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Abstract

Batch Normalization (BN) has been used ex-
tensively in deep learning to achieve faster
training process and better resulting models.
However, whether BN works strongly depends
on how the batches are constructed during
training, and it may not converge to a desired
solution if the statistics on the batch are not
close to the statistics over the whole dataset.
In this paper, we try to understand BN from
an optimization perspective by providing an
explicit objective function associated with BN.
This explicit objective function reveals that:
1) BN, rather than being a new optimiza-
tion algorithm or trick, is creating a different
objective function instead of the one in our
common sense; and 2) why BN may not work
well in some scenarios. We then propose a
refinement of BN based on the compositional
optimization technique called Full Normaliza-
tion (FN) to alleviate the issues of BN when
the batches are not constructed ideally. The
convergence analysis and empirical study for
FN are also included in this paper.

1 Introduction

Batch Normalization (BN) [Ioffe and Szegedy, 2015]
has been used extensively in deep learning [Szegedy
et al., 2016, He et al., 2016, Silver et al., 2017, Huang
et al., 2017, Hubara et al., 2017] to accelerate the
training process. During the training process, a BN
layer normalizes its input by the mean and variance
computed within a mini-batch. Many state-of-the-art
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deep learning models are based on BN such as ResNet
[He et al., 2016, Xie et al., 2017] and Inception [Szegedy
et al., 2016, 2017]. It is often believed that BN can
mitigate the exploding/vanishing gradients problem
[Cooijmans et al., 2016] or reduce internal variance
[Ioffe and Szegedy, 2015]. Therefore, BN has become a
standard tool that is implemented almost in all deep
learning solvers such as Tensorflow [Abadi et al., 2015],
MXnet [Chen et al., 2015], Pytorch [Paszke et al., 2017],
etc.

Despite the great success of BN in quite a few scenarios,
people with rich experiences with BN may also notice
some issues with BN. Some examples are provided
below.

BN fails/overfits when the mini-batch size is
1 as shown in Figure 1 We construct a simple
network with 3 layers for a classification task. It fails
to learn a reasonable classifier on a dataset with only
3 samples as seen in Figure 1.
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Figure 1: (Fail when batch size is 1) Given a dataset
comprised of three samples: [0, 0, 0] with label 0, [1, 1, 1]
with label 1 and [2, 2, 2] with label 2, use the following
simple network including one batch normalization layer,
where the numbers in the parenthesis are the dimensions of
input and output of a layer: linear layer (3 →3) ⇒ batch
normalization ⇒ relu ⇒ linear layer (3 → 3) ⇒ nll loss.
Train with batch size 1, and test on the same dataset. The
test loss increases while the training loss decreases.
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Figure 2: (Sensitive to the size of mini-batch) The
test accuracy for ResNet18 on CIFAR10 dataset trained for
10 epochs with different batch sizes. The smaller the batch
size is, with BN layers in ResNet, the worse the convergence
result is.

BN’s solution is sensitive to the mini-batch size
as shown in Figure 2 The test conducted in Fig-
ure 2 uses ResNet18 on the Cifar10 dataset. When
the batch size changes, the neural network with BN
training tends to converge to a different solution. In-
deed, this observation is true even for solving convex
optimization problems. It can also be observed that
the smaller the batch size, the worse the performance
of the solution.

BN fails if data are with large variation as
shown in Figure 3 BN breaks convergence on sim-
ple convex logistic regression problems if the variance
of the dataset is large. Figure 3 shows the first 20
epochs of such training on a synthesized dataset. This
phenomenon also often appears when using distributed
training algorithms where each worker only has its lo-
cal dataset, and the local datasets are very different.

Therefore, these observations may remind people to
ask some fundermental questions:

1. Does BN always converge and/or where does it
converge to?
2. Using BN to train the model, why does sometimes
severe over-fitting happen?
3. Is BN a trustable “optimization” algorithm?

In this paper, we aim at understanding the BN algo-
rithm from a rigorous optimization perspective to show

1. BN always converges, but not solving either the
objective in our common sense, or the optimization
originally motivated.
2. The result of BN heavily depends on how to con-
struct batches, and it can overfit predefined batches.
BN treats the training and the inference differently,
which makes the situation worse.
3. BN is not always trustable, especially when the
batches are not constructed with randomly selected
samples or the batch size is small.
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Figure 3: (Fail if data are with large variation) The
training and test accuracy for a simple logistic regression
problem on synthesized dataset with mini-batch size 20.
We synthesize 10,000 samples where each sample is a vector
of 1000 elements. There are 1000 classes. Each sample is
generated from a zero vector by firstly randomly assigning
a class to the sample (for example it is the i-th class), and
then setting the i-th element of the vector to be a random
number from 0 to 50, and finally adding noise (generated
from a standard normal distribution) to each element. We
generate 100 test samples in the same way. A logistic
regression classifier should be able to classify this dataset
easily. However, if we add a BN layer to the classifier, the
model no longer converges.

Besides these, we also provide the explicit form of the
original objective BN aims to optimize (but does not in
fact), and propose a Multilayer Compositional Stochas-
tic Gradient Descent (MCSGD) algorithm based on
the compositional optimization technology to solve the
original objective. We prove the convergence of the
proposed MCSGD algorithm and empirically study its
effectiveness to refine the state-of-the-art BN algorithm.

2 Related work

We first review traditional normalization techniques.
LeCun et al. [1998] showed that normalizing the input
dataset makes training faster. In deep neural networks,
normalization was used before the invention of BN. For
example Local Response Normalization (LRU) [Lyu
and Simoncelli, 2008, Jarrett K et al., 2009, Krizhevsky
et al., 2012] which computes the statistics for the neigh-
borhoods around each pixel.

We then review batch normalization techniques. Ioffe
and Szegedy [2015] proposed the Batch Normalization
(BN) algorithm which performs normalization along
the batch dimension. It is more global than LRU
and can be done in the middle of a neural network.
Since during inference there is no “batch”, BN uses
the running average of the statistics during training
to perform inference, which introduces unwanted bias
between training and testing. While this paper tries to
study why BN fails in some scenarios and how to fix
it, Santurkar et al. [2018], Bjorck et al. [2018], Kohler
et al. [2018] provided new understandings about why
BN accelerates training by analyzing simplified neural
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networks or the magnitude of gradients. Ioffe [2017]
proposed Batch Renormalization (BR) that introduces
two extra parameters to reduce the drift of the esti-
mation of mean and variance. However, Both BN and
BR are based on the assumption that the statistics on
a mini-batch approximates the statistics on the whole
dataset.

Next we review the instance based normalization which
normalizes the input sample-wise, instead of using the
batch information. This includes Layer Normalization
[Ba et al., 2016], Instance Normalization [Ulyanov et al.,
2016], Weight Normalization [Salimans and Kingma,
2016] and a recently proposed Group Normalization
[Wu and He, 2018]. They all normalize on a single
sample basis and are less global than BN. They avoid
doing statistics on a batch, which work well when it
comes to some vision tasks where the outputs of layers
can be of handreds of channels, and doing statistics
on the outputs of a single sample is enough. However
we still prefer BN when it comes to the case that the
single sample statistics is not enough and more global
statistics is needed to increase accuracy.

Finally we review the compositional optimization which
our refinement of BN is based on. Wang and Liu
[2016] proposed the compositional optimization algo-
rithm which optimizes the nested expectation problem
minEf(Eg(·)), and later the convergence rate was im-
proved in Wang et al. [2016]. The convergence of
compositional optimization on nonsmooth regularized
problems was shown in Huo et al. [2017] and a variance
reduced variant solving strongly convex problems was
analyzed in Lian et al. [2016].

3 Review the BN algorithm

In this section we review the Batch Normalization (BN)
algorithm [Ioffe and Szegedy, 2015].

BN is usually implemented as an additional layer in
neural networks. In each iteration of the training pro-
cess, the BN layer normalizes its input using the mean
and variance of each channel of the input batch to make
its output having zero mean and unit variance. The
mean and variance on the input batch is expected to
be similar to the mean and variance over the whole
dataset. In the inference process, the layer normal-
izes its input’s each channel using the saved mean and
variance, which are the running averages of mean and
variance calculated during training. This is described
in Algorithm 11. With BN, the input at the BN layer
is normalized so that the next layer in the network ac-
cepts inputs that are easier to train on. In practice it

1A linear transformation is often added after applying
BN to compensate the normalization.

Algorithm 1 Batch Normalization Layer
Training

Require: Input Bin, which is a batch of input. Estimated
mean µ and variance ν, and averaging constant α.

1:

µ←(1− α) · µ+ α ·mean(Bin),

ν ←(1− α) · ν + α · var(Bin).

. mean(Bin) and var(Bin) calculate the mean and
variance of Bin respectively.

2: Output
Bout ←

Bin −mean(Bin)√
var(Bin) + ε

.

. ε is a small constant for numerical stability.
Inference

Require: Input Bin, estimated mean µ and variance ν. A
small constant ε for numerical stability.

1: Output
Bout ←

Bin − µ√
ν + ε

.

has been observed in many applications that the speed
of training is improved by using BN.

4 Training objective of BN

In the original paper proposing BN algorithm [Ioffe
and Szegedy, 2015], authors do not provide the explicit
optimization objective BN targets to solve. Therefore,
many people may naturally think that BN is an op-
timization trick, that accelerates the training process
but still solves the original objective in our common
sense. Unfortunately, this is not true! The actual ob-
jective BN solves is different from the objective in our
common sense and also nontrivial. In this section, we
derive the objective function which is actually opti-
mized when BN layers are used. Then we discuss how
this objective is different from the objective without
BN layers and when the BN’s objective is less desired.

Rigorous mathematical description of BN layer
To define the objective of BN in a precise way,
we need to define the normalization operator fB,σ

W

that maps a function to a function associating with
a mini-batches B, an activation function σ, and
parameters W . Let g(·) be a function g(·) =

[g1(·) g2(·) · · · gn(·) 1]
> where g1(·), · · · , gn(·)

are functions mapping a vector to a number. The
operator fB,σ

W is defined by
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fB,σ
W

fB,σ
W ’s argument is

a function g︷︸︸︷
(g)︸ ︷︷ ︸

fB,σ
W (g) is

another function

(·) := σ


W



g1(·)−mean(g1,B)√
var(g1,B)

g2(·)−mean(g2,B)√
var(g2,B)

...
gn(·)−mean(gn,B)√

var(gn,B)

1




(1)

where mean(r,B) is defined by mean(r,B) :=
1
|B|
∑

b∈B r(b). and var(r,B) is defined by var(r,B) =

mean(r2, B)− mean(r,B)2.

Note that the first augment of mean(·, ·) and var(·, ·)
is a function, and the second augment is a set of samples.
A m-layer’s neural network with BN can be represented
by a function

FB
{Wi}mi=1

(·) :=fB,σm

Wm
(f

B,σm−1

Wm−1
(· · · (fB,σ1

W1
(I))))(·) or

fB,σm

Wm
◦ fB,σm−1

Wm−1
◦ · · · ◦ fB,σ1

W1
(I)(·)

where I(·) is the identical mapping function from a
vector to itself, that is, I(x) = x.

BN’s objective is very different from the ob-
jective in our common sense Using the same
way, we can represent a fully connected network in
our common sense (without BN) by F{Wi}mi=1

(·) :=

f̄σm

Wm
◦ f̄

σm−1

Wm−1
◦ · · · ◦ f̄σ1

W1
(I)(·) where operator f̄σ

W is
defined by

f̄σ
W (g)(·) := σ(Wg(·)). (2)

Besides of the difference of operator function definitions,
their ultimate objectives are also different. Given the
training date set D, the objective without BN (or the
objective in our common sense) is defined by

min
{Wj}mj=1

1

|D|
∑

(x,y)∈D

l(F{Wj}mj=1
(x), y), (3)

where l(·, ·) is a predefined loss function, while the
objective with BN (or the objective BN is actually
solving) is

(BN) min
{Wj}mj=1

1

|B|
∑
B∈B

1

|B|
∑

(x,y)∈B

l(FB
{Wj}mj=1

(x), y),

(4)
where B is the set of batches.

Therefore, the objective of BN could be very different
from the objective in our common sense in general.

BN could be very sensitive to the sample strat-
egy and the minibatch size The super set B has
different forms depending on how to define mini-batchs.
For example,

• People can choose b as the size of minibatch, and
form B by B := {B ⊂ D : |B| = b} . Choosing B in
this way implicitly assumes that all nodes can access
the same dataset, which may not be true in practice.
• If data is distributed (Di is the local dataset on the
i-th worker, disjoint with others, satisfying D= D1 ∪
· · ·∪Dn), a typical B is defined by B= B1∪B2∪· · ·∪
Bn with Bi defined by Bi := {B ⊂ Di : |B| = b} .
• When the mini-batch is chosen to be the whole

dataset, B contains only one element D.

After figure out the implicit objective BN optimizes
in (4), it is not difficult to have following key observa-
tions

• The BN objectives vary a lot when different sam-
pling strategies are applied. This explains why the
convergent solution could be very different when we
change the sampling strategy;
• For the same sample strategy, BN’s objective func-

tion also varies if the size of minibatch gets changed.
This explains why BN could be sensitive to the batch
size.

The observations above may seriously bother us how to
appropriately choose parameters for BN, since it does
not optimize the objective in our common sense, and
could be sensitive to the sampling strategy and the size
of minibatch.

BN’s objective (4) with B = {D} has the
same optimal value as the original objective (3)
When the batch size is equal to the size of the whole
dataset in (4), the objective becomes

(FN) min
{Wj}mj=1

1

|D|
∑

(x,y)∈D

l(F D
{Wj}mj=1

(x), y), (5)

which differs from the original objective (3) only in
the first argument of l. Noting the only difference
between (1) and (2) when B is a constant D is a linear
transformation which can be absorbed into W :

fD,σ
W (g)(·) = σ


W



g1(·)−mean(g1,D)√
var(g1,D)

g2(·)−mean(g2,D)√
var(g2,D)

...
gn(·)−mean(gn,D)√

var(gn,D)

1





= σ


W



1√
var(g1,D)

−mean(g1,D)√
var(g1,D)

1√
var(g2,D)

−mean(g2,D)√
var(g2,D)

. . .
...

1√
var(gn,D)

−mean(gn,D)√
var(gn,D)

1


︸ ︷︷ ︸

=:W ′


g1(·)
g2(·)

...
gn(·)
1




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=σ
(
W ′
(
g1(·) g2(·) · · · gn(·) 1

)>)
.

If we use this W ′ as our new W , (3) and (4) has the
same form and the two objectives should have the same
optimal value, which means when B = {D} adding
BN does not hurt the expressiveness of the network.
However, since each layer’s input has been normalized,
in general the condition number of the objective is
reduced, and thus easier to train.

5 Solving full normalization objective
(5) via compositional optimization

The BN objective contains the normalization operator
which mostly reduces the condition number of the ob-
jective that can accelerate the training process. While
the FN formulation in (5) provides a more stable and
trustable way to define the BN formation, it is very
challenging to solve the FN formulation in practice. If
follow the standard SGD used in solving BN to solve
(5), then every single iteration needs to involve the
whole dataset since B = D, which is almost impossible
in practice. The key difficulty to solve (5) lies on that
there exists “expectation” in each layer, which is very
expensive to compute even we just need to compute a
stochastic gradient if use the standard SGD method.

To solve (5) efficiently, we follow the spirit of composi-
tional optimization to develop a new algorithm namely,
Multilayer Compositional Stochastic Gradi-
ent Descent (Algorithm 2). The proposed algorithm
does not have any requirement on the size of minibatch.
The key idea is to estimate the expectation from the
current samples and historical record.

5.1 Formulation

To propose our solution to solve (5), let us define the
objective in a more general but neater way in the
following. When B= {D}, (4) is a special case of the
following general objective:

min
w

f(w) :=Eξ

[
Fw1,D
1 ◦ Fw2,D

2 ◦ · · · ◦ Fwn,D
n ◦ I(ξ)

]
,

(6)
where ξ represents a sample in the dataset D, for ex-
ample it can be the pair (x, y) in (4). wi represents
the parameters of the i-th layer. w represents all pa-
rameters of the layers: w := (w1, . . . , wn). Each Fi is
an operator of the form:

Fwi,D
i (g)(·) :=Fi(wi; g(·);Eξ∈Dei(g(ξ))),

where ei is used to compute statistics over the dataset.
For example, with ei(x) = [x, x2], the mean and vari-
ance of the layer’s input over the dataset can be calcu-
lated, and Fwi,D

i can use that information, for example,
to perform normalization.

There exist compositional optimization algorithms
[Wang and Liu, 2016, Wang et al., 2016] for solving
(6) when n = 2, but for n > 2 we still do not have
a good algorithm to solve it. We follow the spirit to
extend the compositional optimization algorithms to
solve the general optimization problem (6) as shown
in Algorithm 2. See Section 6 for an implementation
when it comes to normalization.

To simplify notation, given w = (w1, . . . , wn) we define:

ei(w; ξ) :=ei(F
wi+1,D
i+1 ◦ Fwi+2,D

i+2 ◦ · · · ◦ Fwn,D
n ◦ I(ξ)).

We define the following operator if we already have an
estimation, say êi, of Eξ∈Dei(w; ξ):

F̂wi,êi
i (g)(·) :=Fi(wi; g(·); êi).

Given w = (w1, . . . , wn) and ê = (ê1, . . . , ên), we de-
fine

êi(w; ξ; ê) :=ei(F̂
wi+1,êi+1

i+1 ◦ F̂wi+2,êi+2

i+2 ◦

· · · ◦ F̂wn,ên
n ◦ I(ξ)).

Algorithm 2 Multilayer Compositional Stochastic
Gradient Descent (MCSGD) algorithm
Require: Learning rate {γk}Kk=0, approxima-

tion rate {αk}Kk=0, dataset D, initial point
w(0) := (w

(0)
1 , . . . , w

(0)
n ) and initial estimations

ê(0) := (ê
(0)
1 , . . . , ê

(0)
n ).

1: for k = 0, 1, 2, . . . ,K do
2: For each i, randomly select a sample ξk, estimate

Eξ[ei(w
(k); ξ)] by

ê
(k+1)
i ← (1− αk)ê

(k)
i + αkêi(w

(k); ξk; ê
(k)).a

3: Ask the oracle O using w(k) and estimated means
ê(k+1) to obtain the approximated gradient at w(k):
g(k).

. See Remark 1 for discussion on the oracle.
4: w(k+1) ← w(k) − γkg

(k).
5: end for

aThis step is borrowed from compositional optimization
to estimate the statistics across the whole dataset.

Remark 1 (MCSGD oracle). In MCSGD, the gradient
oracle takes the current parameters of the model, and
the current estimation of each Eξ[ei(w

(k); ξ)], to output
an estimation of a stochastic gradient.

For example for an objective like (6), the derivative of
the loss function w.r.t. the i-th layer’s parameters is
∂wi

f(w) =∂wi
(Eξ[F

w1,D
1 ◦ Fw2,D

2 ◦ · · · ◦ Fwn,D
n ◦ I(ξ)])

= Eξ


[∂x(F

w1,D
1 (x)(ξ))]

x=F
w2,D
2 ◦···◦Fwn,D

n ◦I
·[∂x(Fw2,D

2 (x)(ξ))]
x=F

w3,D
3 ◦···◦Fwn,D

n ◦I

· · · · [∂x(Fwi−1,D
i−1 (x)(ξ))]

x=F
wi,D

i ◦···◦Fwn,D
n ◦I

·[∂wi
(Fwi,D

i (x)(ξ))]
x=F

wi+1,D

i ◦···◦Fwn,D
n ◦I

 ,

(7)
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where for any j ∈ [1, . . . , i− 1]:

[∂xF
wj ,D
j (x)(ξ)]

x=F
wj+1,D

j+1 ◦···◦Fwn,D
n ◦I

=

[
∂xFj(wj ;x; y)+

∂yFj(wj ;x; y) · Eξ′∼DDj(ξ
′)

]

with
x = F

wj+1,D

j+1 ◦ · · · ◦ Fwn,D
n ◦ I(ξ),

y = Eξ[ej(w; ξ)],
Dj(ξ

′) = [∂zei(z)]
z=F

wj+1,D

j+1
◦···◦Fwn,D

n ◦I(ξ′)

.

The oracle samples a ξ′ for each layer and calculate
this derivative with y set to an estimated value êj , and
returns the stochastic gradient. The expectation of
this stochastic gradient will be (7) with some error
caused by the difference between the estimated êj and
the true expectation Eξ[ej(w; ξ)]. The more accurate
the estimation is, the closer the expectation of this
stochastic and the true gradient (7) will be.

In practice, we often use the same ξ′ for each layer to
save some computation resource, this introduce some
bias the expectation of the estimated stochastic gradient.
One such implementation can be found in Algorithm 3.

5.2 Theoretical analysis

In this section we analyze Algorithm 2 to show its
convergence when applied on (6) (a generic version
of the FN formulation in (5)). The detailed proof is
provided in the supplementary material. We use the
following assumptions as shown in Assumption 1 for
the analysis.
Assumption 1. 1. The gradients g(k)’s are bounded:
‖g(k)‖ 6 G,∀k for some constant G.
2. The variance of all ei’s are bounded:

Eξ‖ei(w; ξ)− Eξei(w; ξ)‖2 6 σ2,∀i, w,

Eξ‖ei(w; ξ; ê)− Eξei(w; ξ; ê)‖2 6 σ2,∀i, w, ê

for some constant σ.
3. The error of approximated gradient E[g(k)] is pro-
portional to the error of approximation for E[ei]:

‖Eξk [g
(k)]−∇f(w(k))‖2

6Lg

n∑
i=1

‖ê(k+1)
i − Eξk [ei(w

(k); ξk)]‖2,∀k

for some constant Lg.
4. All functions and their first order derivatives are
Lipschitzian with Lipschitz constant L.
5. The minimum of the objective f(w) is finite.
6. γk, αk are monotonically decreasing. γk = O(k−γ)
and αk = O(k−a) for some constants γ > a > 0.

It can be shown under the given assumptions, the
approximation errors will vanish shown in Lemma 1.

Lemma 1 (Approximation error)
Choose the learning rate γk and αk in Algorithm 2

in the form defined in Assumption 1-6 with param-
eters γ and a. Under Assumption 1, the sequence
generated in Algorithm 2 satisfies

E‖ê(k+1)
i − Eξei(w

(k); ξ)‖2

6E(k−2γ+2a+ε + k−a+ε), ∀i,∀k, (8)

E‖ê(k+1)
i − Eξei(w

(k); ξ)‖2

6
(
1− αk

2

)
E‖ê(k)i − Eξei(w

(k−1); ξ)‖2

+ C(k−2γ+a+ε + k−2a+ε), ∀i,∀k. (9)

for any ε satisfying 1− a > ε > 0, where E and C

are two constants independent of k.

Then it can be shown that on (6) Algorithm 2 converges
as seen in Theorem 2 and Corollary 3. It is worth
noting that the convergence rate in Corollary 3 is slower
than the 1√

K
convergence rate of SGD without any

normalization. This is due to the estimation error. If
the estimation error is small (for example, the samples
in a batch are randomly selected and the batch size is
large), the convergence will be fast.

Theorem 2 (Convergence)
Choose the learning rate γk and αk in Algorithm 2

in the form defined in Assumption 1-6 with pa-
rameters γ and a satisfying a < 2γ − 1, a < 1/2,
and γkLg

αk+1
6 1

2 . Under Assumption 1, for any inte-
ger K > 1 the sequence generated by Algorithm 2
satisfies∑K

k=0 γkE‖∂f(w(k))‖2∑K
k=0 γk

6
H∑K

k=0 γk
,

where H is a constant independent of K.

We next specify the choice of γ and a to give a more
clear convergence rate for our MCSGD algorithm in
Corollary 3.

Corollary 3
Choose the learning rate γk and αk in Algorithm 2

in the form defined in Assumption 1-6, more specif-
ically, γk = 1

2Lg
(k + 2)−4/5 and αk = (k + 1)−2/5.

Under Assumption 1, for any integer K > 1 the se-
quence generated in Algorithm 2 satisfies∑K

k=0 E‖∂f(w(k))‖2

K + 2
6

H

(K + 2)1/5
,

where H is a constant independent of K.



Xiangru Lian, Ji Liu

0 200 400 600 800
iteration

0.0

0.5

1.0

1.5

2.0

2.5
tra

in
in

g 
lo

ss
BN
FN

0 2 4 6 8 10
epoch

0.0

0.5

1.0

1.5

2.0

2.5

te
st

 lo
ss

BN
FN

Figure 4: The training and testing error for the given model
trained on MNIST with batch size 64, learning rate 0.01
and momentum 0.5 using BN or FN for the case where all
samples in a batch are of a single label. The approximation
rate α in FN is ( k

20
+1)−0.4 where k is the iteration number.
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Figure 5: The training and testing error for the given
model trained on CIFAR10 with batch size 64, learning
rate 0.01 and momentum 0.9 using BN and FN for the case
where all samples in a batch are of no more than 3 labels.
The learning rate is decreased by a factor of 5 for every
20 epochs. The approximation rate α in FN is ( k

5
+ 1)−0.3

where k is the iteration number.

Algorithm 3 Full Normalization (FN) layer
Forward pass

Require: Learning rate γ, approximation rate α, input
Bin ∈ Rb×d, mean estimation µ, and mean of square
estimation ν. . b is the batch size, and d is the
dimension of each sample.

1: if training then

µ←(1− α)µ+ αmean(Bin),

ν ←(1− α)ν + αmean_of_square(Bin).

2: end if
3: return layer output:

Boutput ←
Bin − µ√

max{ν − µ2, ε}
.

. ε is a small constant for numerical stability.
Backward pass

Require: Mean estimation µ, mean of square estimation ν,
the gradient at the output gout, and input Bin ∈ Rb×d.

1: Define

f(µ, ν,Bin) :=
Bin − µ√

max{ν − µ2, ε}
.

2: return the gradient at the input:

gin ← gout ·
(
∂Binf +

∂µf + 2Bin∂νf

bd

)
.

. ∂af is the derivative of f w.r.t. a at µ, ν,Bin.

6 Experiments

Experiments are conducted to validate the effective-
ness of our MCSGD algorithm for solving the FN for-
mulation. We consider two settings. The first one in
Section 6.1 shows BN’s convergence highly depends on
the size of batches, while FN is more robust to different
batch sizes. The second one in Section 6.2 shows that
FN is more robust to different construction of mini-
batches.

We use a simple neural network as the testing network
whose architecture is shown in Figure 6. Steps 2 and
3 in Algorithm 2 are implemented in Algorithm 3.
The forward pass essentially performs Step 2 of Al-
gorithm 2, which estimates the mean and variance of
layer inputs over the dataset. The backward pass es-
sentially performs Step 3 of Algorithm 2, which gives
the approximated gradient based on current network
parameters and the estimations. Note that as discussed
in Remark 1, for efficiency, in each iteration of this
implementation we are using the same samples to do
estimation in all normalization layers, which saves com-
putational cost but brings additional bias.

6.1 Dependence on batch size

MNIST is used as the testing dataset with some modi-
fication by multiplying a random number in (−2.5, 2.5)
to each sample to make them more diverse. In this
case, as shown in Figure 9, with batch size 1 and batch
size 16, we can see the convergent points are different
in BN, while the convergent results of FN are much
more close for different batch sizes. Therefore, FN is
more robust to the size of mini-batch.

6.2 Dependence on batch construction

We study two cases — shuffled case and unshuffled case.
For the shuffled case, where the samples in a batch
are randomly sampled, we expect the performance of
FN matches BN’s in this case. For the unshuffled case,
where the batch contains only samples in just a few
number of categories (so the mean and variance are
very different from batch to batch). In this case we can
observe that the FN outperforms BN.

Unshuffled case We show the FN has advantages
over BN when the data variation is large among mini-
batches. In the unshuffled setting, we do not shuffle
the dataset. It means that the samples in the same mini-
batch are mostly with the same labels. The comparison
uses two datasets (MINST and CIFAR10):

• On MNIST, the batch size is chosen to be 64 and
each batch only contains a single label. The conver-
gence results are shown in Figure 4. We can observe
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Figure 6: The simple neural network used in the experiments. The “Normalization” between layers can be BN or FN. The
activation function is relu and the loss function is negative log likelihood.
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Figure 7: The training and testing error for the given model
trained on MNIST with batch size 64, learning rate 0.01 and
momentum 0.5 using BN or FN for the case where samples
in a batch are randomly selected. The approximation rate
α in FN is ( k

20
+ 1)−0.4 where k is the iteration number.
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Figure 8: The training and testing error for the given
model trained on CIFAR10 with batch size 64, learning rate
0.01 and momentum 0.9 using BN or FN for the case where
samples in a batch are randomly selected. The learning
rate is decreased by a factor of 5 for every 20 epochs. The
approximation rate α in FN is ( k

20
+ 1)−0.2 where k is the

iteration number.
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(a) With BN layers.
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(b) With FN layers.

Figure 9: The testing error for the given model trained
on MNIST, where each sample is multiplied by a random
number in (−2.5, 2.5). The optimization algorithm is SGD
with learning rate is 0.01 and momentum is 0.5. FN gives
more consistent results under different batch sizes. The
approximation rate α in FN is ( k

20
+ 1)−0.4 where k is the

iteration number.

from these figures that for the training loss, BN and
FN converge equally fast (BN might be slightly faster).
However since the statistics on any batch are very dif-
ferent from the whole dataset, the estimated mean and
variance in BN are very different from the true mean
and variance on the whole dataset, resulting in a very
high test loss for BN.
• On CIFAR10, we observe similar results as shown

in Figure 5. In this case, we restrict the number of
labels in every batch to be no more than 3. Thus
BN’s performance on CIFAR10 is slightly better than
on MNIST. We see the convergence efficiency of both
methods is still comparable in term of the training loss.
However, the testing error for BN is still far behind
the FN.

Shuffled case For the shuffled case, where the sam-
ples in each batch are selected randomly, we expect BN
to have similar performance as FN in this case, since
the statistics in a batch is close to the statistics on the
whole dataset. The results for MNIST are shown in
Figure 7 and the results for CIFAR10 are shown in Fig-
ure 8. We observe the convergence curves of BN and
FN for both training and testing loss match well.

7 Conclusion
We provide new understanding for BN from an opti-
mization perspective by rigorously defining the opti-
mization objective for BN. BN essentially optimizes an
objective different from the one in our common sense.
The implicitly targeted objective by BN depends on
the sampling strategy as well as the minibatch size.
That explains why BN becomes unstable and sensi-
tive in some scenarios. The stablest objective of BN
(called FN formulation) is to use the full dataset as
the mini-batch, but it is very challenging to solve such
formulation. To solve the FN objective, we follow the
spirit of compositional optimization to develop MC-
SGD algorithm to solve it efficiently.
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