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Abstract

We consider a non-projective class of inho-
mogeneous random graph models with inter-
pretable parameters and a number of inter-
esting asymptotic properties. Using the re-
sults of Bollobás et al. (2007), we show that
i) the class of models is sparse and ii) de-
pending on the choice of the parameters, the
model is either scale-free, with power-law ex-
ponent greater than 2, or with an asymp-
totic degree distribution which is power-law
with exponential cut-off. We propose an ex-
tension of the model that can accommodate
an overlapping community structure. Scal-
able posterior inference can be performed due
to the specific choice of the link probability.
We present experiments on five different real-
world networks with up to 100,000 nodes and
edges, showing that the model can provide a
good fit to the degree distribution and recov-
ers well the latent community structure.

1 Introduction

Simple graphs are composed of a set of vertices with
undirected connections between them. The graph
may represent a set of friendship relationships between
individuals, a physical infrastructure network, or a
protein-protein interaction network. Defining flexible
and realistic statistical graph models is of great im-
portance in order to perform link prediction or for un-
covering interpretable latent structure, and has been
the subject of a large body of work in recent years,
see e.g. (Newman, 2009; Kolaczyk, 2009; Goldenberg
et al., 2010).
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Our objective is to develop a class of models with in-
terpretable parameters and realistic asymptotic prop-
erties. Of particular interest for this paper are the
notions of sparsity and scale-freeness. A sequence of
graphs is said to be sparse if the number of edges scales
subquadratically with the number of nodes. The de-
gree of a node is the number of connections of that
node. The sequence of graphs is said to be scale-
free if the proportion of nodes of degree k is approxi-
mately k−η when the number n of nodes is large, where
the exponent η is greater than 1. That is, for large
n, the degree distribution behaves like a power-law.
These notions of sparsity and scale-freeness have re-
ceived a lot of attention in the network literature in
the past years (Barabási and Albert, 1999; Newman,
2009; Orbanz and Roy, 2015; Barabási, 2016; Caron
and Fox, 2017); some authors argued that they are de-
sirable properties of random graph models, and that
many networks exhibit this scale-free behavior, usu-
ally with an exponent η > 2. Other authors have
recently challenged the scale-free assumption, showing
that a power-law distribution with exponential cut-off
provides a good fit to many real-world networks (New-
man, 2009; Broido and Clauset, 2018), see the supple-
mentary material for more discussion about testing for
network scale-freeness. Besides these global asymp-
totic properties, we are also interested in capturing
some latent structure in graphs. Individuals may be-
long to some latent communities, and their level of af-
filiation to the community defines the probability that
two nodes connect.

We propose a class of sparse graph models with
overlapping community structure and well-specified
asymptotic degree distributions. The graph can either
be scale-free with exponent η > 2, or non-scale-free,
with asymptotic degree distribution being a power-law
distribution with exponential cut-off. The construc-
tion builds on inhomogeneous random graphs, a class
of models exhibiting degree heterogeneity. This class
of models has been studied extensively in the applied
probability literature (Aldous, 1997; Chung and Lu,
2002b; Bollobás et al., 2007; van der Hofstad, 2016),



Bayesian model for sparse graphs with flexible degree distribution

but has been left unexplored for the statistical analy-
sis of real-world networks. In Section 2 we provide a
formal description of sparsity and scale-freeness for se-
quences of graphs. In Section 3 we describe the rank-1
inhomogeneous random graphs, and present their spar-
sity property and asymptotic degree distribution. The
model is then extended in Section 4 in order to ac-
commodate a latent community structure. Posterior
inference is discussed in Section 5. In Section 6 we
discuss the relative merits and drawbacks of our ap-
proach compared to other random graph models. Sec-
tion 7 provides an illustration of the approach on sev-
eral real-world networks, showing that the model can
provide a good fit to the empirical degree distribution
and recover the latent community structure.

Notations. Throughout the article, Xn
p→ X de-

notes convergence in probability, and an ∼ bn indi-
cates limn→∞ an/bn → 1.

2 Sparse and scale-free networks

We first provide a formal definition of sparsity and
scale-freeness, as there is no general agreement on the
definition of a scale-free network and these notions are
core to the results of this paper.

Let (Gn)n≥1 be a sequence of simple random graphs
of size n where Gn = (Vn, En), Vn = {1, . . . , n} is the
set of vertices and En the set of edges. Denote |En|
the number of edges. The graph is said to be sparse if

E(|En|)/n2 → 0. Let N
(n)
k be the number of nodes of

degree k in Gn. We now formally give the definition of
a scale-free network informally introduced in Section 1.

Definition 2.1. A random graph sequence (Gn)n≥1
is said to be scale-free with exponent η iff there exists
a slowly varying function ` and η > 1 such that, for
each k = 1, 2, . . .

N
(n)
k

n

p→ πk (1)

as n tends to infinity, where

πk ∼ `(k)k−η as k →∞. (2)

Background definitions and properties of slowly and
regularly varying functions are given in the supple-
mentary material. Intuitively, slowly varying functions
are functions that vary more slowly than any power of
x. The term scale-free comes from the fact that the
asymptotic degree distribution satisfies some (asymp-
totic) scale-invariance. For any integer m ≥ 1,

lim
k→∞

πmk
πk

= m−η. (3)

The most classical case is when `(k) = C is constant.
In this case, the asymptotic degree distribution be-
haves as a pure power-law for k large. More generally,
the scale-invariance property defined above will be sat-
isfied for any slowly varying function `, which can be
e.g. logarithm, or iterated logarithm. Definition 2.1 is
slightly more restrictive than the definition of a scale-
free graph sequence in (van der Hofstad, 2016, Def-
inition 1.4), which is implied from Definition 2.1 by
properties of regularly varying functions (see supple-
mentary material).

3 Rank-1 inhomogeneous random
graphs

3.1 Definition

Let (Gn)n≥1 be a sequence of simple random graphs
of size n defined as follows. The probability that two
nodes i and j are connected in the graph Gn is given
by

p
(n)
ij = 1− exp

(
−wiwj
s(n)

)
(4)

where s(n) =
∑n
i=1 wi and the positive weights

(w1, w2, . . .) are independently and identically dis-
tributed (iid) from some distribution F with E(w1) <
∞. The model (4) is known as the Norros-Reittu (NR)
inhomogeneous random graph model (Norros and Re-
ittu, 2006). This model has been the subject of a lot
of interest in the applied probability and graph theory
literature (Bollobás et al., 2007; Bhamidi et al., 2012;
van der Hofstad, 2013, 2016; Broutin et al., 2018). The
parameter wi > 0 accounts for degree heterogeneity in
the graph and can be interpreted as a sociability pa-
rameter of node i. The larger this parameter, the more
likely node i is to connect to other nodes.

3.2 Sparsity and scale-free properties

The random graph sequence defined by Equation (4)
satisfies a number of remarkable asymptotic proper-
ties. The first result, which follows from Bollobás
et al. (2007) (see details in the supplementary mate-
rial), shows that the resulting graphs are sparse.

Theorem 3.1 (Bollobás et al. (2007)). Let |En| de-
note the number of edges in the graph Gn. Then

E(|En|)
n

→ E(w1)

2
and

|En|
n

p→ E(w1)

2
. (5)

The following result is a corollary of Theorem 3.13,
remark 2.4 and the discussion in Section 16.4 in (Bol-
lobás et al., 2007). It states that the asymptotic degree
distribution is a mixture of Poisson distributions, with
mixing distribution F .
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Theorem 3.2 (Bollobás et al. (2007)). Let N
(n)
k be

the number of vertices of degree k in the graph Gn of

size n and link probability p
(n)
ij given by Equation (4).

Then, for each k = 1, 2, . . ., N
(n)
k /n

p→ πk as n tends
to infinity, where

πk :=

∫ ∞
0

xk

k!
e−xdF (x). (6)

Our analysis on the asymptotic degree distribution is
based on the following theorem for the asymptotic be-
havior of mixed Poisson distributions.

Theorem 3.3. (Willmot, 1990) Suppose that

f(x) ∼ `(x)xηe−ζx, x→∞, (7)

where `(x) is a locally bounded function on (0,∞)
which varies slowy at infinity, ζ ≥ 0, and −∞ < η <
∞ (with η < −1 when ζ = 0). For λ > 0, define the
probabilities of the mixed Poisson distribution as

πk =

∫ ∞
0

(λx)ke−λx

k!
f(x)dx; k = 0, 1, 2, . . . . (8)

Then,

πk ∼
`(k)

(λ+ ζ)η+1

(
λ

λ+ ζ

)k
kη, k →∞. (9)

The following result is a corollary of Theorem 3.2 and
Theorem 3.3. It states that if the random variables wi
are regularly varying (see definition in the supplemen-
tary material), then the sequence of random graphs is
scale-free.

Corollary 3.1. Let N
(n)
k be the number of vertices

of degree k in the graph Gn of size n and link prob-

ability p
(n)
ij given by Equation (4). Assume that the

distribution F is absolutely continuous with pdf f veri-
fying f(w) ∼ `(w)w−η as w tends to infinity, for some
locally bounded slowly varying function ` and η > 1.

Then, for each k = 1, 2, . . ., N
(n)
k /n

p→ πk as n tends
to infinity, where

πk ∼ `(k)k−η, k →∞. (10)

3.3 Particular examples

We now consider two special cases. The first case
yields scale-free graphs with asymptotic power-law de-
gree distributions with exponent η > 2. The second
yields non-scale-free graphs, where the asymptotic de-
gree distribution is power-law with exponential cut-off.

3.3.1 Scale-free graph with power-law degree
distribution

For i = 1, 2, . . ., let wi
i.i.d.∼ invgamma(α, β) where

invgamma(α, β) denotes the inverse gamma distribu-

tion with parameters α > 1 and β > 0, whose proba-
bility density function (pdf) is given by

f(w) =
βα

Γ(α)
w−α−1e−β/w.

Here, the constraint α > 1 is required for the con-
dition E[w1] < ∞. By Theorem 3.2, the asymptotic
degree distribution is a mixed Poisson-inverse-gamma
distribution with probability mass function

πk =
2β

k+α
2

k!Γ(α)
Kk−α(2

√
β), (11)

where K is the modified Bessel function of the second
kind. Using Corollary 3.1, we obtain

πk ∼
βα

Γ(α)
k−α−1 as k →∞. (12)

The resulting asymptotic degree distribution is a
power-law and the graph is scale-free with arbitrary
index α + 1 > 2. The two hyperparameters of the in-
verse gamma prior play an important role to decide
the asymptotic properties of graphs. The shape pa-
rameter α tunes the index of power-law, and is also
related to the sparsity of graphs. The scale parame-
ter β is also related to the sparsity of graphs. Fig. 1
shows the empirical degree distributions and number
of edges of graphs generated from inverse gamma NR
model.

3.3.2 Non scale-free graph with power-law
degree distribution with exponential
cut-off

Now we consider another model with generalized in-

verse Gaussian (GIG) prior. Let wi
i.i.d.∼ GIG(ν, a, b)

where the density of the GIG distribution with param-
eter ν, a > 0 and b > 0 is given by

f(w) =
(a/b)ν/2

2Kν(
√
ab)

wν−1 exp

{
− 1

2

(
aw +

b

w

)}
.

(13)

Note that by taking a → 0, one obtains the pdf of
an inverse gamma distribution as a limiting case. By
Theorem 3.2, the asymptotic degree distribution is

πk =
(a/b)ν/2

k!{(a+ 2)/b}(k+ν)/2
Kk+ν(

√
(a+ 2)b)

Kν(
√
ab)

. (14)

This distribution is sometimes called the Sichel dis-
tribution, after Herbert Sichel (Sichel, 1974). Note
that f(w) ∼ (a/b)ν/2/2/Kν(

√
ab)wν−1 exp(−aw/2) as

w →∞ hence, by Theorem 3.3,

πk ∼
(a/b)ν/2kν−1e− log(1+a/2)k

2(1 + a/2)νKν(
√
ab)

as k →∞. (15)
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Figure 1: First row, first and second boxes: empirical degree distributions (dashed lines) of graphs with 10,000
nodes sampled from IG-NR compared to the theoretically expected asymptotic degree distribution (dotted lines),
with various values of α and β. First row, third and fourth boxes: empirical number of edges (dashed lines) of
graphs sampled from IG-NR versus the number of nodes compared to the theoretically expected value of number
of edges (dotted lines), with various values of α and β. Second row: the same figures for GIG-NR with various
values of ν and a with fixed b = 2.0. Best viewed magnified in color.

In this case, the asymptotic degree distribution is not
of the form of Equation (2), and the graph sequence
is therefore not scale-free. However, the asymptotic
degree distribution has the form kν−1e−τk of a power-
law distribution with exponential cut-off. This class
of probability distributions has been shown to provide
a good fit to the degree distributions of a wide range
of real-world networks (Clauset et al., 2009). As for
the inverse gamma NR model, the hyperparameters
(ν, a, b) tunes the asymptotic properties. ν determines
the power-law index of degree distribution, a is related
to the exponential cutoff and sparsity, and b is related
to the sparsity. Fig. 1 shows the empirical degree dis-
tributions and the number of edges of graphs generated
from GIG NR model.

4 Extension to Latent Overlapping
Communities

4.1 Definition

The inhomogeneous random graphs considered so far
only account for degree heterogeneity. However, the
connections in real-world networks are often due to
some latent interactions between the vertices. Re-
cently, several models that combine a degree correction
together with a latent structure to define edge proba-

bilities were proposed (Zhou, 2015; Todeschini et al.,
2016; Herlau et al., 2016; Lee et al., 2017). In this sec-
tion, we propose an extension of the NR model that
includes some latent overlapping structure, and study
the sparsity, scale-freeness properties and asymptotic
degree distribution of this model. Let the edge proba-
bility between the vertex i and j be given by

p
(n)
ij = 1− exp

(
− wiwj

s(n)

c∑
q=1

viqvjq

r
(n)
q /n

)
. (16)

where (wi)i=1,2,... are iid random variables with distri-
bution F with E(w1) <∞ and (vi1, . . . , vic)i=1,2,... are

i.i.d. with E(v1q) < ∞ for all q and r
(n)
q =

∑n
i=1 viq.

We call this model with c communities the rank-c
model. As in the rank-1 model, the parameter wi can
be interpreted as an overall sociability parameter of
node i, or degree-correction. The parameter viq can
be interpreted as the level of affiliation of individual
of i to community q. Similar models, in a different
asymptotic framework have been used in (Yang and
Leskovec, 2013; Zhou, 2015; Todeschini et al., 2016).

Theorem 4.1. Let |En| denote the number of edges in
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the graph Gn defined with link probability (16). Then,

E(|En|)
n

→
E(w1)

∑c
q=1 E(v1q)

2
(17)

|En|
n

p→
E(w1)

∑c
q=1 E(v1q)

2
. (18)

Recall that N
(n)
k is the number of vertices of degree k

in the graph Gn of size n. Then, for each k = 1, 2, . . .,

N
(n)
k /n

p→ πk as n tends to infinity, where

πk =

∫ ∞
0

∫ ∞
0

(uw)k

k!
e−uwdF (w)dH(u) (19)

where H is the distribution of the random variable U =∑c
q=1 v1q. If additionally F is absolutely continuous

with pdf f verifying f(w) ∼ `(w)w−η as w → ∞ for
some locally bounded slowly varying function ` and η >
1 and E(Uη−1+ε) <∞ for some ε > 0, then

πk ∼ E(Uη)`(k)k−η as k →∞.

The proof of Theorem 4.1 is given in the supplemen-
tary material. In this paper, we consider in particular

(vi1, . . . , viq) ∼ Dir(γ), (20)

where Dir(γ) denotes the standard Dirichlet distribu-
tion with parameter γ = (γ1, . . . , γc), where γq > 0 for
q = 1, . . . , c.

5 Posterior inference

5.1 Posterior inference for the rank-1 NR

Let Y = {yij}1≤i<j≤n be an (upper triangular part of)
adjacency matrix of a graph Gn and w = (w1, . . . , wn).
The joint density is written as

p(Y,w) =

n∏
i=1

f(wi)
∏
i<j

(
1− e−

wiwj

s(n)

)yij
e
(yij−1)

wiwj

s(n)

(21)

Following Caron and Fox (2017) and Zhou (2015), we
introduce a set of auxiliary truncated Poisson random
variables mij for the pairs with yij = 1.

p(mij |w) =
(
wiwj
s(n) )mij exp(−wiwj

s(n) )1{mij>0}

mij !(1− exp(−wiwj
s(n) )

. (22)

The log joint density is then given as

log p(Y,M,w) =
∑

(i,j)∈En

(
mij log

wiwj
s(n)

− logmij !

)

+
1

2

( n∑
i=1

w2
i

s(n)
− s(n)

)
+

n∑
i=1

log f(wi).

(23)

Note that the terms for the pairs without edges (yij =
0) are collapsed into a single summation, and hence
the overall computations of the log joint density and
its gradient take O(n + |En|) time. This is a huge
advantage of the link function of NR model, while
other link functions for rank-1 inhomogeneous random
graphs (Britton et al., 2006; Chung and Lu, 2002b,a,
2003) suffer from O(n2) computing times.

For the posterior inference, we use a Markov chain
Monte Carlo (MCMC) algorithm. At each step, given
the gradient of the log joint density, we update w via
Hamiltonian Monte Carlo (HMC, (Duane et al., 1987;
Neal, 2011)). Then we resample the auxiliary variables
m from truncated Poisson, and update hyperparame-
ters for f(w) using a Metropolis-Hastings step. Details
can be found in the supplementary material.

5.2 Posterior inference for the rank-c NR

The posterior inference for the rank-c model is simi-
lar to that of the rank-1 model. Following Todeschini
et al. (2016), for tractable inference, we introduce a
set of multivariate truncated Poisson random variables
M = ((mijq)

c
q=1)(i,j)∈En ,

p(M |w, V ) =
∏

(i,j)∈En

c∏
q=1

λ
mijq
ijq e−λijq1{

∑c
q′=1

mijq′>0}

1− exp(−∑c
q′=1 λijq′)

.

(24)

where λijq =
wiwj
s(n)

viqvjq

r
(n)
q /n

and V = (viq)i=1,...,n,q=1,...,c.

The log joint density is

log p(Y,M,w, V ) =
∏

(i,j)∈En

c∑
q=1

(mijq log λijq − logmijq!)

−
∑
i<j

c∑
q=1

λijq +

n∑
i=1

log f(wi)

+

n∑
i=1

log g(vi1, . . . , vic; γ), (25)

where g(·; γ) is the density for Dirichlet distribution
with parameters γ. As for the rank-1 model, we can ef-
ficiently compute this log joint density and its gradient
w.r.t. w and V with O(cn+ c|En|) time. At each step
of MCMC, we first sample w and V via HMC, resam-
ple M from multivariate truncated Poisson, and up-
date hyperparameters via Metropolis-Hastings. The
detailed procedure can be found in the supplementary
material.

6 Discussion

The models described in this paper can capture spar-
sity, scale-freeness with exponent η > 2 and latent
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Figure 2: (Top row): IG-NR. 95% credible intervals of the predictive degree distribution, posterior samples of
the hyperparameters α and β. The true values are α = 1.5 and β = 3.0. (Bottom row): GIG-NR. 95% credible
intervals of the predictive degree distribution and posterior samples of the hyperparameters ν, a and b. The true
values are ν = −0.5, a = 0.1 and b = 3.0.

community structure. One drawback of the construc-
tion is that the model lacks projectivity, due to nor-
malisation by sn in the link probability (4). While this
is an undesirable feature of the approach, we stress
that there does not exist any projective class of ran-
dom graphs that can capture all those properties, as
we explain below. A popular class of models is the
graphon-based or vertex-exchangeable graphs, which
include as special cases stochastic blockmodels, latent
factor models and their extensions, see (Orbanz and
Roy, 2015) for a review. While these models have
been successfully applied in a wide range of applica-
tion, they produce dense graphs with probability one,
as stressed by Orbanz and Roy (2015). Alternative
models have been proposed, either based on exchange-
able point processes (Caron and Fox, 2017; Veitch and
Roy, 2015; Borgs et al., 2016), or on the notion of edge-
exchangeability (Crane and Dempsey, 2015, 2017; Cai
et al., 2016). Caron and Rousseau (2017) showed that
using exchangeable point processes, one can obtain
scale-free graphs with exponent η ∈ (1, 2], but not
above. While no results exist for the scale-freeness of
edge-exchangeable random graphs in the sense of Defi-
nition 2.1 (see (Janson, 2017, Problem 9.8)), it is likely
that a similar range is achieved for this class of models.
Another family of models are non-exchangeable mod-
els based on preferential attachment (Barabási and
Albert, 1999). The generated graphs are scale-free
with exponent η > 2. However, the generative pro-
cess makes it difficult to consider more general con-
structions that take into account community structure.
Additionally, the non-exchangeability implies that the
ordering of nodes must be known or need to be in-
ferred for inference, which limits its applicability. By

contrast, our model is finitely exchangeable for each
n, and so the ordering of the nodes needs not to be
known in order to make inference. As a consequence,
no other projective class of model can give scale-free
networks with exponent η > 2, interpretable parame-
ters capturing community structure, and scalable in-
ference, as described in this paper. While the model
has a number of attractive properties, it also has some
limitations. The mean number of triangles in inhomo-
geneous random graphs converges to a constant as n
tends to infinity (van der Hofstad, 2018). Although
the latent community structure introduced may miti-
gate this effect for reasonable n, this property appears
undesirable for real-world network.

7 Experiments

7.1 Experiments with the rank-1 models

In this section, we test our inverse-gamma NR model
(IG-NR) and generalized inverse Gaussian NR model
(GIG-NR) on synthetic and real world graphs. For all
experiments, we ran three MCMC chains for 10,000
iterations for our algorithms, and collected every 10th
samples after 5,000 burn-in samples. The prior distri-
butions for the hyperparameters of the different mod-
els are given in the supplementary material. The
codes to replicate our experiments are available at
https://github.com/OxCSML-BayesNP/BNRG.

Experiments with synthetic graphs. We first fit-
ted the basic models with Inverse-gamma prior (IG)
and generalized inverse Gaussian prior (GIG) on syn-
thetic graphs generated from IG-NR model and GIG-

https://github.com/OxCSML-BayesNP/BNRG
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Figure 3: 95% credible intervals of predictive degree distributions of IG, GIG, GGP prior random graph models
on (a) cond-mat, (b) Enron and (c) internet (right) graphs.

Table 1: Average reweighted KS statistic of predictive degree distributions and 95% credible intervals of estimated
hyperparameters for IG, GIG and GGP models.

cond-mat Enron internet

D hyperparams D hyperparams D hyperparams

IG 0.07±0.01 α ∈ (2.55, 2.72)
β ∈ (9.20, 9.95)

0.13±0.05 α ∈ (1.29, 1.34)
β ∈ (3.23, 3.41)

0.19±0.00
α ∈ (3.20, 3.28)
β ∈ (6.51, 6.72)

GIG 0.07±0.01
ν ∈ (−2.61,−2.37)
a ∈ (0.01, 0.02)
b ∈ (17.41, 19.14)

0.12±0.01
ν ∈ (−1.33,−1.28)
a ∈ (0.00, 0.00)
b ∈ (6.42, 6.75)

0.19±0.00
ν ∈ (−3.25,−3.18)
a ∈ (0.00, 0.00)
b ∈ (12.93, 13.30)

GGP 0.15±0.06 σ ∈ (−0.93,−0.80)
τ ∈ (75.81, 85.52)

0.18±0.02 σ ∈ (0.19, 0.22)
τ ∈ (11.53, 12.98)

0.40±0.10 σ ∈ (−0.18,−0.04)
τ ∈ (92.05, 196.17)

NR model. For IG, we generated a graph with n =
5, 000 nodes with parameters α = 1.5 and β = 3.0.
For GIG, we generated a graph with 5,000 nodes with
parameters ν = 0.5, a = 0.1, b = 3.0. As summarized
in Fig. 2, the posterior distribution recovers the hyper-
parameter values used to generated the graphs, and
the posterior predictive distribution provides a good
fit to the empirical degree distribution.

Experiments with real-world graphs. Now we
evaluate our models on three real-world networks:
• cond-mat1: co-authorship network based on arXiv
preprints for condensed matter, 16,264 nodes and
47,594 edges.
• Enron2: Enron collaboration e-mail network, 36,692
nodes and 183,831 edges.
• internet3: Network of internet routers, 124,651
nodes and 193,620 edges.
To evaluate the goodness-of-fit in terms of degree dis-
tributions, as suggested in Clauset et al. (2009), we
sample graphs from the posterior predictive distribu-
tion based on the posterior samples, and computed the

1https://toreopsahl.com/datasets/#newman2001
2https://snap.stanford.edu/data/email-Enron.

html
3https://www.cise.ufl.edu/research/sparse/

matrices/Pajek/internet.html

reweighted Kolmogorov-Sminorov (KS) statistic:

D = max
x≥xmin

|S(x)− P (x)|√
P (x)(1− P (x))

, (26)

where S(x) is the CDF of observed degrees, P (x) is
the CDF of degrees of graphs sampled from the pre-
dictive distribution, and xmin is the minimum x values
among the observed degree and predictive degree. We
compare our model to the random graph model with
generalized gamma process prior (GGP, (Caron and
Fox, 2017)), whose asymptotic degree distribution is
a power-law with exponent in (1, 2). We ran MCMC
for the GGP model with 40,000 iterations and three
chains. Posterior predictive degree distribution are re-
ported in Fig. 3. Credible intervals of the hyperpa-
rameters and KS statistics for the different models are
given in Table 1. Both IG and GIG provide a good to
the degree distribution, with an exponent greater than
2, while the GGP model fails to capture the shape of
the degree distribution.

7.2 Experiments with latent overlapping
communities

Finally, we tested our models with latent overlapping
communities on two real-world graphs with ground-
truth communities.

https://toreopsahl.com/datasets/#newman2001
https://snap.stanford.edu/data/email-Enron.html
https://snap.stanford.edu/data/email-Enron.html
https://www.cise.ufl.edu/research/sparse/matrices/Pajek/internet.html
https://www.cise.ufl.edu/research/sparse/matrices/Pajek/internet.html
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Figure 4: 95% credible intervals of predictive degree
distributions on (a) polblogs and (b) DBLP.

Table 2: Average reweighted KS statistics and cluster-
ing accuracies.

polblogs DBLP

D Acc (%) D Acc (%)

IG 0.71±0.50 94.28 0.08±0.03 72.46
GIG 0.14 ± 0.03 93.79 0.09±0.03 76.58

CGGP 0.12±0.03 94.12 0.33±0.02 57.49
MMSB 3.74±1.18 52.12 0.37±0.07 39.94

• polblogs4: the network of Americal political blogs.
1,224 nodes and 16.715 edges, two true communities
(left or right).
• DBLP5: Co-authorship network of DBLP computer
science bibliography. The original network has 317,080
nodes. Based on the ground-truth communities ex-
tracted in Yang and Leskovec (2012), we took three
largest communities and subsampled 1,990 nodes
among them. The subsampled graph contains 4,413
edges.

We compared our two models IG-NR and GIG-NR
models to the random graph model based on com-
pound generalized gamma process (CGGP, (Todes-
chini et al., 2016)), and mixed membership stochas-
tic blockmodel (MMSB, Airoldi et al. (2009)). CGGP
can capture the latent overlapping communities and
has asymptotic power-law degree distsribution of expo-
nent in (1, 2). MMSB can capture the latent commu-
nities, but does not include a degree correction term.
For all three models, we set the number of commu-
nities to be equal to two for polblogs, and three for
DBLP. The CGGP was ran for 200,000 iterations af-
ter 10,000 initial iterations where w was initialized by
running the model without communities (GGP). Each
iteration of the sampler for MMSB scales quadratically
with the number of nodes, and the sampler was there-
fore ran for a smaller number of iterations (5,000) for
fair comparison. We found that longer iterations did

4http://www.cise.ufl.edu/research/sparse/
matrices/Newman/polblogs

5https://snap.stanford.edu/data/com-DBLP.html

not lead to improved performances. All methods were
ran with three MCMC chains. For CGGP and MMSB
methods, point estimates of the parameters measuring
the level of affiliation of each individual were obtained
using the Bayesian estimator described in Todeschini
et al. (2016). For IG-NR and GIG-IR, we simply took
the maximum a posteriori estimate of V . To compare
to the ground truth communities, nodes are then as-
signed to the community where they have the strongest
affiliation. The learned communities are shown in the
supplementary material. Posterior predictive of the
degree distributions for the different models are given
in Fig. 4, and the KS statistic in Table 2. Both GIG-
NR and CGGP exhibit a good fit to the polblogs

dataset, where there does not seem to be evidence for
a power-law exponent greater than 2. For the DBLP,
both IG-NR and GIG-NR provide a good fit, while
CGGP fails to capture adequately the degree distri-
bution. The classification accuracy is also reported
in Table 2. The classification accuracy is similar for
IG-NR, GIG-NR and CGGP on polblogs. IG-NR
and GIG-NR outperform other methods on the DBLP

network. MMSB failed to capture both degree distri-
butions and community structures, due to the large
degree heterogeneity, a limitation already reported in
previous articles (Karrer and Newman, 2011; Gopalan
et al., 2013).

8 Conclusion

In this paper, we proposed a non-projective inhomoge-
neous random graph models with theoretically attrac-
tive asymptotic properties and overlapping community
structures. We presented two parametrizations; 1) IG-
NR, which is sparse and scale-free with power-law ex-
ponent greater than 2, and 2) GIG-NR, which is also
sparse but has asymptotically power-law with expo-
nential cutoff degree distribution. We described ef-
ficient MCMC algorithms that scale to large graphs,
and demonstrated the benefits of the proposed models
on various real-world graphs.
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