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A On scale-free networks

A recent article by Broido and Clauset (2018) (BC)
raised concerns about the claim that many real-world
networks are scale-free. BC performed a statistical
analysis on a large number of networks to test whether
the degree distribution follows a power-law distribu-
tion or some alternative distributions. One of the al-
ternative degree distributions considered is a power-
law distribution with an exponential cut-off, which was
shown to provide a better fit for a majority of the
datasets considered. BC conclude in their article that
scale-free networks are rare.

While we agree with the authors that there is a need
for rigorous statistical testing of the scale-free hypoth-
esis, and that scale-free networks may indeed by more
rare than originally thought, we do not think that the
conclusion of the authors is supported by their experi-
ments, except if one considers a very narrow definition
of a scale-free network. As pointed out by Barabasi
(2018) in a blog post discussing their article, scale-
freeness is an asymptotic property: as the sample size
goes to infinity, the degree distribution converges to a
power-law (up to a slowly varying function, see Defi-
nition 2.1). Degree distributions of finite-size graphs
may still depart significantly from a pure power-law
distribution.

A salient example is given by the class of networks in-
troduced by Caron and Fox (2017), which are known to
be scale-free with exponent between 1 and 2 for some
values of the parameters. As shown in Figure 1, while
the degree distribution is asymptotically power-law,
any finite-size graph exhibits an exponential cut-off,
which shifts to the right as the sample size increases.
Therefore, any statistical test on a fixed-n graph is
likely to reject the pure power-law hypothesis although
the network model is indeed scale-free.

For reference, empirical degree distributions for the
IG-NR and GIG-NR are also plotted in Figure 1. The
IG-NR is scale-free, and each finite-n distribution is

additionally close to a pure power-law distribution.
The GIG-NR is not scale-free, and the asymptotic de-
gree distribution is a power-law distribution with ex-
ponential cut-off.

B Background material on regular
variation

In this section we give some definitions and properties
of slowly and regularly varying functions, see the books
of Bingham et al. (1989), Mikosch (1999) and Resnick
(2007) for reference.

Definition B.1. A positive function f : R+ → R+ is
regularly varying at infinity with index α ∈ R if

lim
t→∞

f(ct)

f(t)
= cα

for all c > 0.

If α = 0, the function is said to be slowly varying. Ex-
amples of slowly varying include constant functions,
functions converging to a strictly positive constant,
logarithms, etc. If a function f is regularly varying
with index α, then there exists a slowly varying func-
tion ` such that

f(x) ∼ `(x)xα

as x→∞.

Definition B.2. A non-negative random variable X
with cdf FX is said to be regularly varying with expo-
nent α ≥ 0 if

1− FX(x) ∼ `(x)x−α (1)

as x tends to infinity, where ` is a slowly varying func-
tion at infinity. If α > 0 and FX is absolutely continu-
ous with density fX , where fX is ultimately monotone,
then

fX(x) ∼ α`(x)x−α−1 (2)

as x→∞.
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Figure 1: Empirical degree distribution for networks for growing sizes generated from the (left) GGP model,
(middle) IG-NR model and (right) GIG-NR model. Both the GGP and IG-NR models are scale-free networks,
with asymptotically power-law degree distributions.

Proposition B.1. Let X be a regularly varying ran-
dom variable with exponent α > 0, and Y be a positive
random variable, independent of X, with E(Y α+ε) <
∞ for some ε > 0. Then Z = XY is regularly varying
with exponent α > 0 and

1− FZ(z) ∼ E(Y α)`(z)z−α (3)

as z tends to infinity. If FZ is absolutely continuous
with ultimately monotone density fZ , this implies

fZ(z) ∼ αE(Y α)`(z)z−α−1

as z tends to infinity.

Proposition B.2. If f is a regularly varying function
with index α, then

lim
x→∞

log f(x)

log x
= α.

C Background on inhomogeneous
random graph models

In this section, we review the general framework of in-
homogeneous random graphs (IRG) presented in Bol-
lobás et al. (2007). We start by introducing a vertex
space and a kernel to define IRGs.

Definition C.1. A vertex space V is a triplet
(S, µ, (xn)n≥1), where S is a separable metric space,
µ is a Borel probability measure on S, and xn :=
(x1, . . . , xn)1 is a random sequence of n points in S
such that for each n ≥ 1,

νn :=
1

n

n∑
i=1

δxi

p→ µ, (4)

where
p→ denotes the convergence in probability. The

pair (S, µ) is called a ground space.

1To be precise, we should write xn = (x
(n)
1 , . . . , x

(n)
n ),

but we omit the superscript for simplicity.

Definition C.2. A kernel κ on a ground space (S, µ)
is a symmetric non-negative Borel measurable function
on S × S.

Rougly speaking, a vertex space is a space of values
assigned to vertices in a graph, such as vertex weights
or popularities. Each vertex is associated with a point
in S, and these points are used to contruct edge proba-
bilities between vertices through the kernel κ. Kernels
should be further restricted to be in a class of functions
satisfying some conditions, and we will explain those
shortly after. Given a vertex space and a kernel, an
IRG is defined with link function (edge probabilities)

p
(n)
ij =

κ(xi, xj)

n
∧ 1. (5)

All the following arguments will be explained with this
choice of link function, but everything still holds with
the following alternative choices of link functions (Bol-
lobás et al., 2007, Remark 2.4).

p
(n)
ij = 1− exp

(
− κ(xi, xj)

n

)
(6)

p
(n)
ij =

κ(xi, xj)

n+ κ(xi, xj)
. (7)

All these three functions are related to existing works
on IRGs. The link function (5) is a generic version
of Chung and Lu (2002), (6) is for Norros and Re-
ittu (2006), and (7) is for Britton et al. (2006). We
chose (6) for our model because of the computational
efficiency in posterior inference.

Let Gn be a graphs generated from IRG described
above with a vertex space V and a kernel κ. The ker-
nel κ are assumed to be graphical, which is defined as
follows.

Definition C.3. A kernel κ on a vertex space
(S, µ, (xn)) is graphical if the followings hold:

(i) κ is continuous almost everywhere on S × S.
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(ii) κ ∈ L1(S × S, µ× µ).

(iii) Let En be the set of edges in Gn. Then,

lim
n→∞

1

n
E(|En|) =

1

2

∫∫
S×S

κ(x, y)dµ(x)dµ(y).

(8)

The first and second conditions are natural technical
requirements. The third condition is related to the
density of graphs. It requires κ to measure the density
of the edges (Bollobás et al., 2007).

The following theorem characterizes the asymptotic
degree distribution of IRGs.

Theorem C.1. ((Bollobás et al., 2007, Theorem
3.13)) Let κ be a graphical kernel on a vertex space
V. For any fixed k ≥ 0,

N
(n)
k

n

p→
∫
S

λ(x)k

k!
e−λ(x)dµ(x), (9)

where N
(n)
k is the number of vertices in with degree k

in Gn, and

λ(x) :=

∫
S
κ(x, y)dµ(y). (10)

Hence, one can easily compute the asymptotic degree
distribution of any IRG that fits into the framework
once the corresponding vertex space and kernel is spec-
ified. This is what we do in the next two sections.

D Proof of Theorem 3.1 and
Theorem 3.2

Theorem 3.1 and Theorem 3.2 in the main paper are
directly obtained by showing that the Norros-Reittu
IRG (NR-IRG) fits into the general framework dis-
cussed in Section C of this supplementary material.
Actually, the NR-IRG has been discussed as an ex-
ample of rank-1 IRGs, see (Bollobás et al., 2007,
Section 16.4). More precisely, define a vertex space
V = (S, µ,xn) with

S = (0,∞), µ = Lw1
, xi = wi

√
E(w1)

s(n)/n
, (11)

where Lw1 denotes the law of w1, and define a kernel

κ(x, y) =
xy

E(w1)
. (12)

To see if this kernel is graphical, note that

lim
n→∞

1

n
E(|En|)

= lim
n→∞

1

n
E

[∑
i<j

{
1− exp

(
− κ(xi, xj)

n

)}]

= lim
n→∞

1

n

[∑
i<j

{
1− exp

(
− wiwj

s(n)

)}]

≤ lim
n→∞

1

n
E

[∑
i<j

wiwj
s(n)

]

≤ lim
n→∞

1

2
E(s(n)/n) = E(w1)/2

=
1

2

∫∫
S2

κ(x, y)dµ(x)dµ(y). (13)

Hence, combined with Bollobás et al. (2007, Lemma
8.1), we get

lim
n→∞

1

n
E(|En|) =

1

2

∫∫
S2

κ(x, y)dµ(x)dµ(y). (14)

and the kernel κ is therefore graphical. The second
part of Theorem 3.1 then follows from Bollobás et al.
(2007, Proposition 8.9), and Theorem 3.2 follows from
Theorem C.1 with

λ(x) =

∫
S
κ(x, y)dµ(y) =

∫ ∞
0

xy

E(w1)
dLw1

(y) = x.

(15)

E Proof of Theorem 4.1

Theorem 4.1 also follows by showing that the rank-
c model fits into the general framework discussed in
Section C. Define a vertex space V = (S, µ,xn) with

S = (0,∞)c+1, µ = Lw1
L(v11,...,v1c), (16)

where Lw1
and L(v11,...,v1c) denote the laws of w1 and

(v11, . . . , v1c), and

xi =

(
wi

√
E(w1)

s(n)/n
, vi1

√
E(v11)

r
(n)
1 /n

, . . . , vic

√
E(v1c)

r
(n)
c /n

)
.

(17)

Define a kernel on this space

κ(x, y) =
x[1]y[1]

E(w1)

c∑
q=1

x[q+1]y[q+1]

E(v1q)
, (18)
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where x[d] denotes the dth component of x. To see if
this kernel is graphical, note that

lim
n→∞

1

n
E(|En|)

= lim
n→∞

E

[
1

n

∑
i<j

{
1− exp

(
− wiwj

s(n)

c∑
q=1

viqvjq

r
(n)
q /n

)}]

≤ lim
n→∞

E

[
1

n

∑
i<j

wiwj
s(n)

E
[ c∑
q=1

viqvjq

r
(n)
q /n

]]
. (19)

Now note that

E
[ c∑
q=1

viqvjq

r
(n)
q /n

]
=

1

n2

∑
i′,j′

E
[ c∑
q=1

vi′qvj′q

r
(n)
q /n

]

≤ E
[ c∑
q=1

r(n)q /n

]
=

c∑
q=1

E(v1q). (20)

Plugging this into the above equation yields

lim
n→∞

1

n
E(|En|)

≤ lim
n→∞

E

[
1

n

∑
i<j

wiwj
s(n)

c∑
q=1

E(v1q)

]

≤ lim
n→∞

1

2
E(s(n)/n)

c∑
q=1

E(v1q)

=
1

2
E(w1)

c∑
q=1

E(v1q)

=
1

2

∫∫
κ(x, y)dµ(x)dµ(y). (21)

Hence, by Bollobás et al. (2007, Lemma 8.1), we get

lim
n→∞

1

n
E(|En|) =

1

2

∫∫
S2

κ(x, y)dµ(x)dµ(y). (22)

The second part of Theorem 3.1 then follows from Bol-
lobás et al. (2007, Proposition 8.9), and Theorem 3.2
follows from Theorem C.1 with

λ(x) =

∫
S
κ(x, y)dµ(y)

= x[1]

c∑
q=1

x[q+1]. (23)

F Details on posterior inferences

F.1 Posterior inference for the rank-1 model

The posterior ineference for rank-1 model is summa-
rized in three steps.

1. Sample w via HMC (we use the transformation
w = eŵ and update ŵ).

2. Sample m from truncated Poisson distribution,

p(mij |w) =
(
wiwj

s(n) )mij exp(−wiwj

s(n) )1{mij>0}

mij !(1− e−
wiwj

s(n) )
.

(24)

3. Sample hyperparameters for p(w) via Metropolis-
Hastings.

We used the step size ε = 10−2 and the number of
leapfrog steps L = 20 for all experiments.

Sampling hyperparameters for IG. In IG we
have two hyperparameters α > 1 and β > 0. We
place a log-normal prior on α− 1 and β.

α = 1 + eα̂, α̂ ∼ N (0, 1) (25)

β = eβ̂ , β̂ ∼ N (0, 1). (26)

Then we updated α̂ and β̂ via Metropolis-Hastings
with proposal distribution N (α̂, 0.05) and N (β̂, 0.05).

We found that the initialization of α̂ and β̂ was im-
portant to capture degree distributions. We initialized
α̂ ∼ N (0, 0.1) and using the asymptotic relation

|En|
n

p→ E(w1)

2
=

β

2(α− 1)
, (27)

set

β̂ = log
2(α− 1)|En|

n
. (28)

Sampling hyperparameters for GIG. We have
three parameters ν < 0, a > 0, and b > 0 (we re-
stricted ν < 0 to get the positive power-law exponent).
We placed log-normal priors on −ν, a and b.

ν = −eν̂ , ν̂ ∼ N (0, 1) (29)

a = eâ, â ∼ N (0, 1) (30)

b = eb̂, b̂ ∼ N (0, 1). (31)

We updated ν̂, â and b̂ via Metropolis-Hastings
with proposal distributions N (ν̂, 0.05),N (â, 0.1) and

N (b̂, 0.05). We initialized ν ∼ Unif(−1, 0) and a ∼
Unif(0, 10−3). b was initialized by solving

|En|
n

=
E(w1)

2
=

√
bKν+1(

√
ab)

√
aKν(

√
ab)

, (32)

using a numerical root-finding algorithm.

F.2 Posterior inference for the rank−c model

The posterior inference for the rank−c model is quite
similar to that of the rank-1 model.
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1. Sample w via HMC (we use the transformation
w = eŵ and update ŵ).

2. Sample V via HMC (see below).

3. Sample M from multivariate truncated Poisson
distribution,

p(Mij |w, V ) =

c∏
q=1

λ
mijq

ijq e−λijq1{∑ijq′ mijq′>0}

1− exp(−∑c
q′=1 λijq′)

,

(33)

where λijq =
wiwj

s(n)

viqvjq

r
(n)
q /n

.

4. Sample hyperparameters of p(w) and p(V ).

Details on HMC for V . Each vector (vi1, . . . , vic)
is a Dirichlet random variable such that

∑c
q=1 viq = 1,

so transforming it to an unconstrained vector is quite
tricky. We adapt the trick presented in Betancourt
(2010). Let v = (v1, . . . , vc) ∼ Dir(γ1, . . . , γc). Define
i.i.d. beta random variables,

z1 ∼ beta(γ̃1, γ1) (34)

z2 ∼ beta(γ̃2, γ2) (35)

... (36)

zq−1 ∼ beta(γ̃q−1, γq−1), (37)

where

γ̃q =

c∑
t=q+1

γt. (38)

Then, if we take a transform

vq = (1− zq)
q−1∏
t=1

zt (t < c), (39)

vc =

c−1∏
t=1

zt, (40)

we have v ∼ Dir(γ1, . . . , γc). The advantage of this
transformation is that the Jacobian can be computed
efficiently. By the chain rule, we have

∂f(v)

∂zq
=

vq
zq − 1

∂f(v)

∂vq
+

c∑
t=q+1

xt
zq

∂f(v)

∂vt
. (41)

We take another logistic transform on zq to make it
completely unconstrained.

zq =
1

1 + e−ẑq
, (42)

Hence, the gradient for the unconstrained variable ẑq
is computed as

∂f(v)

∂ẑq
=
∂f(v)

∂zq
(zq − z2q ). (43)

In our algorithm, HMC for V is done on the uncon-
strained variables (ẑi1, . . . , ẑi,q−1)ni=1.

Initialization and step sizes. Unlike Todeschini
et al. (2016) where the model is initialized by run-
ning MCMC for the simplified model without commu-
nities to initialize w, we initialize the chain by running
MCMC only for V while holding w fixed as [1, . . . , 1]>.
We found this helpful for the algorithm to discover bet-
ter community structures. For this initialization, we
ran HMC for V with ε = 10−1 and L = 20. After
initialization, we ran HMC for w with ε = 5 ·10−3 and
L = 20, and ran HMC for V with ε = 2.5 · 10−2 and
L = 20. We decayed ε for V to 5 · 10−3 after burn-in.

Sampling hyperparameters for p(V ). We assume
log-normal prior distributions on the hyperparameters
γ1, . . . , γc.

γq = eγ̂c , γ̂q ∼ N (0, 1). (44)

Then we updated γ̂q via Metropolis-Hastings with pro-
posal distribution N (γ̂q, 0.01). We initialized γ1 =
· · · = γc = 0.1.

G Additional Figures

G.1 Empirical degree distributions and
number of edges for rank−c model

We first demonstrate the empirical degree distribu-
tions and number of edges of graphs generated from
rank−c model with c = 5. The results are presented
in Fig. 2. As predicted from Theorem 4.1, the degree
distribution and sparsity are not affected by the intro-
duction of the community affiliation factors V .

G.2 Discovered community structures

We present the community structures discoverd by IG,
GIG, CGGP and MMSB in Fig. 3. IG, GIG and
CGGP discovered reasonable communities where the
edge densities within communities are much higher
than the edge densities between communities. How-
ever, MMSB completely failed to discover the commu-
nities. The fact that the models without degree het-
erogeneity fail to capture community structures has
been reported in various works (Karrer and Newman,
2011; Gopalan et al., 2013; Todeschini et al., 2016),
and our results confirm it.

References

Barabasi, L. (2018). All you need is love. Blog post.

Betancourt, M. (2010). Crusing the simplex: Hamil-
tonian Monte Carlo and the Dirichlet distribution.
arXiv:1010.3436.



Supplementary material

100 101 102

Degree

10−7

10−6

10−5

10−4

10−3

10−2

10−1

D
is

tr
ib

u
ti

on

β =1.0

α =1.4

α =2.0

α =2.6

100 101 102 103

Degree

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

D
is

tr
ib

u
ti

on

β =2.0

α =1.4

α =2.0

α =2.6

2000 4000 6000 8000 10000
Number of nodes

0

2000

4000

6000

8000

10000

12000

N
u

m
b

er
of

ed
ge

s

β =1.0

α =1.4

α =2.0

α =2.6

2000 4000 6000 8000 10000
Number of nodes

0

5000

10000

15000

20000

25000

N
u

m
b

er
of

ed
ge

s

β =2.0

α =1.4

α =2.0

α =2.6

100 101 102 103

Degree

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

D
is

tr
ib

u
ti

on

ν =-0.5

a =0.01

a =0.10

a =1.00

100 101 102

Degree

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

D
is

tr
ib

u
ti

on

ν =-1.0

a =0.01

a =0.10

a =1.00

2000 4000 6000 8000 10000
Number of nodes

0

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

er
of

ed
ge

s

ν =-0.5

a =0.01

a =0.10

a =1.00

2000 4000 6000 8000 10000
Number of nodes

0

5000

10000

15000

20000

N
u

m
b

er
of

ed
ge

s

ν =-1.0

a =0.01

a =0.10

a =1.00

Figure 2: First row, first and second boxes: empirical degree distributions (dashed lines) of graphs with 10,000
nodes sampled from rank-c inverse gamma NR model compared to the theoretically expected asymptotic degree
distribution (dotted lines), with various values of α and β. First row, third and fourth boxes: empirical number
of edges (dashed lines) of graphs sampled from rank−c inverse gamma NR model versus the number of nodes
compared to the theoretically expected value of number of edges (dotted lines), with various values of α and β.
Second row: the same figures for rank−c GIG NR model with various values of ν and a with fixed b = 2.0. Best
viewed magnified in color.
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Figure 3: Group truth and latent communities discovered by the random graph models for (top row) polblogs
and (bottom row) DBLP. The nodes within communities are sorted according to their degree for the ground truth,
and according to their estimated node popularity parameter for the different models.
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