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Abstract

Testing for conditional independence is a core
aspect of constraint-based causal discovery.
Although commonly used tests are perfect in
theory, they often fail to reject independence
in practice—especially when conditioning on
multiple variables.

We focus on discrete data and propose a new
test based on the notion of algorithmic inde-
pendence that we instantiate using stochastic
complexity. Amongst others, we show that
our proposed test, SCI , is an asymptotically
unbiased as well as L2 consistent estimator
for conditional mutual information (CMI ).
Further, we show that SCI can be reformu-
lated to find a sensible threshold for CMI
that works well on limited samples. Empir-
ical evaluation shows that SCI has a lower
type II error than commonly used tests. As
a result, we obtain a higher recall when we
use SCI in causal discovery algorithms, with-
out compromising the precision.

1 Introduction

Testing for conditional independence plays a key role
in causal discovery (Spirtes et al., 2000). If the true
probability distribution of the observed data is faith-
ful to the underlying causal graph, conditional inde-
pendence tests can be used to recover the undirected
causal network. In essence, under the faithfulness as-
sumption (Spirtes et al., 2000) finding that two ran-
dom variables X and Y are conditionally indepen-
dent given a set of random variables Z, denoted as
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Figure 1: [d-Separation] Given the above causal DAG
it holds that F ⊥⊥ T | D,E, or F is d-separated of T
given D,E under the faithfulness assumption. Note
that D 6⊥⊥ T | E,F and E 6⊥⊥ T | D,F .

X ⊥⊥ Y | Z, implies that there is no direct causal link
between X and Y .

As an example, consider Figure 1. Nodes F and T
are d-separated given D,E. Based on the faithfulness
assumption, we can identify this from i.i.d. samples
of the joint distribution, as F will be independent of
T given D,E. In contrast, D 6⊥⊥ T | E,F , as well as
E 6⊥⊥ T | D,F .

Conditional independence testing is also important for
recovering the Markov blanket of a target node—i.e.
the minimal set of variables, conditioned on which all
other variables are independent of the target (Pearl,
1988). There exist classic algorithms that find the cor-
rect Markov blanket with provable guarantees (Mar-
garitis and Thrun, 2000; Peña et al., 2007). These
guarantees, however, only hold under the faithfulness
assumption and given a perfect independence test.

In this paper, we are not trying to improve these al-
gorithms, but rather propose a new independence test
to enhance their performance. Recently a lot of work
focuses on tests for continuous data; methods rang-
ing from approximating continuous conditional mu-
tual information (Runge, 2018) to kernel based meth-
ods (Zhang et al., 2011), we focus on discrete data.

For discrete data, two tests are frequently used in prac-
tice, the G2 test (Aliferis et al., 2010; Schlüter, 2014)
and conditional mutual information (CMI ) (Zhang
et al., 2010). While the former is theoretically sound,
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it is very restrictive as it has a high sample complex-
ity; especially when conditioning on multiple random
variables. When used in algorithms to find the Markov
blanket, for example, this leads to low recall, as there
it is necessary to condition on larger sets of variables.

If we had access to the true distributions, conditional
mutual information would be the perfect criterium
for conditional independence. Estimating CMI purely
from limited observational data leads, however, to dis-
covering spurious dependencies—in fact, it is likely to
find no independence at all (Zhang et al., 2010). To
use CMI in practice, it is therefore necessary to set
a threshold. This is not an easy task, as the thresh-
old should depend on both the domain sizes of the
involved variables as well as the sample size (Goebel
et al., 2005). Recently, Canonne et al. (2018) showed
that instead of exponentially many samples, theoret-
ically CMI has only a sub-linear sample complexity,
although an algorithm is not provided. Closest to our
approach is the work of Goebel et al. (2005) and Suzuki
(2016). The former show that the empirical mutual
information follows the gamma distribution, which al-
lows them to define a threshold based on the domain
sizes of the variables and the sample size. The latter
employs an asymptotic formulation to determine the
the threshold for CMI .

The main problem of existing tests is that these strug-
gle to find the right balance for limited data: either
they are too restrictive and declare everything as inde-
pendent or not restrictive enough and do not find any
independence. To tackle this problem, we build upon
algorithmic conditional independence, which has the
advantage that we not only consider the statistical de-
pendence, but also the complexity of the distribution.
Although algorithmic independence is not computable,
we can instantiate this ideal formulation with stochas-
tic complexity. In essence, we compute stochastic
complexity using either factorized or quotient normal-
ized maximum likelihood (fNML and qNML) (Silander
et al., 2008, 2018), and formulate SCI , the Stochastic
complexity based Conditional Independence criterium.

Importantly, we show that we can reformulate SCI to
find a natural threshold for CMI that works very well
given limited data and diminishes given enough data.
In the limit, we prove that SCI is an asymptotically
unbiased and L2 consistent estimator of CMI . For lim-
ited data, we find that the qNML threshold behaves
similar to Goebel et al. (2005)—i.e. it considers the
sample size as well as the dimensionality of the data.
The fNML threshold, however, additionally considers
the estimated probability mass functions of the condi-
tioning variables. In practice, this reduces the type II
error. Moreover, when applying SCI based on fNML
in constraint based causal discovery algorithms, we ob-

serve a higher precision and recall than related tests.
In addition, in our empirical evaluation SCI shows a
sub-linear sample complexity.

For conciseness, we postpone some proofs and experi-
ments to the supplemental material. For reproducibil-
ity, we make our code available online.1

2 Conditional Independence Testing

In this section, we introduce the notation and give
brief introductions to both standard statistical condi-
tional independence testing, as well as to the notion of
algorithmic conditional independence.

Given three possibly multivariate random variables X,
Y and Z, our goal is to test the conditional indepen-
dence hypothesis H0 : X ⊥⊥ Y | Z against the general
alternative H1 : X 6⊥⊥ Y | Z. The main goal of a good
independence test is to minimize the type I and type
II error. The type I error is defined as falsely rejecting
the null hypothesis and the type II error is defined as
falsely accepting the null hypothesis.

A well known theoretical measure for conditional inde-
pendence is conditional mutual information based on
Shannon entropy (Cover and Thomas, 2006).

Definition 1 Given random variables X, Y and Z. If

I(X;Y | Z) := H(X | Z)−H(X | Z, Y ) = 0

then X and Y are called statistically independent
given Z.

In theory, conditional mutual information (CMI )
works perfectly as an independence test for discrete
data. However, this only holds if we are given the
true distributions of the random variables. In prac-
tice, those are not given. On a limited sample the
plug-in estimator tends to underestimates conditional
entropies, and as a consequence, the conditional mu-
tual information is overestimated—even for completely
independent data, as in the following Example.

Example 1 Given three random variables X1, X2 and
Y , with resp. domain sizes 1 000, 8 and 4. Suppose
that we are given 1 000 samples over their joint distri-
bution and find that Ĥ(Y | X1) = Ĥ(Y | X2) = 0.
That is, Y is a deterministic function of X1, as well
as of X2. However, as |X1| = 1 000, and given only
1 000 samples, it is likely that we will have only a sin-
gle sample for each v ∈ X1. That is, finding that
Ĥ(Y | X1) = 0 is likely due to the limited amount of
samples, rather than that it depicts a true (functional)
dependency, while Ĥ(Y | X2) = 0 is more likely to be
due to a true dependency, since the number of samples
n� |X2|—i.e. we have more evidence.

1https://eda.mmci.uni-saarland.de/sci
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A possible solution is to set a threshold t such that
X ⊥⊥ Y | Z if I(X;Y | Z) ≤ t. Setting t is, however,
not an easy task, as t is dependent on the quality of
the entropy estimate, which by itself strongly depends
on the complexity of the distribution and the given
number of samples. Instead, to avoid this problem
altogether, we will base our test on the notion of algo-
rithmic independence.

2.1 Algorithmic Independence

To define algorithmic independence, we need to give
a brief introduction to Kolmogorov complexity. The
Kolmogorov complexity of a finite binary string x is
the length of the shortest binary program p∗ for a uni-
versal Turing machine U that generates x, and then
halts (Kolmogorov, 1965; Li and Vitányi, 1993). For-
mally, we have

K(x) = min{|p| | p ∈ {0, 1}∗,U(p) = x} .

That is, program p∗ is the most succinct algorithmic
description of x, or in other words, the ultimate lossless
compressor for that string. To define algorithmic in-
dependence, we will also need conditional Kolmogorov
complexity, K(x | y) ≤ K(x), which is again the length
of the shortest binary program p∗ that generates x, and
halts, but now given y as input for free.

By definition, Kolmogorov complexity makes maximal
use of any effective structure in x; structure that can
be expressed more succinctly algorithmically than by
printing it verbatim. As such it is the theoretical opti-
mal measure for complexity. In this point, algorithmic
independence differs from statistical independence. In
contrast to purely considering the dependency between
random variables, it also considers the complexity of
the process behind the dependency.

Let us consider Example 1 again and let x1, x2, and y
be the binary strings representing X1, X2 and Y . As
Y can be expressed as a deterministic function of X1

or X2, K(y | x1) and K(y | x2) reduce to the pro-
grams describing the corresponding function. As the
domain size of X2 is 8 and |Y| = 4, the program to
describe Y from X2 only has to describe the mapping
from 8 to 4 values, which will be shorter than describ-
ing a mapping from X1 to Y , since |X1| = 1 000—i.e.
K(y | x2) ≤ K(y | x1) in contrast Ĥ(Y | X1) = Ĥ(Y |
X2). To reject Y ⊥⊥ X | Z, we test whether provid-
ing the information of X leads to a shorter program
than only knowing Z. Formally, we define algorithmic
conditional independence as follows (Chaitin, 1975).

Definition 2 Given the strings x, y and z, We write z∗

to denote the shortest program for z, and analogously
(z, y)∗ for the shortest program for the concatenation

of z and y. If

IA(x; y | z) := K(x | z∗)−K(x | (z, y)∗)
+
= 0

holds up to an additive constant that is independent
of the data, then x and y are called algorithmically
independent given z.

Due to the halting problem Kolmogorov complexity
is not computable, however, nor approximable up to
arbitrary precision (Li and Vitányi, 1993). The Mini-
mum Description Length (MDL) principle (Grünwald,
2007) provides a statistically well-founded approach
to approximate it from above. For discrete data, this
means we can use the stochastic complexity for multi-
nomials (Kontkanen and Myllymäki, 2007), which be-
longs to the class of refined MDL codes.

3 Stochastic Complexity for
Multinomials

Given n samples of a discrete univariate random vari-
able X with a domain X of |X | = k distinct values,

xn ∈ Xn, let θ̂(xn) denote the maximum likelihood es-
timator for xn. Shtarkov (1987) defined the mini-max
optimal normalized maximum likelihood (NML)

PNML(xn | Mk) =
P (xn | θ̂(xn),Mk)

CnMk

, (1)

where the normalizing factor, or regret CnMk
, relative

to the model class Mk is defined as

CnMk
=

∑
x̃n∈Xn

P (x̃n | θ̂(x̃n),Mk) . (2)

The sum goes over every possible x̃n over the domain of
X, and for each considers the maximum likelihood for
that data given model classMk. Whenever clear from
context, we will drop the model class to simplify the
notation—i.e. we write PNML(xn) for PNML(xn | Mk)
and Cnk to refer to CnMk

.

For discrete data, assuming a multinomial distribu-
tion, we can rewrite Eq. (1) as (Kontkanen and Myl-
lymäki, 2007)

PNML(xn) =

∏k
j=1

(
|vj |
n

)|vj |

Cnk
,

writing |vj | for the frequency of value vj in xn, resp.
Eq. (2) as

Cnk =
∑

|v1|+···+|vk|=n

n!

|v1|! · · · |vk|!

k∏
j=1

(
|vj |
n

)|vj |
.
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Mononen and Myllymäki (2008) derived a formula to
calculate the regret in sub-linear time, meaning that
the whole formula can be computed in linear time
w.r.t. n.

We obtain the stochastic complexity for xn by simply
taking the negative logarithm of PNML, which decom-
poses into a Shannon-entropy and the log regret

S (xn) = − logPNML(xn) ,

= nĤ(xn) + log Cnk .

3.1 Conditional Stochastic Complexity

Conditional stochastic complexity can be defined
in different ways. We consider factorized normal-
ized maximum likelihood (fNML) (Silander et al.,
2008) and quotient normalized maximum likelihood
(qNML) (Silander et al., 2018), which are equivalent
except for the regret terms.

Given xn and yn drawn from the joint distribution of
two random variables X and Y , where k is the size of
the domain of X. Conditional stochastic complexity
using the fNML formulation is defined as

Sf (xn | yn) =
∑
v∈Y
− logPNML(xn | yn = v)

=
∑
v∈Y
|v|Ĥ(xn | yn =v) +

∑
v∈Y

log C|v|k ,

where yn = v denotes the set of samples for which
Y = v, Y the domain of Y with domain size l, and |v|
the frequency of a value v in yn.

Analogously, we can define conditional stochastic com-
plexity Sq using qNML (Silander et al., 2018). We
prove all important properties of our independence test
for both fNML and qNML definitions, but for concise-
ness, and because Sf performs superior in our experi-
ments, we postpone the definition of Sq and the related
proofs to the supplemental material.

In the following, we always consider the sample size
n and slightly abuse the notation by replacing S (xn)
by S (X), similar so for the conditional case. We refer
to conditional stochastic complexity as S and only use
Sf or Sq whenever there is a conceptual difference. In
addition, we refer to the regret terms of the conditional
S (X | Z) as R(X | Z), where

Rf (X | Z) =
∑
z∈Z

log C|z||X | .

Next, we show that the multinomial regret term is log-
concave in n, which is a property we need later on.

Lemma 1 For n ≥ 1, the regret term Cnk of the
multinomial stochastic complexity of a random vari-
able with a domain size of k ≥ 2 is log-concave in n.

For conciseness, we postpone the proof of Lemma 1 to
the supplementary material. Based on Lemma 1 we
can now introduce our main theorem that is necessary
for our proposed independence test.

Theorem 1 Given three random variables X, Y and
Z, it holds that Rf (X | Z) ≤ Rf (X | Z, Y ).

Proof: Consider that Z contains p distinct value
combinations {r1, . . . , rp}. If we add Y to Z, the
number of distinct value combinations, {l1, . . . , lq}, in-
creases to q, where p ≤ q. Consequently, to show that
Theorem 1 is true, it suffices to show that

p∑
i=1

log C|ri|k ≤
q∑

j=1

log C|lj |k (3)

where
∑p

i=1 |ri| =
∑q

j=1 |lj | = n. Next, con-
sider w.l.o.g. that each value combination {ri}i=1,...,p

is mapped to one or more value combinations in
{l1, . . . , lq}. Hence, Eq. (3) holds, if the log Cnk is sub-
additive in n. Since we know from Lemma 1 that the
regret term is log-concave in n, sub-additivity follows
by definition. �

Now that we have all the necessary tools, we can define
our independence test in the next section.

4 Stochastic Complexity based
Conditional Independence

With the above, we can now formulate our new condi-
tional independence test, which we will refer to as the
Stochastic complexity based Conditional Independence
criterium, or SCI for short.

Definition 3 Let X, Y and Z be random variables.
We say that X ⊥⊥ Y | Z, if

SCI (X;Y | Z) := S (X | Z)− S (X | Z, Y ) ≤ 0 . (4)

In particular, Eq. 4 can be rewritten as

SCI (X;Y | Z) = n · I(X;Y | Z)

+R(X | Z)−R(X | Z, Y ) .

From this formulation, we see that the regret terms
formulate a threshold tS for conditional mutual infor-
mation, where tS = R(X | Z, Y ) − R(X | Z). From
Theorem 1 we know that if we instantiate SCI using
fNML thatR(X | Z, Y )−R(X | Z) ≥ 0. Hence, Y has
to provide a significant gain such that X 6⊥⊥ Y | Z—i.e.
we need Ĥ(X | Z)− Ĥ(X | Z, Y ) > tS/n.

Next, we show how we can use SCI in practice by
formulating it using fNML.
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4.1 Factorized SCI

To formulate our independence test based on factor-
ized normalized maximum likelihood, we have to re-
visit the regret terms again. In particular, Rf (X | Z)
is only equal to Rf (Y | Z), when the domain size
of X is equal to the domain of Y . Further, Rf (X |
Z) − Rf (X | Z, Y ) is not guaranteed to be equal to
Rf (Y | Z)−Rf (Y | Z,X). As a consequence,

IfS (X;Y | Z) := Sf (X | Z)− Sf (X | Z, Y )

is not always equal to

IfS (Y ;X | Z) := Sf (Y | Z)− Sf (Y | Z,X) .

To achieve symmetry, we formulate SCI f as

SCI f (X;Y | Z) := max{IfS (X;Y | Z), IfS (Y ;X | Z)}

and say that X ⊥⊥ Y | Z, if SCI f (X;Y | Z) ≤ 0.

There are other ways to achieve such symmetry, such
as via an alternative definition of conditional mutual
information. However, as we show in detail in the sup-
plementary, there exist serious issues with these alter-
natives when instantiated with fNML.

Instead of the exact fNML formulation, it is also pos-
sible to use the asymptotic approximation of stochas-
tic complexity (Rissanen, 1996), which was done by
Suzuki (2016) to approximate CMI . In practice, the
corresponding test (JIC ) is, however, very restrictive,
which leads to low recall.

In the next section, we show the main properties for
SCI using fNML. Thereafter, we compare SCI to CMI
using the threshold based on the gamma distribu-
tion (Goebel et al., 2005), and empirically evaluate
the sample complexity of SCI .

4.2 Properties of SCI

In the following, for readability, we write SCI to refer
to properties that hold for both SCI f and SCI q.

First, we show that if X ⊥⊥ Y | Z, we have that
SCI (X;Y | Z) ≤ 0. Then, we prove that 1

nSCI is
an asymptotically unbiased estimator of conditional
mutual information and is L2 consistent. Note that
by dividing SCI by n we do not change the decisions
we make as long as n < ∞. Since we only accept H0

if SCI ≤ 0, any positive output will still be > 0 after
dividing it by n.

Theorem 2 If X ⊥⊥ Y | Z, SCI (X;Y | Z) ≤ 0.

Proof: W.l.o.g. we can assume that IfS (X;Y |
Z) >= IfS (Y ;X | Z). Based on this, it suffices to show

that IfS (X;Y | Z) ≤ 0 if X ⊥⊥ Y | Z. As the first part

of IfS consists of n · I(X;Y | Z), it will be zero by def-
inition. We know that Rf (X | Z)−Rf (X | Z, Y ) ≤ 0
(Theorem 1), which concludes the proof. �

Next, we show that 1
nSCI converges against condi-

tional mutual information and hence is an asymptot-
ically unbiased estimator of conditional mutual infor-
mation and is L2 consistent to it.

Lemma 2 Given three random variables X, Y and Z,
it holds that limn→∞ 1

nSCI (X;Y | Z) = I(X;Y | Z).

Proof: To show the claim, we need to show that

lim
n→∞

I(X;Y | Z) +
1

n
(R(X | Z)−R(X | Z, Y )) = 0 .

The proof for IfS (Y ;X | Z) follows analogously. In
essence, we need to show that 1

n (R(X | Z) − R(X |
Z, Y )) goes to zero as n goes to infinity. From Rissanen
(1996) we know that log Cnk asymptotically behaves like
k−1

2 log n + O(1). Hence, 1
nR(X | Z) and 1

nR(X |
Z, Y ) will approach zero if n→∞. �

As a corollary to Lemma 2 we find that 1
nSCI is an

asymptotically unbiased estimator of conditional mu-
tual information and is L2 consistent to it.

Theorem 3 Let X, Y and Z be discrete random vari-
ables. Then limn→∞ E[ 1

nSCI (X;Y |Z)] = I(X;Y |Z),
i.e. 1

nSCI is an asymptotically unbiased estimator for
conditional mutual information.

Theorem 4 Let X, Y and Z be discrete ran-
dom variables. Then limn→∞ E[( 1

nSCI (X;Y |Z) −
I(X;Y |Z))2] = 0 i.e. 1

nSCI is an L2 consistent es-
timator for conditional mutual information.

Next, we compare both of our tests to the findings of
Goebel et al. (2005).

4.3 Link to Gamma Distribution

Goebel et al. (2005) estimate conditional mutual in-
formation through a second-order Taylor series and
show that their estimator can be approximated with
the gamma distribution. In particular, they state that

Î(X;Y | Z) ∼ Γ

(
|Z|
2

(|X | − 1)(|Y| − 1),
1

n ln 2

)
,

where X , Y and Z refer to the domains of X, Y and Z.
This means by selecting a significance threshold α, we
can derive a threshold for CMI based on the gamma
distribution—for convenience we call this threshold tΓ.
In the following, we compare tΓ against tS = R(X |
Z, Y )−R(X | Z).

First of all, for qNML, like tΓ, tS depends purely on
the sample size and the domain sizes. However, we
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Figure 2: Threshold for CMI using fNML, qNML, JIC
and the gamma distribution with α = 0.05 (solid) and
α = 0.001 (dashed) for different sample sizes and fixed
domain sizes equal to four (left) and fixed sample size
of 500 and changing domain sizes (right).

consider the difference in complexity between only con-
ditioning X on Z and the complexity of conditioning
X on Z and Y . For fNML, we have the additional
aspect that the regret terms for both R(X | Z) and
R(X | Z, Y ) also relate to the probability mass func-
tions of Z, and respectively the Cartesian product of Z
and Y . Recall that for k being the size of the domain
of X, we have that

Rf (X | Z) =
∑
z∈Z

log C|z|k .

As Cnk is log-concave in n (Lemma 1), Rf (X | Z) is
maximal if Z is uniformly distributed—i.e. it is maxi-
mal when H(Z) is maximal. This is a favourable prop-
erty, as the probability that Z is equal to X is mini-
mal for uniform Z, as stated in the following Lemma
(Cover and Thomas, 2006).

Lemma 3 If X and Y are i.i.d. with entropy H(Y ),
then P (Y = X) ≥ 2−H(Y ) with equality if and only if
Y has a uniform distribution.

To elaborate the link between tΓ and tS , we compare
them empirically. In addition, we compare the results
to the threshold provided from the JIC test. First,
we compare tΓ with α = 0.05 and α = 0.001 to tS/n
for fNML and qNML, and JIC on fixed domain sizes,
with |X | = |Y| = |Z| = 4 and varying the sample sizes
(see Figure 2). For fNML we computed the worst case
threshold under the assumption that Z is uniformly
distributed. In general, the behaviour for each thresh-
old is similar, whereas qNML, fNML and JIC are more
restrictive than tΓ.

Next, we keep the sample size fix at 500 and increase
the domain sizes of Z from 2 to 200, to simulate
multiple variables in the conditioning set. Except to
JIC , which seems to overpenalize in this case, we ob-
serve that fNML is most restrictive until we reach a
plateau when |Z| = 125. This is due to the fact that
|Z||Y| = 500 and hence each data point is assigned
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E
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Figure 3: Error for SCI f and Î compared to I, where
I(X;Y |Z)=0. Left: |X |=|Y|=2 and |Z|=4. Right:
|X |=|Y|=4 and |Z|=16. Values smaller than 10−5

are truncated to 10−5.

to one value in the Cartesian product. We have that
Rf (X | Z, Y ) = |Z||Y|C1

k.

It is important to note, however, that the thresholds
that we computed for fNML assume that Z and Y
are uniformly distributed and Y ⊥⊥ Z. In practice,
when this requirement is not fulfilled, the regret term
of fNML can be smaller than this value, since it is data
dependent. In addition, it is possible that the number
of distinct values that we observe from the joint dis-
tribution of Z and Y is smaller than their Cartesian
product, which also reduces the difference in the regret
terms for fNML.

4.4 Empirical Sample Complexity

In this section, we empirically evaluate the sample
complexity of SCI f , where we focus on the type I
error, i.e. H0 : X ⊥⊥ Y | Z is true and hence
I(X;Y | Z) = 0. We generate data accordingly and
draw samples from the joint distribution, where we
set P (x, y, z) = 1

|X ||Y||Z| for each value configuration

(x, y, z) ∈ X × Y × Z. Per sample size we draw 1 000
data sets and report the average absolute error for
SCI f and the empirical estimator of CMI, Î. We show
the results for two cases in Fig. 3. We observe that in
contrast to the empirical plug-in estimator Î, SCI f

quickly approaches zero, and that the difference is es-
pecially large for larger domain sizes.

In the supplemental material we give a more in depth
analysis alltogether. Our evaluation suggest that the
sample complexity is sub-linear. In particular, we
find that the number of samples n required such that
P (|SCI n

f (X;Y | Z)/n − I(X;Y | Z)| ≥ ε) ≤ δ, with

ε = δ = 0.05 is smaller than 35 + 2|X ||Y|2/3(|Z|+ 1).

To illustrate this, consider the left example in Figure 3
again. We observe that for ε = δ = 0.05, n needs to be
at least 52, which is smaller than the value from our
empirical bound function, that is equal to 67. If we
require ε = 0.01 and δ = 0.05, we observe that n must
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be at least 72. In comparison, for Î, n needs to be at
least 140 for ε = 0.05 and 684 for ε = 0.01.

4.5 Discussion

The main idea for our independence test is to approxi-
mate conditional mutual information through algorith-
mic conditional independence. In particular, we esti-
mate conditional entropy with stochastic complexity.
We recommend SCI f , since the regret for the entropy
term does not only depend on the sample size and the
domain sizes of the corresponding random variables,
but also on the probability mass function of the con-
ditioning variables. In particular, when fixing the do-
main sizes and the sample size, higher thresholds are
assigned to conditioning variables that are unlikely to
be equal to the target variable.

By assuming a uniform distribution for the condition-
ing variables and hence eliminating this data depen-
dence from SCI f , it behaves similar to SCI q and CMI
where the threshold is derived from the gamma distri-
bution (Goebel et al., 2005). SCI f is more restrictive
and the penalty terms of all three decrease exponen-
tially w.r.t. the sample size.

SCI can also be extended for sparsification, as is pos-
sible to derive an analytical p-value for the significance
of a decision using the no-hypercompression inequal-
ity (Grünwald, 2007; Marx and Vreeken, 2017).

Last, note that as we here instantiate SCI using
stochastic complexity for multinomials, we implicitly
assume that the data follows a multinomial distri-
bution. In this light, it is important to note that
stochastic complexity is a mini-max optimal refined
MDL code (Grünwald, 2007). This means that for any
data, we obtain a score that is within a constant term
from the best score attainable given our model class.
The experiments verify that indeed, SCI performs very
well, even when the data is sampled adversarially.

5 Experiments

In this section, we empirically evaluate SCI based on
fNML and compare it to the alternative formulation
using qNML. In addition, we compare it to the G2

test from the pcalg R package (Kalisch et al., 2012),
CMI Γ (Goebel et al., 2005) and JIC (Suzuki, 2016).

5.1 Identifying d-Separation

To test whether SCI can reliably distinguish between
independence and dependence, we generate data as de-
picted in Figure 1, where we draw F from a uniform
distribution and model a dependency from X to Y by
simply assigning uniformly at random each x ∈ X to
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Figure 4: [Higher is better] Accuracy of SCI f , SCI q,
CMI Γ and G2 for identifying d-separation using vary-
ing samples sizes and additive noise percentages, where
a noise level of 0.95 refers to 95% additive noise.

a y ∈ Y. We set the domain size for each variable to
4 and generate data under various samples sizes (100–
2 500) and additive uniform noise settings (0%–95%).
For each setup we generate 200 data sets and assess the
accuracy. In particular, we report the correct identifi-
cations of F ⊥⊥ T | D,E as the true positive rate and
the false identifications D ⊥⊥ T | E,F or E ⊥⊥ T | D,F
as false positive rate.2 For the G2 test and CMI Γ we
select α = 0.05, however, we found no significant dif-
ferences for α = 0.01.

In the interest of space we only plot the accuracy of
the best performing competitors in Figure 4 and re-
port the remaining results as well as the true and false
positive rates for each approach in the supplemental
material. Overall, we observe that SCI f performs near
perfect for less than 70% additive noise. When adding
70% or more noise, the type II error increases. Those
results are even better than expected as from our em-
pirical bound function we would suggest that at least
378 samples are required to have reliable results for
this data set. SCI q has a similar but slightly worse
performance. In contrast, CMI Γ only performs well
for less than 30% noise and fails to identify true inde-
pendencies after more than 30% noise has been added,
which leads to a high type I error. The G2 test has
problems with sample sizes up to 500 and performs
inconsistently given more than 35% noise.

2For 0% noise, F has all information about D and E,
hence D 6⊥⊥ T | E,F and E 6⊥⊥ T | D,F does not hold.
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Figure 5: d-Separation with 2 000 samples and 10%
noise on different domain sizes of the source node F .
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Figure 6: [Higher is better] F1 score on undirected
edges for stable PC using SCI f , SCI q, JIC , CMI Γ and
G2 on the Alarm network for different sample sizes.

5.2 Changing the Domain Size

Using the same data generator as above, we now con-
sider a different setup. We fix the sample size to 2 000
and use only 10% additive noise—a setup where all
tests performed well. What we change is the domain
size of the source F from 2 to 20 while also restricting
the domain sizes of the remaining variable to the same
size. For each setup we generate 200 data sets.

From the results in Figure 5 we can clearly see that
only SCI f is able to deal with larger domain sizes as
for all other test, the false positive rate is at 100% for
larger domain sizes, resulting in an accuracy of 50%.

5.3 Plug and Play with SCI

Last, we want to show how SCI performs in practice.
To do this, we run the stable PC algorithm (Kalisch
et al., 2012; Colombo and Maathuis, 2014) on the
Alarm network (Scutari and Denis, 2014) from which
we generate data with different sample sizes and aver-
age over the results of 10 runs for each sample size. We
equip the stable PC algorithm with SCI f , SCI q, JIC ,
CMI Γ and the default, the G2 test, and plot the aver-
age F1 score over the undirected graphs in Figure 6.
We observe that our proposed test, SCI f outperforms
the other tests for each sample size with a large margin
and especially for small sample sizes.

As a second practical test, we compute the Markov
blanket for each node in the Alarm network and report
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Figure 7: [Higher is better] Precision (left) and recall
(right) for PCMB using SCI f , SCI q, JIC , CMI Γ and
G2 to identify all Markov blankets in the Alarm net-
work for different sample sizes.

the precision and recall. To find the Markov blankets,
we run the PCMB algorithm (Peña et al., 2007) with
the four independence tests. We plot the precision and
recall for each variant in Figure 7. We observe that
again SCI f performs best—especially with regard to
recall. As for Markov blankets of size k it is necessary
to condition on at least k−1 variables, this advantage
in recall can be linked back to SCI f being able to
correctly detect dependencies for larger domain sizes.

6 Conclusion

In this paper we introduced SCI , a new conditional in-
dependence test for discrete data. We derive SCI from
algorithmic conditional independence and show that
it is an unbiased asymptotic estimator for conditional
mutual information (CMI ). Further, we show how to
use SCI to find a threshold for CMI and compare it
to thresholds drawn from the gamma distribution.

In particular, we propose to instantiate SCI using
fNML as in contrast to using qNML or thresholds
drawn from the gamma distribution, fNML does not
only make use of the sample size and domain sizes of
the involved variables, but also utilizes the empirical
probability mass function of the conditioning variable.
Moreover, we observe that SCI f clearly outperforms
its competitors on both synthetic and real world data.
Last but not least, our empirical evaluations suggest
that SCI has a sub-linear sample complexity, which
we would like to theoretically validate in future work.
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