
Autoencoding any Data through Kernel Autoencoders

A TECHNICAL PROOFS

A.1 Proof of Theorem 1

Let (λ1, . . . , λL) ∈ RL+ and (f∗1 , . . . , f
∗
L) a solution to problem (5). Let sl = ‖f∗l ‖2Hl

∀ l ∈ JLK. We shall prove
that (f∗1 , . . . , f

∗
L) is also a solution to problem (6) for this choice of (s1, . . . , sL). Consider (f1, . . . , fL) satisfying

problem (6)’s constraints. ∀ l ∈ JLK, ‖fl‖2Hl
≤ sl = ‖f∗l ‖2Hl

. Hence, we have
∑L
l=1 λl‖fl‖2Hl

≤ ∑L
l=1 λl‖f∗l ‖2Hl

.
On the other hand, by definition of the f∗l ’s, it holds :

V (f1, . . . , fL) +

L∑
l=1

λl‖fl‖2Hl
≥ V (f∗1 , . . . , f

∗
L) +

L∑
l=1

λl‖f∗l ‖2Hl
.

Thus, we necessarily have: V (f1, . . . , fd) ≥ V (f∗1 , . . . , f
∗
d).

A similar argument can be used for local solutions, details are left to the reader.

Although this result may appear rather simple, we thought it was worth mentioning as our setting is particularly
unfriendly: the objective function V is not assumed to be convex, and the variables fl are infinite dimensional.
As a consequence, in absence of additional assumptions the converse statement (that solutions to problem (6)
are also solutions to problem (5) for a suitable choice of λl’s) is not guaranteed. The proof indeed rely on
the existence of Lagrangian multipliers, which has been shown when the variables are finite dimensional (KKT
conditions), or when the objective function is assumed to be convex (Bauschke et al., 2011), but is not ensured
in our case.

A.2 Proof of Theorem 5

The technical proof is structured as follows.

A.2.1 Standard Rademacher Generalization Bound

Let loss ` denote the squared norm on X0: ∀x ∈ X0, `(x) = ‖x‖2X0
. Notice that, on the set considered, the mapping

` is 2M -Lipschitz, and: `(xi − h(xi)) − `(xi′ − h(xi′)) ≤ 4M2. Hence, by applying McDiarmid’s inequality,
together with standard arguments in the statistical learning literature (symmetrization/randomization tricks,
see e.g. Theorem 3.1 in Mohri et al. (2012)), one may show that, for any δ ∈ (0, 1), we have with probability at
least 1− δ:

1

2

(
ε(ĥn)− ε∗

)
≤ sup
h∈Hs,t

|ε(h)− ε̂n(h)| ≤ 2R̂n

((
` ◦ (id−Hs,t)

)
(S)
)

+ 12M2

√
ln 2

δ

2n
. (13)

The subsequent results shall provide tools to bound the quantity R̂n

((
` ◦ (id−Hs,t)

)
(S)
)

properly.

A.2.2 Operations on the Rademacher Average

As a first go, we state a preliminary lemma that establishes a comparison between Rademacher and Gaussian
averages.

Lemma 7. We have: ∀n ≥ 1,

R̂n(C(S)) ≤
√
π

2
Ĝn(C(S)).

Proof. The proof is based on the fact that γi,k and σi,k |γi,k| have the same distribution, combined with Jensen’s
inequality. See also Lemma 4.5 in Ledoux and Talagrand (1991).

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

Hence, the application of the lemma above yields:

R̂n

((
` ◦ (id−Hs,t)

)
(S)
)
≤ 2
√

2M R̂n

((
id−Hs,t

)
(S)
)
, (14)

≤ 2
√

2M
[
R̂n

(
{id}(S)

)
+ R̂n

(
Hs,t(S)

)]
,

≤ 2
√

2M R̂n

(
Hs,t(S)

)
,

R̂n

((
` ◦ (id−Hs,t)

)
(S)
)
≤ 2
√
πM Ĝn

(
Hs,t(S)

)
, (15)

where (14) directly results from Corollary 4 in Maurer (2016) (observing that, even if they do not take their
values in `2(N) but in the separable Hilbert space X0, the functions h(x) can replaced by the square-summable
sequence (〈h(x), ek〉)k∈N) and (15) is a consequence of Lemma 7.

It now remains to bound Ĝn
(
Hs,t(S)

)
using an extension of a result established in Maurer (2014) and applying

to classes of functions valued in Rm only, while functions in Hs,t are Hilbert-valued.

A.2.3 Extension of Maurer’s Chain Rule

The result stated below extends Theorem 2 in Maurer (2014) to the Hilbert-valued situation.

Theorem 8. Let H be a Hilbert space, X a H-valued Gaussian random vector, and f : H → R a L-Lipschitz
mapping. We have:

∀t > 0, P
(
|f(X)− Ef(X)| > t

)
≤ exp

(
− 2t2

π2L2

)
.

Proof. It is a direct extension of Corollary 2.3 in Pisier (1986), which states the result for H = RN only, observing
that the proof given therein actually makes no use of the assumption of finite dimensionality of H, and thus
remains valid in our case. Up to constants, it can also be viewed an extension of Theorem 4 in Maurer (2014).

We now introduce quantities involved in the rest of the analysis, see Definition 1 in Maurer (2014).

Definition 9. Let Y ⊂ Rn, H be a Hilbert space, Z ⊂ H, and γ be a H-valued standard Gaussian vari-
able/process. We set:

D(Y) = sup
y,y′∈Y

‖y − y′‖Rn ,

G(Z) = sup
z∈Z

Eγ [〈γ, z〉H] .

If H a class of functions from Y to H, we set:

L(H, Y) = sup
h∈H

sup
y,y′∈Y, y 6=y′

‖h(y)− h(y′)‖H
‖y − y′‖Rn

,

R(H, Y) = sup
y,y′∈Y, y 6=y′

Eγ

[
sup
h∈H

〈γ, h(y)− h(y′)〉H
‖y − y′‖Rn

]
.

The next result establishes useful relationships between the quantities introduced above.

Theorem 10. Let Y ⊂ Rn be a finite set, H a Hilbert space and H a finite class of functions h : Y → H. Then,
there are universal constants C1 and C2 such that, for any y0 ∈ Y :

G(H(Y)) ≤ C1L(H, Y)G(Y) + C2R(H, Y)D(Y) +G(H(y0)).

Proof. This result is a direct extension of Theorem 2 in Maurer (2014) for H-valued functions. The only part in
the proof depending on the dimensionality of H is Theorem 4 in the same paper, whose extension to any Hilbert
space in Theorem 8 is proved in the present paper. Indeed, considering Xy = (

√
2/πL(F, Y)) supf∈F 〈γ, f(y)〉

(using the same notation as in Maurer (2014) allows to finish the proof like in the finite dimensional case.

Autoencoding any Data through Kernel Autoencoders

Let H′1,s be the set of functions from (X0)n to Rnp that take as input S = (x1, . . . , xn) and return
(f(x1), . . . , f(xn)), f ∈ H1,s. Let Y = H′1,s(S) ⊂ Rnp, and H = (X0)n, which is a Hilbert space. Let H = H′2,t
be the set of functions from Rnp to (X0)n that take as input (y1, . . . , yn) and return (g(y1), . . . , g(yn)), g ∈ H2,t.
Finally, let y0 = (0Rp , . . . , 0Rp) (it actually belongs to H′1,s(S) since the null function is in H′1,s). Theorem 10
entails that:

G
(
H′2,t

(
H′1,s(S)

))
≤ C1L

(
H′2,t,H′1,s(S)

)
G
(
H′1,s(S)

)
+ C2R

(
H′2,t,H′1,s(S)

)
D
(
H′1,s(S)

)
+G

(
H′2,t(0)

)
,

and

Ĝn
(
Hs,t(S)

)
≤ C1L

(
H′2,t,H′1,s(S)

)
Ĝn
(
H1,s(S)

)
+
C2

n
R
(
H′2,t,H′1,s(S)

)
D
(
H′1,s(S)

)
+

1

n
G
(
H′2,t(0)

)
. (16)

We now bound each term appearing on the right-hand side.

Bounding L
(
H′2,t,H′1,s(S)

)
. Consider the following hypothesis, denoting by ‖.‖∗ the operator norm of any

bounded linear operator.

Assumption 11. There exists a constant L < +∞ such that: ∀(y, y′) ∈ Rp,

∥∥K2(y, y)− 2K2(y, y′) +K2(y′, y′)
∥∥
∗ ≤ L

2 ‖y − y′‖2Rp .

This assumption is not too much compelling since it is enough for K2 to be the sum of M decomposable kernels
km(·, ·)Am such that the scalar feature maps φm are Lm-Lipschitz (the feature map of the Gaussian kernel with
bandwidth 1/(2σ2) has Lipschitz constant 1/σ for instance), and the Am operators have finite operator norms
σm. Indeed, we would have then: ∀z ∈ X0,

∥∥∥(K2(y, y)− 2K2(y, y′) +K2(y′, y′)
)
z
∥∥∥
X0

=

∥∥∥∥∥
(

M∑
m=1

‖φm(y)− φm(y′)‖2Am
)
z

∥∥∥∥∥
X0

,

≤
M∑
m=1

‖φm(y)− φm(y′)‖2σm ‖z‖X0
,

∥∥∥(K2(y, y)− 2K2(y, y′) +K2(y′, y′)
)
z
∥∥∥
X0

≤
(

M∑
m=1

L2
mσm

)
‖y − y′‖2Rp ‖z‖X0

,

‖K2(y, y)− 2K2(y, y′) +K2(y′, y′)‖∗ ≤
(

M∑
m=1

L2
mσm

)
‖y − y′‖2Rp .

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

Let K2 satisfy Assumption 11, g ∈ H′2,t and (y,y′) ∈ Rnp. We have:

‖g(y)− g(y′)‖2(X0)n =

n∑
i=1

‖g(yi)− g(y′i)‖
2
X0
,

=

n∑
i=1

〈g(yi)− g(y′i), g(yi)− g(y′i)〉X0
,

=

n∑
i=1

〈
K2yi(g(yi)− g(y′i)), g

〉
H2
−
〈
K2y′i

(g(yi)− g(y′i)), g
〉
H2

, (17)

≤ ‖g‖H2

n∑
i=1

∥∥∥K2yi(g(yi)− g(y′i))−K2y′i
(g(yi)− g(y′i))

∥∥∥
H2

, (18)

≤ t
n∑
i=1

√〈
g(yi)− g(y′i),

(
K2(yi, yi)− 2K2(yi, y′i) +K2(y′i, y

′
i)
)
(g(yi)− g(y′i))

〉
X0
, (19)

≤ Lt
n∑
i=1

‖g(yi)− g(y′i)‖X0
‖yi − y′i‖Rp , (20)

‖g(y)− g(y′)‖2(X0)n ≤ Lt ‖g(y)− g(y′)‖(X0)n ‖y − y′‖Rnp , (21)

‖g(y)− g(y′)‖(X0)n ≤ Lt ‖y − y′‖Rnp ,

where (17) results from the reproducing property in vv-RKHSs (see Eq. (2.1) in Micchelli and Pontil (2005)),
(18) follows from Cauchy-Schwarz inequality, (19) is again a consequence of the reproducing property (Eq.
(2.3) in Micchelli and Pontil (2005)), (20) can be deduced from Assumption 11 and (21) is a consequence of
Cauchy-Schwarz inequality as well. Hence, we finally have:

L
(
H′2,t,H′1,s(S)

)
≤ L

(
H′2,t,Rnp

)
≤ Lt. (22)

Bounding Ĝn
(
H′1,s(S)

)
. Consider the assumption below.

Assumption 12. There exists a constant K < +∞ such that: ∀x ∈ X0,

Tr
(
K1(x, x)

)
≤ Kp.

This assumption is mild as well, since the sum of M decomposable kernels km(·, ·)Am such that the scalar kernels
are bounded by κm (as X is supposed to be bounded, any continuous kernel is valid). Indeed, we have: ∀x ∈ X0,

Tr
(
K1(x, x)

)
=

M∑
m=1

km(x, x) Tr(Am) ≤
(

M∑
m=1

κm‖Am‖∞
)
p.

Let the OVK K1 satisfy Assumption 12 and be such that H1 is separable. We then know that there exists
Φ ∈ L(`2(N),Rp) such that: ∀(x, x′) ∈ X0, K1(x, x′) = Φ(x)Φ∗(x′) and ∀f ∈ H1,∃u ∈ `2(N) such that

Autoencoding any Data through Kernel Autoencoders

f(·) = Φ(·)u, ‖f‖H1 = ‖u‖`2 (see Micchelli and Pontil (2005)). We have:

n Ĝn
(
H′1,s(S)

)
= Eγ

[
sup

f∈H1,s

n∑
i=1

〈γi, f(xi)〉Rp

]
,

= Eγ

[
sup
‖u‖`2≤s

n∑
i=1

p∑
k=1

γi,k, 〈Φ(xi)u, ek〉Rp

]
,

= Eγ

 sup
‖u‖`2≤s

〈
u,

n∑
i=1

p∑
k=1

γi,kΦ∗(xi)ek

〉
`2

 ,
≤ s Eγ

∥∥∥∥∥
n∑
i=1

p∑
k=1

γi,kΦ∗(xi)ek

∥∥∥∥∥
`2

 , (23)

≤ s

√√√√√Eγ

∥∥∥∥∥
n∑
i=1

p∑
k=1

γi,kΦ∗(xi)ek

∥∥∥∥∥
2

`2

, (24)

≤ s

√√√√ n∑
i=1

p∑
k=1

〈K(xi, xi)ek, ek〉Rp , (25)

≤ s

√√√√ n∑
i=1

Tr
(
K1(xi, xi)

)
, (26)

n Ĝn(H′1,s(S)) ≤ s
√
nKp, (27)

where (23) follows from Cauchy-Schwarz inequality, (24) from Jensen’s inequality, (25) results from the orthog-
onality of the Gaussian variables introduced and (27) from Assumption 12. Finally, we have:

Ĝn
(
H′1,s(S)

)
≤ s
√
Kp

n
. (28)

Bounding R
(
H′2,t,H′1,s(S)

)
. Consider the following hypothesis.

Assumption 13. There exists a constant L < +∞ such that: ∀(y, y′) ∈ Rp,

Tr
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
≤ L2 ‖y − y′‖2Rp .

Suppose that the OVK K2 is the sum of M decomposable kernels km(·, ·)Am such that the scalar feature maps
φm are Lm-Lipschitz and the Am operators are trace class. Then, we have: ∀(y, y′) ∈ Rp,

Tr
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
=

M∑
m=1

‖φm(y)− φm(y′)‖2 Tr(Am) ≤
(

M∑
m=1

L2
mTr(Am)

)
‖y − y′‖2Rp .

Note also that Assumption 13 is stronger than Assumption 11, since ‖A‖∗ ≤ Tr(A) for any trace class operator A.

Let the OVK K2 satisfy Assumption 13 and be such that H2 is separable. We then know that there exists
Ψ ∈ L(`2(N),X0) such that ∀(y, y′) ∈ Rp, K2(y, y′) = Ψ(y)Ψ∗(y′) and ∀g ∈ H2,∃v ∈ `2(N) such that g(·) =

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

Ψ(·)v, ‖g‖H2 = ‖v‖`2 . We have:

Eγ

[
sup
g∈H2,t

〈γi, g(y − g(y′)〉Xn
0

]
= Eγ

[
sup
g∈H2,t

n∑
i=1

∞∑
k=1

γi,k 〈(Ψ(yi)−Ψ(y′i))v, ek〉X0

]
,

= Eγ

 sup
g∈H2,t

〈
n∑
i=1

∞∑
k=1

γi,k(Ψ∗(yi)−Ψ∗(y′i))ek, v

〉
`2

 ,
≤ t

√√√√Eγ

∥∥∥∥∥
n∑
i=1

∞∑
k=1

γi,k(Ψ∗(yi)−Ψ∗(y′i))ek

∥∥∥∥∥
2

`2

,

≤ t

√√√√ n∑
i=1

Tr
(
K2(yi, yi)− 2K2(yi, y′i) +K2(y′i, y

′
i)
)
,

Eγ

[
sup
g∈H2,t

〈γi, g(y − g(y′)〉Xn
0

]
≤ tL ‖y − y′‖Rnp ,

where only Assumption 13 and arguments previously involved have been used. Finally, we get:

R
(
H′2,t,H′1,s(S)

)
≤ R

(
H′2,t,Rnp

)
≤ tL. (29)

Bounding D
(
H′1,s(S)

)
. Consider the assumption below.

Assumption 14. There exists κ < +∞ such that: ∀x ∈ S,

‖K1(x, x)‖∗ ≤ κ2.

This assumption is easily fulfilled, since X is almost surely bounded. Indeed, any ov-kernel which is the (finite)
sum of decomposable kernels with continuous scalar kernels fulfills it. Note also that it is a weaker assumption
than Assumption 12, since one could choose κ =

√
Kp.

Let K1 satisfy Assumption 14 and (y,y′) ∈ H′1,s(S). There exists (f, f ′) ∈ H1,s such that y = (f(x1), . . . , f(xn))
and y′ = (f ′(x1), . . . , f ′(xn)). We have:

‖y − y′‖2Rnp =

n∑
i=1

‖f(xi)− f ′(xi)‖2Rp ,

≤
n∑
i=1

(‖f(xi)‖Rp + ‖f ′(xi)‖Rp)
2
,

≤
n∑
i=1

(
‖f‖H1

‖K1(xi, xi)‖1/2∗ + ‖f ′‖H1
‖K1(xi, xi)‖1/2∗

)2

, (30)

‖y − y′‖2Rnp ≤ 4κ2s2n,

where (30) follows from Eq. (f) of Proposition 2.1 in Micchelli and Pontil (2005). Finally, we get:

D
(
H′1,s, S

)
≤ 2κs

√
n. (31)

Bounding G
(
H′2,t(0)

)
. We introduce the following assumption.

Assumption 15. K2(0, 0) is trace class.

Then, using the same arguments as for (26), we get:

n G
(
H′2,t(0)

)
≤ t
√
n Tr

(
K2(0, 0)

)
, or G

(
H′2,t(0)

)
≤ t

√
Tr
(
K2(0, 0)

)
n

.

Autoencoding any Data through Kernel Autoencoders

Rather than shifting the kernel K̃2(y, y′) = K2(y, y′)−K2(0, 0), one could consider that Assumption 15 is always

satisfied. In addition, we have Tr
(
K̃2(0, 0)

)
= 0 and consequently G

(
H′2,t(0)

)
≤ 0.

A.2.4 Final Argument

Now, combining inequalities (13), (15), (16), (22), (28), (29), (31) and defining C0 := 8
√
π(C1 + 2C2), for any

δ ∈ (0, 1), we have with probability at least 1− δ:

ε(ĥn)− ε∗ ≤ C0LMst

√
Kp

n
+ 24M2

√
ln 2

δ

2n
.

A.3 Proof of Theorem 6

Lemma 16. See Theorem 3.1 in Micchelli and Pontil (2005). Let X be a measurable space, Y a real Hilbert
space with inner product 〈·, ·〉Y , K : X × X → L(Y) an operator-valued kernel, H ⊂ F(X ,Y) the corresponding
vv-RKHS, with inner product 〈·, ·〉H. We have the reproducing property : 〈y, f(x)〉Y = 〈Kxy, f〉H, with the
notation Kxy = K(·, x)y : X → Y. Suppose also that the linear functionals Lxi

f = f(xi), f ∈ H, i ∈ JnK are
linearly independent. Then the unique solution to the variational problem:

min
f∈H

{
‖f‖2H : f(xi) = yi, i ∈ JnK

}
,

is given by :

f̂ =

n∑
i=1

Kxi
ci,

where {ci, i ∈ JnK} ⊂ Yn is the unique solution of the linear system of equations :

n∑
i=1

K(xk, xi)ci = yk, k ∈ JnK.

Proof. Let f ∈ H such that f(xi) = yi ∀ i ∈ JnK, and set g = f − f̂ . We have :

‖f‖2H = ‖f̂‖2H + ‖g‖2H + 2〈f̂ , g〉H.

Observe also that :

〈f̂ , g〉H =

〈
n∑
i=1

Kxi
ci, g

〉
H

=

n∑
i=1

〈Kxi
ci, g〉H =

n∑
i=1

〈ci, g(xi)〉Y = 0.

Finally, we have :
‖f‖2H = ‖f̂‖2H + ‖g‖2H ≥ ‖f̂‖2H.

Proof of Theorem 6. We shall use the following shortcut notation:

ξ(f∗1 , . . . , f
∗
L0
,S) := V

(
(fL0 ◦ . . . ◦ f1)(x1), . . . , (fL0 ◦ . . . ◦ f1)(xn), ‖f1‖H1

, . . . , ‖fL0‖HL0

)
.

Let l0 ∈ JL0K. Let gl0 ∈ Hl0 such that :

gl0

(
x∗i

(l0−1)
)

= f∗l0

(
x∗i

(l0−1)
)
, ∀ i ∈ JnK.

By definition, we have :
ξ(f∗1 , . . . , f

∗
l0 , . . . , f

∗
L0
,S) ≤ ξ(f∗1 , . . . , gl0 , . . . , f∗L0

,S),

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

thus we necessarily have :
‖f∗l0‖2Hl0

≤ ‖gl0‖2Hl0
.

Therefore f∗l0 is a solution to the problem :

min
f∈Hl0

{
‖f‖2Hl0

: f
(
x∗i

(l0−1)
)

= f∗l0

(
x∗i

(l0−1)
)
, i ∈ JnK

}
.

From Lemma 16, there exists
(
ϕ∗l0,1, . . . , ϕ

∗
l0,n

)
∈ Xnl0 , such that :

f∗l0(·) =

n∑
i=1

Kl0
(
· , x∗i (l0−1)

)
ϕ∗l0,i.

A.4 Non-convexity of the Problem

A.4.1 Functional Setting

We prove that problem (2) is not convex by showing that the objective function (f, g) 7→ ε̂n(g ◦ f) + Ω(f, g) is
not. We denote this application by O and suppose it is. If it were convex, one would have :

O (κ(f, g) + (1− κ)(f ′, g′)) ≤ κO(f, g) + (1− κ)O(f ′, g′), (32)

for any κ ∈ [0, 1] and any functions f, f ′, g, g′ ∈ H2
1 ×H2

2. Now, consider the particular case where we want to
encode a single point (n = 1) from X0 = R to X1 = R, using one single hidden layer (L = 2). Let x1 = 1, and
assume that both kernels are linear : K1(x, x′) = xx′, K2(y, y′) = yy′. f : x 7→ K1(x, x1)ϕ = ϕx and f ′ : x 7→
K1(x, x1)ϕ′ = ϕ′x are elements of H1 for any coefficients ϕ,ϕ′. In the same way, g : y 7→ K2(y, f(x1))ψ = ψf(1)y
and g′ : y 7→ K2(y, f ′(x1))ψ′ = ψ′f ′(1)y are elements of H2 for any ψ,ψ′ ∈ R2.

Therefore, O(f, g) depends only on ϕ and ψ. Let P denote the application from R2 to R such that O(f, g) =
P(ϕ,ψ). Then, one has also O(f ′, g′) = P(ϕ′, ψ′). And finally, it holds :

O (κ(f, g) + (1− κ)(f ′, g′)) = O (κf + (1− κ)f ′, κg + (1− κ)g′)) ,

= P (κϕ+ (1− κ)ϕ′, κψ + (1− κ)ψ′)) ,

O (κ(f, g) + (1− κ)(f ′, g′)) = P (κ(ϕ,ψ) + (1− κ)(ϕ′, ψ′)) .

So if (32) were true, in particular it would be true for the specific f, f ′, g, g′ functions we just defined. Hence,
the following would hold for any ϕ,ϕ′, ψ, ψ′ ∈ R4 :

P (κ(ϕ,ψ) + (1− κ)(ϕ′, ψ′)) ≤ κP(ϕ,ψ) + (1− κ)P(ϕ′, ψ′).

This is exactly the convexity of P in (ϕ,ψ). So the convexity of the objective function in the functional setting
(problem (2)) implies the convexity of the objective function in the parametric setting (obtained after application
of Theorem 6). In the following section we show that the latest does not even hold, which allows to conclude
that neither problem is convex.

A.4.2 Parametric Setting

As a reminder, we have :

f(x) = K1(x, x1)ϕ = ϕx, f(1) = ϕ,

g(y) = K2(y, f(x1))ψ = ϕψy, g(f(1)) = ϕ2ψ.

Our problem reads :

min
ϕ∈R, ψ∈R

P(ϕ,ψ)
def
=
(
1− ϕ2ψ

)2
+ λϕ2 + µψ2,

Autoencoding any Data through Kernel Autoencoders

or equivalently :
min

ϕ∈R, ψ∈R
1 + λϕ2 + µψ2 − 2ϕ2ψ + ϕ4ψ2.

Let us find the critical points and analyze them. We have :

∂P
∂ϕ

(ϕ,ψ) = 2λϕ− 4ϕψ + 4ϕ3ψ2,

∂P
∂2ϕ

(ϕ,ψ) = 2λ− 4ψ + 12ϕ2ψ2,

∂P
∂ψ

(ϕ,ψ) = 2µψ − 2ϕ2 + 2ϕ4ψ,

∂P
∂2ψ

(ϕ,ψ) = 2µ+ 2ϕ4,

∂P
∂ϕ∂ψ

(ϕ,ψ) = −4ϕ+ 8ϕ3ψ.

The two following equivalence relationships hold true:

∂P
∂ϕ

(ϕ∗, ψ∗) =
(

2λ− 4ψ∗ + 4ϕ∗2ψ∗2
)
ϕ∗ = 0 ⇔ ϕ∗ = 0 or ϕ∗2 =

2ψ∗ − λ
2ψ∗2

,

∂P
∂ψ

(ϕ∗, ψ∗) = 2µψ∗ − 2ϕ∗2 + 2ϕ∗4ψ∗ = 0 ⇔ ψ∗ =
ϕ∗2

ϕ∗4 + µ
.

Obviously, the point (ϕ∗, ψ∗) = (0, 0) is always critical. Notice that :

Hess(0,0)P =

(
2λ 0
0 2µ

)
� 0.

Thus (0, 0) is a local minimum and P(0, 0) = 1. To prove that it is not a global minimizer, it is enough to find
a couple (ϕ,ψ) such that P(ϕ,ψ) < 1. For example P(1, 1) = λ + µ. As soon as λ + µ < 1, the objective P is
not invex, and a fortiori non-convex.

Figure 4 shows the heatmaps of P with respect to ϕ and ψ for different regularization settings. Note that in
the non-regularized setting (λ = µ = 0), every point (0, ψ) with ψ < 0 is a local minimizer but not a global
one. They are represented by red crosses. On the other hand, we have also an infinite number of global minima,
namely every couple satisfying ϕ2ψ = 1. See the black crosses on the top left figure. When the regularization
parameters remain small enough, (0, 0) is a local minimizer but not a global one (top right figure). Finally, the
higher the regularization, the smoother the objective, even if convexity can never be verified (bottom figures).

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

5

3

1

-1

-3

-5

ψ

λ = 0, μ = 0 λ = 0.25, μ = 0.11

-5 -3 -1 1 3 5
φ

5

3

1

-1

-3

-5

ψ

λ = 1, μ = 1

-5 -3 -1 1 3 5
φ

λ = 5, μ = 5

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Figure 4: Heatmaps of P for different values of λ and µ

Autoencoding any Data through Kernel Autoencoders

B Gradient Derivation Details

B.1 Detail of Equation (8)

‖fl‖2Hl
= 〈fl, fl〉Hl

,

=

〈
n∑
i=1

Kl
(
. , xi

(l−1)
)
ϕl,i ,

n∑
i′=1

Kl
(
. , xi′

(l−1)
)
ϕl,i′

〉
Hl

,

=

n∑
i,i′=1

〈
Kl
(
. , xi

(l−1)
)
ϕl,i , Kl

(
. , xi′

(l−1)
)
ϕl,i′

〉
Hl

,

=

n∑
i,i′=1

〈
ϕl,i , Kl

(
xi

(l−1), xi′
(l−1)

)
ϕl,i′

〉
Xl

,

‖fl‖2Hl
=

n∑
i,i′=1

kl

(
xi

(l−1), xi′
(l−1)

)
〈ϕl,i , Al ϕl,i′〉Xl

.

B.2 Detail of Equation (10)

(
∇ϕl0,i0

‖fl‖2Hl

)T
=

n∑
i,i′=1

[Nl]i,i′
(
∇ϕl0,i0

kl

(
xi

(l−1), xi′
(l−1)

))T
,

=

n∑
i,i′=1

[Nl]i,i′

[(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))T
Jacxi

(l−1)(ϕl0,i0)

+
(
∇(2)kl

(
xi

(l−1), xi′
(l−1)

))T
Jacxi′

(l−1)(ϕl0,i0)

]
,

=

n∑
i,i′=1

[Nl]i,i′
(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))T
Jacxi

(l−1)(ϕl0,i0)

+

n∑
i′,i=1

[Nl]i′,i

(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))T
Jacxi′

(l−1)(ϕl0,i0),

(
∇ϕl0,i0

‖fl‖2Hl

)T
= 2

n∑
i,i′=1

[Nl]i,i′
(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))T
Jacxi

(l−1)(ϕl0,i0),

where ∇(1)kl (x, x
′) (respectively ∇(2)kl (x, x

′)) denotes the gradient of kl(·, ·) with respect to the 1st (respectively
2nd) coordinate evaluated in (x, x′).

B.3 Detail of Jacobians Computation

All previously written gradients involve Jacobian matrices. Their computation is to be detailed in this subsection.
First note that Jacxi

(l)(ϕl0,i0) only makes sense if l0 ≤ l. Indeed, xi
(l) is completely independent from ϕl0,i0

otherwise. Let us first detail xi
(l) and use the linearity of the Jacobian operator :

Jacxi
(l)(ϕl0,i0) =

n∑
i′=1

Jackl(xi
(l−1),xi′

(l−1))Al ϕl,i′
(ϕl0,i0).

Just as in the norm gradient case (see Section 4.2), there are two different outputs depending on whether l = l0
(this gives an initialization), or l > l0 (this leads to a recurrence formula).

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

Own Jacobian (l = l0) :

Jacxi
(l)(ϕl,i0) =

n∑
i′=1

Jackl(xi
(l−1),xi′

(l−1))Al ϕl,i′
(ϕl,i0),

=

n∑
i′=1

kl

(
xi

(l−1), xi′
(l−1)

)
JacAl ϕl,i′ (ϕl,i0),

Jacxi
(l)(ϕl,i0) = [Kl]i,i0 Al.

Higher Jacobian (l > l0) :

Jacxi
(l)(ϕl0,i0) =

n∑
i′=1

Jackl(xi
(l−1),xi′

(l−1))Al ϕl,i′
(ϕl0,i0),

=

n∑
i′=1

Al ϕl,i′
(
∇ϕl0,i0

kl

(
xi

(l−1), xi′
(l−1)

))T
,

= Al

n∑
i′=1

ϕl,i′

[(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))T
Jacxi

(l−1)(ϕl0,i0)

+
(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))T
Jacxi′

(l−1)(ϕl0,i0)

]
,

= Al

[
n∑

i′=1

ϕl,i′
(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))T]
Jacxi

(l−1)(ϕl0,i0)

+Al

[
n∑

i′=1

ϕl,i′
(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))T
Jacxi′

(l−1)(ϕl0,i0)

]
,

Jacxi
(l)(ϕl0,i0) = Al

[
ΦTl ∆l

(
xi

(l−1)
)

Jacxi
(l−1)(ϕl0,i0)

+

n∑
i′=1

ϕl,i′
(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))T
Jacxi′

(l−1)(ϕl0,i0)

]
,

with ∆l(x) :=
((
∇(1)kl

(
x, x1

(l−1)
))T

, . . . ,
(
∇(1)kl

(
x, xn

(l−1)
))T)T

the n × dl−1 matrix storing the

∇(1)kl
(
x, xi

(l−1)
)

in rows. These matrices are computed on Appendix B.4 (especially for x = xi
(l−1)).

Assuming these quantities are known, we have an expression of Jacxi
(l)(ϕl0,i0) that only depends on the

Jacxi′
(l−1)(ϕl0,i0). Thus we can unroll the recurrence until l = l0 and, using the previous subsection, compute

Jacxi
(l)(ϕl0,i0) for every couple (l, l0) such that l > l0.

An interesting remark can be made on the two-terms structure of the Jacobians. Indeed, the first term corre-

sponds to the chain rule on xi
(l) = fl

(
xi

(l−1)
)

assuming that fl is constant :
∂fl(xi

(l−1))
∂ϕl0,i0

=
∂fl(xi

(l−1))
∂xi

(l−1) · ∂xi
(l−1)

∂ϕl0,i0

(notation abuse on ∂ in order to preserve understandability). On the contrary, the second term corresponds to
a chain rule assuming that xi

(l−1) does not vary with ϕl0,i0 , but that fl does, through the influence of ϕl0,i0 on
the supports of fl, namely the xi′

(l−1).

B.4 Detail of the ∆l Matrices Computation

In this section we derive the quantities ∇(1)kl
(
xi

(l−1), xi′
(l−1)

)
and more specifically the matrices ∆l

(
xi

(l−1)
)

for l ∈ JLK and i ∈ JnK. Note that all previously computed quantities are independent from the kernel chosen.
Actually, the ∆l

(
xi

(l−1)
)

matrices encapsulate all the kernel specificity of the algorithm. Thus, tailoring a new
algorithm by changing the kernels only requires computing the new ∆l matrices. This flexibility is a key asset
of our approach, and more generally a crucial characteristic of kernel methods. In the following, we describe the
∆l derivation for two popular kernels : the Gaussian and the polynomial ones.

Autoencoding any Data through Kernel Autoencoders

Gaussian kernel :

∇(1)kl(x, x
′) = ∇x

(
exp

(
−γl‖x− x′‖2Xl−1

))
= −2γl e

−γl‖x−x′‖2Xl−1 (x− x′).

∆l

(
xi

(l−1)
)

=

[(
∇(1)kl

(
xi

(l−1), x1
(l−1)

))T
, . . . ,

(
∇(1)kl

(
xi

(l−1), xn
(l−1)

))T]T
,

= −2γl

[
e
−γl‖xi

(l−1)−x1
(l−1)‖2Xl−1

(
xi

(l−1) − x1
(l−1)

)T
, . . .

. . . , e
−γl‖xi

(l−1)−xn
(l−1)‖2Xl−1

(
xi

(l−1) − xn(l−1)
)T]T

,

∆l

(
xi

(l−1)
)

= −2γl K̃l,i ◦
(
X̃

(l−1)
i −X(l−1)

)
,

where :

• X(l−1) :=
((
x1

(l−1)
)T
, . . . ,

(
xn

(l−1)
)T)T ∈ Rn×dl−1 stores the level l− 1 representations of the xi’s in rows

• X̃(l−1)
i :=

((
xi

(l−1)
)T
, . . . ,

(
xi

(l−1)
)T)T ∈ Rn×dl−1 stores the level l−1 representation of xi n times in rows

• K̃l,i ∈ Rn×n is the kl Gram matrix between X(l−1) and X̃
(l−1)
i

(
i.e. [K̃l,i]s,t = kl

(
xi

(l−1), xt
(l−1)

))
• ◦ denotes the Hadamard (termwise) product for two matrices of the same shape

In practice, it is important to note that computing the ∆l matrices with the Gaussian kernel needs not new
calculations, but only uses already computed quantities : the level l− 1 representations and their Gram matrix.

Polynomial kernel :

∇(1)kl(x, x
′) = ∇x

(
(a 〈x, x′〉+ b)

c
)

= ca
(

(a 〈x, x′〉+ b)
c−1

)
x′.

∆l

(
xi

(l−1)
)

=

[(
∇(1)kl

(
xi

(l−1), x1
(l−1)

))T
, ... ,

(
∇(1)kl

(
xi

(l−1), xn
(l−1)

))T]T
,

= ca

[(
a
〈
xi

(l−1), x1
(l−1)

〉
+ b
)c−1 (

x1
(l−1)

)T
, . . .

. . . ,
(
a
〈
xi

(l−1), xn
(l−1)

〉
+ b
)c−1 (

xn
(l−1)

)T]T
,

∆l

(
xi

(l−1)
)

= ca
(
K̃l,i

) c−1
c ◦X(l−1),

where we keep the notations introduced in the Gaussian kernel example for X(l−1), K̃l,i and ◦. Note that the

exponent on K̃l,i must be understood as a termwise power, and not a matrix multiplication power.

In practice, it is important to note that computing the ∆l matrices with the polynomial kernel only requires a
slight and cheap new calculation : putting the - already computed - Gram matrix at layer l− 1 to the termwise
power (c− 1)/c.

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

B.5 Detail of NL Computation

〈xj , xj′〉X0
=

〈
n∑
i=1

(
KL
(
x

(L−1)
j , x

(L−1)
i

)
+ nλLδij

)
ϕL,i ,

n∑
i′=1

(
KL
(
x

(L−1)
j′ , x

(L−1)
i′

)
+ nλLδi′j′

)
ϕL,i′

〉
X0

,

=

n∑
i,i′=1

〈(
kL

(
x

(L−1)
j , x

(L−1)
i

)
+ nλLδij

)
ϕL,i ,

(
kL

(
x

(L−1)
j′ , x

(L−1)
i′

)
+ nλLδi′j′

)
ϕL,i′

〉
X0

,

〈xj , xj′〉X0
=

n∑
i,i′=1

(
kL

(
x

(L−1)
j , x

(L−1)
i

)
+ nλLδij

)
(
kL

(
x

(L−1)
j′ , x

(L−1)
i′

)
+ nλLδi′j′

)
〈ϕL,i, ϕL,i′〉X0

. (33)

As a reminder, NL denotes the matrix such that [NL]i,i′ = 〈ϕL,i, ϕL,i′〉X0
. Let Kin denote the input Gram

matrix such that [Kin]j,j′ = 〈xj , xj′〉X0
. Finally, following notations of Section 4.2 for KL, and denoting In the

identity matrix on Rn, equation (33) may be rewritten as:

[Kin]j,j′ =

n∑
i,i′=1

[KL + nλLIn]j,i[NL]i,i′ [KL + nλLIn]i′,j ,

or equivalently:
Kin = (KL + nλLIn) NL (KL + nλLIn),

so that the computation of the desired linear products 〈ϕL,i, ϕL,i′〉X0
becomes straightforward:

NL = (KL + nλLIn)−1 Kin (KL + nλLIn)−1. (34)

Since KL is recursively derived from Kin and Φ1, . . . ,ΦL−1, the optimal matrix NL (in the sense of the Kernel
Ridge Regression) only depends on Kin, the coefficient matrices, and the last layer regularization parameter λL.
Let NKRR be the function that computes NL of equation (34) from Φ1, . . . ,ΦL−1, Kin and λL.

B.6 Detail of Equation (12)

Since XL is now infinite dimensional, JacxL
i

(ϕl0,i0) makes no more sense. Nevertheless, ϕl,i remains finite
dimensional, and the distortion a scalar: a gradient does exist. One is just forced to use the differential of
‖xi−fL◦ . . .◦f1(xi)‖2X0

to make it appear. As a reminder, the chain rule for the differentials reads : d(g◦f)(x) =

dg(f(x)) ◦ df(x). Let us apply it with g(·) = ‖ · ‖2X0
and f : ϕl0,i0 7→ xi−x(L)

i . Let h ∈ Xl0 and h′ ∈ X0, we have:(
dg(y)

)
(h′) = 2 〈y, h′〉X0

.

(
df(ϕl0,i0)

)
(h) =

(
d

(
xi −

n∑
i′=1

kL

[
x

(L−1)
i , x

(L−1)
i′

]
ϕL,i′

)
(ϕl0,i0)

)
(h),

= −
n∑

i′=1

(
d
(
kL

[
x

(L−1)
i , x

(L−1)
i′

]
ϕL,i′

)
(ϕl0,i0)

)
(h),

= −
n∑

i′=1

(
d
(
kL

[
x

(L−1)
i , x

(L−1)
i′

])
(ϕl0,i0)

)
(h) ϕL,i′ ,

(
df(ϕl0,i0)

)
(h) = −

n∑
i′=1

〈
∇ϕl0,i0

kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h
〉
Xl0

ϕL,i′ .

Autoencoding any Data through Kernel Autoencoders

Combining both expressions with y = xi − x(L)
i gives:(

d(‖xi − fL ◦ . . . ◦ f1(xi)‖2X0
)(ϕl0,i0)

)
(h) =

(
d(g ◦ f)(ϕl0,i0)

)
(h),

=
(
dg
(
xi − x(L)

i

))
◦
(
df(ϕl0,i0)

)
(h),

= 2

〈
xi − x(L)

i ,−
n∑

i′=1

〈
∇ϕl0,i0

kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h
〉
Xl0

ϕL,i′

〉
X0

,

= −2

n∑
i′=1

〈
∇ϕl0,i0

kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h
〉
Xl0

〈
xi − x(L)

i , ϕL,i′
〉
X0

,

(
d(‖xi − fL ◦ . . . ◦ f1(xi)‖2X0

)(ϕl0,i0)
)

(h) =

〈
−2

n∑
i′=1

〈
xi − x(L)

i , ϕL,i′
〉
X0

∇ϕl0,i0
kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h

〉
Xl0

.

A direct identification leads to equation (12).

Like in the finite dimensional case, the gradient of the whole criterion is just the (weighted) sum of the gradients
of the distortion and the norm penalizations. However, since we assume NL to be fixed (and known) in order to
propagate the gradient, we use the shortcut notation ∇Φl

(ε̂n + Ω | NL) in Algorithm 1 to denote the gradient
of the whole criterion with respect to Φl, assuming that NL is fixed.

B.7 Solutions to Equations (11) and Test Distortion

Since we have assumed that AL is the identity operator on XL, equations (11) simplify to:

∀ i ∈ JnK,
n∑

i′=1

Wi,i′ ϕL,i′ = xi, (35)

where W = KL + nλLIn. It is then easy to show that the

ϕL,i′ =

n∑
i=1

[
W−1

]
i′,i

xi ∀ i′ ∈ JnK

are solutions to equations (35) and therefore to equations (11). Note that using this expansion directly leads to
equation (34). But more interestingly, this new writing allows for computing the distortion on a test set. Indeed,
let x ∈ X0, one has:

‖x− fL ◦ . . . ◦ f1(x)‖2X0
=
∥∥∥x− fL (x(L−1)

)∥∥∥2

X0

,

= ‖x‖2X0
+
∥∥∥fL (x(L−1)

)∥∥∥2

X0

− 2
〈
x, fL

(
x(L−1)

)〉
X0

,

= ‖x‖2X0
+

∥∥∥∥∥
n∑
i=1

kL

(
x(L−1), x

(L−1)
i

)
ϕL,i

∥∥∥∥∥
2

X0

− 2

〈
x,

n∑
i=1

kL

(
x(L−1), x

(L−1)
i

)
ϕL,i

〉
X0

,

= ‖x‖2X0
+

n∑
i,j=1

kL

(
x(L−1), x

(L−1)
i

)
kL

(
x(L−1), x

(L−1)
j

)
〈ϕL,i, ϕL,j〉X0

− 2

n∑
i=1

kL

(
x(L−1), x

(L−1)
i

)
〈x, ϕL,i〉X0

,

‖x− fL ◦ . . . ◦ f1(x)‖2X0
= ‖x‖2X0

+

n∑
i,j=1

kL

(
x(L−1), x

(L−1)
i

)
kL

(
x(L−1), x

(L−1)
j

)
〈ϕL,i, ϕL,j〉X0

− 2

n∑
i,j=1

kL

(
x(L−1), x

(L−1)
i

) [
W−1

]
i,j
〈x, xj〉X0

.

Just like in Section 4.3 and Appendix B.5, knowing the scalar products in X0 is the only thing we need to
compute the test distortion (all other quantities are finite dimensional and thus computable).

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

C Additional Experiments

C.1 2D Data

Figure 5 gives a look on the algorithm behavior on 1D data. Results on 1D data are displayed and analyzed
here as they are easily understandable. Indeed, one dimension of the plot (the x axis) is used to display the
original 1D points (the crosses), while their representations (the f(xi)) vary along the y axis. As soon as the
original point or the representation needs more than 1 dimension to be plotted, a 2D plot lacks of dimensions to
correctly display the behavior of the algorithm. Original data (to be represented) are sampled from 2 Gaussian
distributions, of standard deviation 0.1, and with expected value 0 and 2 respectively.

Figure 5(a) and Figure 5(b) show the evolution of the encoding / decoding functions along the iterations of
the algorithm. From the initial yellow representation function, obtained by uniform weights, the algorithm
learns the black function, which seems satisfying in two ways. First, the representations of the two clusters are
easily separable. Points from the first blue cluster (i.e. drawn from the Gaussian centered at 0) have positive
representations, while points from the red one (i.e. drawn from the Gaussian centered at 2) have negative ones. If
computed in a clustering purpose, the representation thus gives an easy criterion to distinguish the two clusters.
Second, in order to be able to reconstruct any point, one must observe variability within each cluster. This way,
the reconstruction function can easily reassign every point. On the contrary, the yellow representation function
represents all points by almost the same value, which leads necessarily to a uniform (and bad) reconstruction.

Figure 5(c) shows another 1D representation of the two clusters, while Figure 5(d) shows a 2D encoding of these
points. Interestingly, the two components of the 2D representation are highly correlated. This can be interpreted
as the fact that a 2D descriptor is over-parameterizing a 1D point.

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
Original 1D point

-0.2

-0.1

0.0

0.1

0.2

0.3

R
ep

re
se

nt
at

io
n

va
lu

e

Iter #0
Iter #1
Iter #2
Iter #3
Iter #4
Original point

(a) Encoding evolution during fitting

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Original 1D point

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ec

on
st

ru
ct

io
n

Reconstruction = Initial point
Distortion : 1.05
Distortion : 1.05
Distortion : 0.34
Distortion : 0.31
Distortion : 0.27

(b) Decoding evolution during fitting

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Point value

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1D
 R

ep
re

se
nt

at
io

n
va

lu
e

1D representation
Points to represent

(c) 1D Gaussian clusters and 1D representation

−1.0 −0.5 0.0 0.5 1.0
1st component of the 2D representation

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

2n
d

co
m

po
ne

nt
 o

f t
he

 2
D

 r
ep

re
se

nt
at

io
n

Correlation coefficient between
2 components : -0.9993

(d) 2D representation of the clusters

Figure 5: Algorithm behavior on 1D data

Autoencoding any Data through Kernel Autoencoders

Figure 6 shows the algorithm’s behavior on Gaussian clusters. Whenever original points and their representations
cannot be displayed on the same graph (i.e. when whether the original data or its representation is of dimension
more than 2), the colormap helps linking them. In Figure 6(a), the original 2D data are plotted, while Figure 6(b)
shows their 1D representations. The colormap has been established according to the value of this representation.
First, the two clusters remain well separated in the representation space (positive/negative representations).
But what is really interesting is how they are separated. The lighter the blue points are, the most negative
representation they have, or in other terms, the most certain they are to be in the blue cluster. Similarly,
the darker the red points are, the most positive representation they have. When looking at these points on
Figure 6(a), one sees that it matches the distribution: light blue points are the most distant from the red cluster,
and conversely for the dark red ones. The algorithm has found the direction that discriminates the two clusters.
Similar results are shown for 3 Gaussian clusters on Figure 6(c) and Figure 6(d).

−1 0 1 2 3
1st component of the 2D original point

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2n
d

co
m

po
ne

nt
 o

f t
he

 2
D

 o
rig

in
al

 p
oi

nt

(a) 2D Gaussian clusters

0 20 40 60 80 100 120 140
Point ID

−3

−2

−1

0

1

2

1D
 r

ep
re

se
nt

at
io

n
va

lu
e

(b) 1D representation of the clusters

−1 0 1 2 3 4
1st component of the 2D original point

−1

0

1

2

3

4

2n
d

co
m

po
ne

nt
 o

f t
he

 2
D

 o
rig

in
al

 p
oi

nt

(c) 2D Gaussian clusters (3)

0 50 100 150 200
Point ID

−30

−25

−20

−15

−10

−5

0

5

1D
 r

ep
re

se
nt

at
io

n
va

lu
e

(d) 1D representation of the clusters

Figure 6: Algorithm behavior on Gaussian clusters

Finally, Figure 7 shows the algorithm’s behavior on the so called two moons dataset. 2D original points (Fig-
ure 7(a) and Figure 7(c), colored differently according to the representation on their right) are first mapped
to a 1D representation (Figure 7(b)). Just as for the 3 concentric circles example, this 1D representation is
discriminative, also with intra-cluster variability in order to reconstruct properly. The 2D re-representation on
Figure 7(d) shows again the disentangling properties of the KAE.

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
1st component of the 2D original point

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2n
d

co
m

po
ne

nt
 o

f t
he

 2
D

 o
rig

in
al

 p
oi

nt

(a) Two moons dataset, colored w.r.t. its 1D represen-
tation

0 25 50 75 100 125 150 175 200
Points ID

−3

−2

−1

0

1

2

P
oi

nt
 r

ep
re

se
nt

at
io

n

(b) 1D representation of the 2 moons

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
1st component of the 2D original point

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2n
d

co
m

po
ne

nt
 o

f t
he

 2
D

 o
rig

in
al

 p
oi

nt

(c) Two moons dataset, colored w.r.t. its 2D represen-
tation

−0.4 −0.2 0.0 0.2 0.4
1st component of the 2D representation

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

2n
d

co
m

po
ne

nt
 o

f t
he

 2
D

 r
ep

re
se

nt
at

io
n

(d) 2D representation of the 2 moons

Figure 7: Algorithm behavior on the 2 moons dataset

Autoencoding any Data through Kernel Autoencoders

C.2 NCI Data

C.2.1 All Strategies on 8 Cancers Graph

1
2

3
4

5
6

7
8

C
ancer Index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Normalized Mean Square Errors

N
M

S
E

s for D
ifferent A

lgorithm
s

K
R

R
K

P
C

A
_5

K
P

C
A

_10
K

P
C

A
_25

K
P

C
A

_50
K

P
C

A
_100

K
2A

E
_5

K
2A

E
_10

K
2A

E
_25

K
2A

E
_50

K
2A

E
_100

Figure 8: Performance of the Different Strategies on 8 Cancers

As expected, the greater the dimension of the extracted representations, the better the prediction performance by
the RF, for both K2AE and KPCA. However, it is worth noticing that for cancer 7, the prediction error increases
between the 50 and the 100-long representations. This might be the beginning of an overfitting phenomenon (seen
on 8 of the 59 cancer types, always between the 50 and the 100-dimensional representations), as the extracted
components may become less relevant, thus misleading the RF in its predictions.

Pierre Laforgue, Stephan Clémençon, Florence d’Alché-Buc

C.3 5 strategies on 59 cancers table

Table 3: NMSEs on Molecular Activity for Different Types of Cancer

KRR KPCA 10 + RF KPCA 50 + RF K2AE 10 + RF K2AE 50 + RF

Cancer 01 0.02978 0.03279 0.03035 0.03097 0.02808
Cancer 02 0.03004 0.03194 0.02978 0.03099 0.02775
Cancer 03 0.02878 0.03155 0.02914 0.02989 0.02709
Cancer 04 0.03003 0.03274 0.03074 0.03218 0.02924
Cancer 05 0.02954 0.03185 0.02903 0.03065 0.02754
Cancer 06 0.02914 0.03258 0.03083 0.03134 0.02838
Cancer 07 0.03113 0.03468 0.03207 0.03257 0.03018
Cancer 08 0.02899 0.03162 0.02898 0.03065 0.02770
Cancer 09 0.02860 0.02992 0.02804 0.02872 0.02627
Cancer 10 0.02987 0.03291 0.03111 0.03170 0.02910
Cancer 11 0.03035 0.03258 0.03095 0.03188 0.02900
Cancer 12 0.03178 0.03461 0.03153 0.03253 0.02983
Cancer 13 0.03069 0.03338 0.03104 0.03162 0.02857
Cancer 14 0.03046 0.03340 0.03102 0.03135 0.02862
Cancer 15 0.02910 0.03221 0.03066 0.03131 0.02806
Cancer 16 0.02956 0.03220 0.02958 0.03060 0.02779
Cancer 17 0.03004 0.03413 0.03140 0.03145 0.02869
Cancer 18 0.02954 0.03195 0.03005 0.03108 0.02805
Cancer 19 0.03003 0.03211 0.03079 0.03178 0.02832
Cancer 20 0.02911 0.03179 0.03041 0.03085 0.02769
Cancer 21 0.02963 0.03275 0.03023 0.03152 0.02837
Cancer 22 0.03075 0.03391 0.03089 0.03263 0.02958
Cancer 23 0.03006 0.03286 0.02983 0.03109 0.02760
Cancer 24 0.03075 0.03398 0.03112 0.03242 0.02894
Cancer 25 0.02977 0.03307 0.03054 0.03159 0.02824
Cancer 26 0.03083 0.03358 0.03132 0.03206 0.02959
Cancer 27 0.03083 0.03347 0.03116 0.03230 0.02974
Cancer 28 0.03061 0.03256 0.03116 0.03185 0.02918
Cancer 29 0.03056 0.03360 0.03147 0.03181 0.02892
Cancer 30 0.03099 0.03288 0.03100 0.03181 0.02906
Cancer 31 0.03082 0.03361 0.03161 0.03242 0.02986
Cancer 32 0.03233 0.03562 0.03300 0.03422 0.03158
Cancer 33 0.03065 0.03208 0.03045 0.03142 0.02909
Cancer 34 0.03326 0.03668 0.03423 0.03486 0.03183
Cancer 35 0.03292 0.03587 0.03393 0.03450 0.03146
Cancer 36 0.03068 0.03389 0.03122 0.03249 0.02925
Cancer 37 0.03023 0.03310 0.03061 0.03130 0.02878
Cancer 38 0.03100 0.03487 0.03156 0.03327 0.02974
Cancer 39 0.02989 0.03288 0.03149 0.03148 0.02865
Cancer 40 0.03166 0.03525 0.03201 0.03352 0.03010
Cancer 41 0.03139 0.03501 0.03203 0.03316 0.03025
Cancer 42 0.03010 0.03251 0.03013 0.03072 0.02807
Cancer 43 0.03042 0.03324 0.03062 0.03144 0.02806
Cancer 44 0.02838 0.03045 0.02821 0.02927 0.02679
Cancer 45 0.02910 0.03085 0.02895 0.02970 0.02651
Cancer 46 0.02969 0.03258 0.02996 0.03111 0.02834
Cancer 47 0.03148 0.03438 0.03346 0.03286 0.03056
Cancer 48 0.03272 0.03640 0.03397 0.03425 0.03197
Cancer 49 0.03305 0.03392 0.03329 0.03334 0.03148
Cancer 50 0.03229 0.03637 0.03300 0.03404 0.03155
Cancer 51 0.02943 0.03188 0.03028 0.03072 0.02857
Cancer 52 0.03309 0.03420 0.03252 0.03335 0.03130
Cancer 53 0.03170 0.03340 0.03105 0.03170 0.02843
Cancer 54 0.03189 0.03439 0.03164 0.03345 0.03036
Cancer 55 0.03082 0.03339 0.03146 0.03207 0.02892
Cancer 56 0.03026 0.03327 0.03041 0.03185 0.02901
Cancer 57 0.02962 0.03237 0.02990 0.03162 0.02855
Cancer 58 0.02883 0.03200 0.02978 0.03058 0.02783
Cancer 59 0.02936 0.03208 0.02914 0.03032 0.02750

