK = ]

6: fori =1...kdo

7. 77 =-1,MAX = —©

8: forj € [t]\S do

9: t =z[SUJ]

10: b = k(Xs,xj), ¢ = k(x;,x;), A~ = invK Get
T as the updated inverse using Prop. 1

11 If (Tt > MAX), j* = j, MAX =t Tt

12:  end for

13:  Write b = k(Xs,x;+), ¢ = k(xj«,xj+), A7l =
invK

14:  Update: invK using Prop. 1,S =S U j*
15: end for
16: return S

is worth analyzing if we can provide better rates than the
general available guarantees. It turns out that this is indeed
possible. We are able to leverage recent research in discrete
optimization to indeed provide a linear convergence rate for
the forward greedy algorithm.

Recall our set optimization function (from (4)) is:

S) = K 5
9(S) Isrg%Zs[ ss 1Zs, ©)
IS|<r

where n is the set of candidate training data points. We
write pp, = [[ k(x,y)p(x)p(y)dxdy. For the RKHS in-
duced by the kernel H, we can equivalently re-write the cost
function as [12, 2]:

Sncn[g] v(S) = pp, — Z W;Z; (6)
‘S‘ST‘ €S

For a matrix A, the smallest (largest) k-sparse eigenvalues
. . T .

is min (max) of £-AX under the constraints ||x||o < k, and
x # 0. Note that we can write v(()) = p,,. We present our

convergence guarantee next.

Theorem 2. Say H is finite dimensional and has bounded
norm i.e. Yv € H, ||v|ly < oco. Let m be the smallest
2r sparse eigenvalue and M be the largest r + 1-sparse
eigenvalues of the kernel matrix K of the training set. If
Sa of size k is the set returned by Algorithm 1 and S* of
size T is the optimal solution of (6), then if k > %r log %
v(Sa) = v(S*) < e(v(@) — v(S")).
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Discussion: Theorem 2 provides exponential convergence
for the cost function v(-). For the same objective, using
Frank-Wolfe on the marginal polytope, the best known guar-
antees in the most general case are O(1/T) for finite dimen-
sional bounded Hilbert spaces [2]. In the special case when
the optimum lies in the relative interior, we do get faster
exponential convergence. Theorem 2 provides an alternative
condition that is sufficient for exponential convergence for
the case when the optimum i, lies at the boundary of the
marginal polytope instead of in its relative interior i.e. it is
linear combination of  atoms. The lower sparse eigenvalue
condition is a union bound, and only requires to hold over
the greedy selection set plus any r sized subset.

4.1 Scalability

For massively large real world datasets, the standard greedy
algorithm (SBQ) may be prohibitively slow. In addition
to run time, there are also memory considerations. SBQ
requires building and storing an O(t?) sized kernel matrix
over the training set of size t. We can use alternative variants
of the greedy algorithm that are either faster with some
compromise on the convergence rate or can distribute the
kernel over multiple machines. These variants are presented
in Table 1 with their corresponding references. To the best
of our knowledge, these variants have not been suggested for
solving the problem (1) before and may be of independent
interest. The convergence rates are obtained similar to the
proof of Theorem 2 by plugging in respective approximation
guarantees in lieu of Lemma 7 in the appendix.

5 Relationship with Influence functions

Influence functions [5] have recently been proposed as a
tool for interpreting model predictions [17]. Since our goal
is also the same, it is interesting to ask if there is a relation-
ship between the two approaches. For selecting the most
influential training point for a given test point, influence
functions approximate infinitesimal upweighting of which
training point has the most effect on prediction of the test
point in question. In this section, we show that our method
recovers this influence function approach used by Koh &
Liang [17] for selecting influential training data points. In
addition, we also show how adversarial training side attacks
proposed by Koh & Liang [17] by perturbing features of
training data points can be re-interpreted as a standard adver-
sarial attack in the RKHS induced by the Fisher Kernel. Our
analysis yields new insights about the influence function
based approach and also establishes the importance of the
Fisher space for robust learning.

5.1 Choosing training data points

We briefly introduce the influence function approach for
model interpretation. For simplicity, we re-use the notation

suggested by Koh & Liang [17]. Let zg be the test data
point in question, S, be the training set, L(z, #) be the
loss function fitted on the training set, 0 be the optimizer of
L(Stain, 0), Hy be the Hessian of the loss function evaluated
at 6, then the most influential training data point is the
solution of the optimization problem:

max Vo L(z,0)H; Vo L(zieq, 0) (7

ZE Sirain

We compare the two discrete optimization problems (5)
and (7). Even though (5) uses first order information only
while (7) uses both first order and second order information
about the loss function, the following proposition illustrates
a connection.

Proposition 3. If the loss function L(-) takes the form
of a negative log-likelihood function, then [Hyl;; =
Vo, L(Strain, é)TVQjL(S[mm, é) where we have overloaded
the notation L(Syain, 0) = ﬁ > L(z,0).

Proof. Let L(z,0) := —log p(z,0), since it takes form of
a negative LL function. Then, since 6 is the optimizer of
L(Straina 0),

VGiL(Straim 0) =0
= Vs, > —logp(z,0) =0

t

= Vy, Vo, Z —logp(zt,é) =0

t
:VGJZ

-1
7AV9ip(zt, 0) =0

t p(ztv 9)
Z Vo,Vo,p(zt,0) B Z Vo,p(z:,0)" Vo, p(zs,0)
t p(ztvg) ¢ p(ztaa)Q
from which the result directly follows. O

From Proposition 1, it is easy to see that the optimization
problems (5) and (7) are the same under some conditions.
To be more precise, we can make the following statement.
If the cost function L(-, -) is in the form of a negative log-
likelihood function, (7) is a special case of (5) with the
practical Fisher kernel (see Section 2.1) when the test set is
of size 1, and r = 1.

This equivalence gives several insights about influence func-
tions that were not known before: (1) it generalizes in-
fluence functions to multiple data points for both test and
training sets in a principled way and provides a probabilis-
tic foundation to the method, (2) it establishes the impor-
tance of the induced RKHS by the Fisher kernel by re-
interpreting the influence function optimization problem
as Minges,,, || Zest —2||2 (see Lemma 4 in the appendix),
(3) for negative LL functions, it renders the expensive cal-
culation of the Hessian in the work by Koh & Liang [17]
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Algorithm Runtime Memory required | Convergence rate
SBQ (Algorithm 1) O(K3t) O(t? +n) O(Nog1/e)
Matching Pursuit [8] O(k*t) O(t? +n) O(Mlogt/e)
§-Stochastic Selection [14] | O(ktlog1/s) O(t? +n) O(Nogl/(s¢))
Distributed (I machines) [14] O(%) O(f—z +n) O(Mogt)

Table 1: Greedy variants for prototype selection. A = %, n is the test set size, ¢ is the size of the training set. Convergence
rate refers to number of iterations needed to get € accuracy. For Stochastic and Distributed variants, the guarantee is in

expectation.

redundant since by Proposition 3, first order information
suffices, (4) it provides theoretical approximation guaran-
tees (see Lemma 7 in the appendix) for selection of multiple
training data points, in constrast to Koh & Liang [17] who
made multiple selections greedily only as a heuristic.

5.2 Unified view of adversarial attacks

Given a test data point z, an adversarial example is generated
by adding a small perturbation as z = z + ¢, where €, is a
small perturbation of z so that for z is indistinguishable from
z by a human, but causes the model to make an incorrect
prediction on z [9]. For training data attacks, z is a training
data point that is perturbed to make an incorrect prediction
on a test data point. For a loss function £(z), a test side
attack for perturbing a test data point z.g would solve the
optimization problem:

max
HZ*z(es( HooS6

((z) ®)

While the optimization (8) is hard in general, typically a few
iterations of projected gradient ascent or FGSM are applied.
We refer to the recent work by Madry et al. [19] for details.

For training side attacks, Koh & Liang [17] perform the
following iterative update:

Z + 1z + asign(L(Z, Zes)) ), 9)
where z = (z, y) is a candidate training example to perturb
in x, Z. is the target test example, II is the projection
operator onto the set of valid images, « is a fixed step size,
and L(Z, zs) := Vo L(z, G)HQTleVgL(z[est, 0).

Using the results in Section 5.1, it is straightforward to
see that the if we use £(z) = || Zest —2||3, where H is the
RKHS induced by the practical Fisher kernel, and change
the constraint as a perturbation over a training example in-
stead of the test example, we recover the iterative step (9) as
a special case of projected gradient ascent steps to solve (8).

This equivalence provides a unified view of both training
and test side attacks. As such, the large literature on robust
learning against test side attacks can be applied to robust-
ness against training side attacks as well. Moreover our

framework also provides a principled way to do training
side attacks to target multiple test set examples, instead of
attacking individual test points separately.

6 Experiments

We present empirical use cases of our framework. We chose
the experiments to illustrate the flexibility of our framework,
as well as to emphasize its generalization capacity over and
above influence functions. As such, we present experiments
that make use of set influence (as opposed to single data
point influence) for data cleaning and summarization (Sec-
tions 6.1,6.3). To illustrate potential benefit of using the full
Fisher kernel as opposed to the simplified practical Fisher
kernel as used by the influence functions, we present eval-
uation for a use case for fixing mislabelled examples as
presented by Koh & Liang [17] (Section 6.2).

6.1 Data Cleaning: removing malicious training data
points

In this section, we present experiments on the MNIST
dataset to illustrate the effectiveness of our method in in-
terpreting model behavior for the test population. Some of
the handwritten digits in MNIST are hard even for a human
to classify correctly. Such points can adversely affect the
training of the classifier, leading to lower predictive accu-
racy. Our goal in this experiment is to try to identify some
such misleading training data points, and remove them to
see if it improves predictive accuracy. To illustrate the flex-
ibility of our approach, we focus only on the digits 4 and
9 in the test data which were misclassified by our model,
and then select the training data points responsible for those
misclassifications.

The MNIST data set [18] consists of images of handwritten
digits and their respective labels. Each image is a 28 x 28
pixel array. There are 70000 images in total, split into 60000
training examples and 10000 test examples. The 10 digits
are about evenly represented in both the training and the test
data.

For the classification task, we use tensorflow [1] to build
a 2 layer convolutional network with 2 X 2 max pooling
followed by a fully connected layer and the softmax layer.
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(a) A subset of selected prototypes responsible for misclassifying
4s and 9s in the test set

M Testd9 M TestFull
0.996

0.994

0992 T —

0.988
0.986

0.984 .
Rand50  Rand100 Rand200  Rand300

FullTrain  CurS0 Sels0 Sell00  Sel200  Sel300

(b) Accuracy fractions on test data 4s and 9s (Test49), and the
full test set after removing random (Rand), algorithm selected
(Sel), or Curated (Cur) prototypes.

Figure 2: MNIST experiment for selecting malicious train-
ing data points.

The convolutions use a stride of 1 followed by padding
of zeros to match the input size. We use dropout to avoid
overfitting. The network was trained using the built-in Adam
Optimizer for 20000 steps of batch size 100 each. For the
entire test set, we obtain an accuracy of 0.9922, while for
the subset of the test set consisting only of the chosen two
digits 4 and 9, the accuracy is 0.9889.

After the training is completed, we obtain the gradients
of the training and test data points w.r.t the parameters of
the network by passing each point through the trained (and
subsequently frozen) network. The obtained gradient vec-
tors are used to calculate the Fisher kernel as detailed in
Section 2.1. We then employ Algorithm 1 using the newly
built Fisher kernel matrix between training and test datasets
to obtain the top 300 prototypes i.e. data points from the
training set that our algorithm deems most responsible for
misclassifying 4s and 9s.

To check if these points are indeed misguiding the model,
we remove the top 50, 100, 200, 300 of the selected points
from the training data and retrain the model to retest on
the test set. These numbers are reported as Sel50, Sel100,
Sel200, Sel300 in Figure 2b. Indeed we see an improvement
in the test accuracy till Sel200 indicating the importance
of removing the selected potential malicious points from
the training set, and a subsequent decay in performance for
Sel300 most likely due to removal of too many useful points
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Figure 3: Comparison of SBQ compared to Influence func-
tions on the task of fixing flipped labels.

in addition to malicious ones. To compare, we also remove
the respective number of points randomly and repeat the
experiment. Removal of random points from the training
data led to a general decay in the predictive accuracy.

Finally, we manually selected 50 points from the chosen
300 points as the curated set based on how ill-formed the
digits were (see Figure 2a). Removing these points from the
training set before re-training and testing gives predictive
accuracy is reported as Cur50 comparable to Sel100, but still
worse than Sel200, indicating that the algorithm identified
more malicious points in top-200 selected than our manually
chosen 50 points.

6.2 Fixing Mislabeled Examples

In this experiment, we use our framework to detect and fix
mislabeled examples. Labor intenstive labeling tasks natu-
rally result in mislabels, especially in real-world datasets.
These data points may cause poor performance and degra-
dation of the model. We show that our method can be
successfully used for this purpose, showing improvement
over the recent results by Koh & Liang [17].

We use a small correctly labeled validation set to identify
examples from the large training set that are likely misla-
beled. We first train a classifier on the noisy training set,
and predict on the validation set. We then employ Algo-
rithm 1 to identify training examples that were responsible
for making incorrect predictions on the validation set. The
potentially mislabeled data points are then chosen by the
output of our method. Curation is then simulated on the
selected examples in order of selections made (similar to the
approach by Koh & Liang [17]), and if the label was indeed
wrong, it is fixed. We report on the number of training data
points selected vs fixed (the precision metric for incorrectly
labeled points) and the respective improvement in unseen
test data accuracy.

For evaluation, we use enronl email spam dataset used
by Koh & Liang [17] and compare our results to their re-
ported results. The dataset consists of 4137 training points
and 1035 test points. We randomly select 500 data points
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from the training set as the clean curated data. From the
remaining training data points, we randomly flip the labels
of 20% of the data. We then use our method and the base-
lines to select several candidates for curation. We report
the number of fixes made after these selections and the
corresponding test predictive accuracy. The baselines are
selection by (i) top self influence measures [17], and (ii)
random selection of datapoints. The curation data is used
as part of the training by all the methods. No method had
access to the test data. As showing in Figure 3, our algo-
rithm consistently performs better in test accuracy and the
fraction of flips fixed as more and more data is curated.

6.3 Data Summarization

In this section, we perform the task of training data sum-
marization. Our goal is to select a few data samples that
represent the data distribution sufficiently well, so that a
model built on the selected subsample of the training data
does not degrade too much in performance on the unseen
test data. This task is complimentary to the task of inter-
pretation, wherein one is interested in selecting training
samples that explain some particular predictions on the test
set. Since we are interested in approximating the test distri-
bution using a few samples from a training set with the goal
of predictive accuracy under a given model, our framework
of Sequential Bayesian Quadrature using Fisher kernels is
directly applicable.

Another method that also aims to do training data summa-
rization is that of coreset selection [11], albeit with a differ-
ent goal of reducing the training data size for optimization
speedup while still maintaining guaranteed approximation
to the training likelihood. Since the goal itself is optimiza-
tion speedup, coreset selection algorithms typically employ
fast methods while still trying to capture the data distribution
by proxy of the training likelihood. Moreover, the coreset
selection algorithm is usually closely tied with the respec-
tive model as opposed to being a model-agnostic method
like ours.

To illustrate that coreset selection falls short on the goal of
competitively estimating the data distribution, we employ
our framework to the problem of training data summariza-
tion under logistic regression, as considered by Huggins
et al. [11] using coreset construction. We experiment using
two datasets ChemReact and CovType. ChemReact
consists of 26733 chemicals each of feature size 100. Out
of these, 2500 are test data points. The prediction variable
is 0/1 and signifies if a chemical is reactive. CovType
has 581012 examples each of feature size 54. Out of these,
29000 are test points. The task is to predict whether a type
of tree is present in each location or not.

In each of the datasets, we further randomly split the train-
ing data into 10% validation and 90% training. For the
larger CovType data, we note that selecting about 20,000
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Figure 4: Performance for logistic regression over two
datasets (top is ChemReact while bot is CovType) of
our method (Fisher) vs coreset selection [11] and random
data selection. ‘Full’ reports the numbers for training with
the entire training set. Fisher (proposed) achieves much
better test LL performance across different subset sizes.

training points out of the training set achieves about the
same performance as the full set. Hence, we work with
randomly selected 20,000 points for speedup. We train the
logistic regression model on the new training data, and use
the validation set as a proxy to the unseen test set. We build
the kernel matrix K and the affinity vector z, and run Algo-
rithm 1 for various values of k. For the baselines, we use the
coreset selection algorithm and random data selection as im-
plemented by Huggins et al. [11]. The results are presented
in Figure 4. We note that our algorithm yields a significantly
better predictive performance compared to random subsets
and coresets [11] with the same size of the training subset
across different subset sizes.

Conclusion: We proposed a novel principled approach
for examining sets of training examples that influence an
entire test set given a trained black-box model — extend-
ing a notable recently proposed per-example influence to
set-wise influence. We also presented novel convergence
guarantees for SBQ and more scalable algorithm variants.
Empirical results were presented to highlight the utility of
the proposed approach for black-box model interpretability
and related tasks. For future work, we plan to investigate
the use of model criticisms to provide additional insights
into the trained models.
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