Appendices

A Pseudocode for the auxiliary variable crossovers

$\overline{\textbf{Algorithm}}$ 1 One-point crossover at point t

```
 \begin{aligned} & \textbf{function} \ \mathsf{CROSSOVER}((x_{1:T}, y_{1:T}, t)) \\ & u_{1:T} \leftarrow (y_1, \dots, y_t, x_{t+1}, \dots, x_T) \\ & v_{1:T} \leftarrow (x_1, \dots, x_t, y_{t+1}, \dots, y_T) \\ & \textbf{return}(u_{1:T}, v_{1:T}) \\ & \textbf{end function} \end{aligned}
```

Algorithm 2 Scheme for an auxiliary variable two-point crossover between x_i and x_j

```
Pick t uniformly t \sim U(\{1, \dots, T\})
# Flip a coin to decide the direction of crossover
if u < 0.5 where u \sim U(0,1) then
      (\mathbf{u}, \mathbf{v}) \leftarrow \text{CROSSOVER}(\mathbf{x}_i, \mathbf{x}_j, t)
else
      (\mathbf{v}, \mathbf{u}) \leftarrow \text{CROSSOVER}(\mathbf{x}_i, \mathbf{x}_i, t)
end if
# consider all normal and flipped crossovers of u and v
for t \in \{1, \dots, T\} do
     # Normal crossover of u and v
      (\mathbf{z}_i, \mathbf{z}_i) \leftarrow \text{CROSSOVER}(\mathbf{u}, \mathbf{v}, t)
      a_t \leftarrow \pi_i(\mathbf{z}_i)\pi_j(\mathbf{z}_j)
      # Flipped crossover of u and v
      (\mathbf{z}_j, \mathbf{z}_i) \leftarrow \text{CROSSOVER}(\mathbf{u}, \mathbf{v}, t)
      a_{T+t} \leftarrow \pi_i(\mathbf{z}_i) \pi_i(\mathbf{z}_i)
end for
# Normalise the probabilities
a_t \leftarrow a_t / \sum_s a_s
# Pick index t_0 with probability proportional to a_{t_0}
t_0 \sim \text{Discrete}(a_1, \dots, a_T, a_{T+1}, \dots, a_{2T})
if t_0 \leq T then
      (\mathbf{x}_i, \mathbf{x}_i) \leftarrow \text{CROSSOVER}(\mathbf{x}_i, \mathbf{x}_j, t_0)
else
      (\mathbf{x}_j, \mathbf{x}_i) \leftarrow \text{CROSSOVER}(\mathbf{x}_i, \mathbf{x}_j, t_0)
end if
```

B Supplementary Figures

Figure 1: Heatmaps representing the trace plots of $\mathbf x$ for the experiment with $B \in \{2,5,10\}$ blocks, running a single chain Gibbs sampler (first panel), and its ensemble versions with various exchange moves: swap, random crossover, augmented crossover (in four panels). For each MCMC iteration, the elements of $\mathbf x$ have been colour coded: dark = 1, light = 0.