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Abstract

We establish connections between the prob-
lem of learning a two-layer neural network
and tensor decomposition. We consider a
model with feature vectors x ∈ Rd, r hidden
units with weights {wi}1≤i≤r and output y ∈
R, i.e., y =

∑r
i=1 σ(w

T
i x), with activation

functions given by low-degree polynomials.
In particular, if σ(x) = a0 + a1x + a3x

3, we
prove that no polynomial-time algorithm can
outperform the trivial predictor that assigns
to each example the response variable E(y),
when d3/2 � r � d2. Our conclusion holds
for a ‘natural data distribution’, namely stan-
dard Gaussian feature vectors x, and out-
put distributed according to a two-layer neu-
ral network with random isotropic weights,
and under a certain complexity-theoretic as-
sumption on tensor decomposition. Roughly
speaking, we assume that no polynomial-time
algorithm can substantially outperform cur-
rent methods for tensor decomposition based
on the sum-of-squares hierarchy.
We also prove generalizations of this state-
ment for higher degree polynomial activa-
tions, and non-random weight vectors. Re-
markably, several existing algorithms for
learning two-layer networks with rigorous
guarantees are based on tensor decomposi-
tion. Our results support the idea that this
is indeed the core computational difficulty
in learning such networks, under the stated
generative model for the data. As a side re-
sult, we show that under this model learning
the network requires accurate learning of its
weights, a property that does not hold in a
more general setting.
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1 Introduction and Main Results

Let {(xi, yi)}1≤i≤n be n data points where, for each
i, xi ∈ Rd is a feature vector and yi ∈ R is a re-
sponse variable or label. The simplest neural network
attempts to fit these data using the model

ŷ(x; ŵ) =

r∑
i=1

σ(〈x, ŵi〉) . (1)

Here σ : R → R is a non-linear activation function,
and ŵ = (ŵi)i≤r, where ŵ1, . . . , ŵr ∈ Rd are model
parameters (weight vectors). In the following, we will
often omit the argument ŵ from ŷ. Let us emphasize
that this is a deliberately oversimplified neural network
model: (i) It only includes one hidden layer of r units
(neurons); (ii) The output unit is linear (it takes a lin-
ear combination of the hidden units); (iii) The hidden
units have no offset or output weight. Since our main
results are negative (computational hardness), we are
not too concerned with such simplifications. For in-
stance, it is unlikely that adding a non-linear output
unit can reduce the problem hardness.

Throughout this paper, we will assume the data
to be i.i.d. with common distribution D, namely
(xi, yi) ∼ D. A rapidly growing literature develops
algorithms and rigorous guarantees to learn such a
model, see e.g. [Janzamin et al., 2015, Soudry and
Carmon, 2016, Soltanolkotabi et al., 2019, Safran and
Shamir, 2016, Freeman and Bruna, 2017, Ge et al.,
2018, Zhong et al., 2017] and the brief overview in
Section 1.1. These papers analyze the landscape of
empirical risk minimization for the model (1), or its
variants. Under suitable assumptions on the data dis-
tribution D (as well as the parameters d, r, n) they
develop algorithms that are guaranteed to recover the
weights ŵ1, . . . , ŵr with small training error.

In this paper we consider the complementary question,
and use a reduction from tensor decomposition to pro-
vide evidence that –in certain regimes, and for certain
data distributions D– the model (1) cannot be learnt
in polynomial time. Let us emphasize two important
aspects of our results. First, our impossibility results
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are entirely computational, and do not depend on the
data distribution D. Indeed, they hold even if we have
access to an infinite sample (more accurately, they hold
under a stronger model that allows us to compute ex-
pectations with respect to D). There is nothing sur-
prising in this. Think of minimizing an empirical risk
function, which is an average over n samples. If its
expectation is a very complex function, then the prob-
lem remains hard irrespective of the number of sam-
ples n. Second, earlier work has proven computational
hardness for simpler problems than the neural network
(1). For instance, [Daniely, 2016] proves hardness for
learning a single linear classifier. However these proofs
are based on the construction of special distributions
D that are are unknown to the learner. Here instead
we consider a ‘natural’ class of distributions D that is
in fact normally assumed in works estabilishing posi-
tive guarantees. This point of view is similar to the
one recently developed in [Shamir, 2018] although our
methods and results are quite different.

As mentioned above, our results are conditional on
a complexity-theoretic assumption for tensor decom-
position, i.e. the problem of recovering the weights
{wi}1≤i≤r given access to the k-th order tensor T (k) =∑r
i=1 w

⊗k
i . We state this assumption explicitly below,

for the case of tensors of order k = 3.
Conjecture 1 (ε-Hardness of 3-Tensor Decomposi-
tion). The following holds for some ε0 > 0, and all
δ > 0. Define a distribution Wd,r over the weights
w = (wi)1≤i≤r ∈ (Rd)r, by letting

wi =
gi − 1

r

∑r
j=1 gj∥∥∥gi − 1

r

∑r
j=1 gj

∥∥∥ , ∀ i ∈ [r], (2)

where {gi}1≤i≤r ∼i.i.d. N(0d, Id/d). Set
T (w1, . . . ,wr) =

∑r
i=1 w

⊗3
i . Assume r = r(d) ≥

d(3/2)+δ and ε < ε0. Then, there is no algorithm A
that, given as input T (w), with w = (wi)1≤i≤r ∼ Wd,r

fulfills the following two properties:

(P1) A outputs {ŵi}1≤i≤r of unit norm s.t., with prob-
ability at least 1/2, for some i, j ∈ [r], | 〈wi, ŵj〉 | ≥ ε.

(P2) A has complexity bounded by a polynomial in d.

Tensor decomposition has been studied by a number
of authors, and the best known algorithms are based
on (or match the guarantees of) the sum-of-squares
(SoS) hierarchy [Hopkins et al., 2016,Ma et al., 2016,
Schramm and Weitz, 2015]. The above assumption
amounts to conjecturing that no algorithm can beat
SoS for this problem1. We limit ourselves to noticing
that SoS appears to capture computational boundaries

1We assume that it is impossible to estimate even a sin-
gle component of T . This is motivated by the remark that
in all existing algorithmic approaches for tensor decompo-

in a number of similar statistical problems [Barak and
Steurer, 2014,Hopkins et al., 2015,Barak et al., 2015,
Barak et al., 2016,Hopkins et al., 2017].
Theorem 1. Let σ(x) = a0 + a1x + a3x

3 for some
a0, a1, a3 ∈ R and denote by N (d, r) the set of func-
tions ŷ( · ; ŵ) : Rd → R of the form (1) where ‖ŵ1‖2 =
· · · = ‖ŵr‖2 = 1. Assume r = r(d) to be such that
d(3/2)+δ ≤ r ≤ d2−δ for some δ > 0. Then, un-
der Conjecture 1, there exists η(r, d) → 0 as d → ∞
such that the following holds. Let w = (wj)j≤r ∼
Wd,r be random weights, see Eq. (2). Consider data
{(xi, yi)}i≤n with common distribution D defined by
xi ∼ N(0d, Id) and yi = y(xi) = ŷ(xi;w), with
ŷ(x;w) given by (1). In particular,

min
ŷ( · )∈N (d,r)

ED
{
|y(x)− ŷ(x)|2

}
= 0 . (3)

However, for any polynomial-time algorithm P that
takes as input {(xi, yi)}i≤n and returns a function
ŷP ∈ N (d, r), we have that

ED
{
|y(x)− ŷP(x)|2

}
≥ Var {y(x)} (1− η(r, d)) , (4)

with high probability with respect to w ∼ Wd,r.

Remark 1: The right-hand side of (4) is the risk of a
trivial model that always predicts y with its expecta-
tion. Hence, Theorem 1 implies that, under the data
distribution D, no polynomial algorithm can predict
the response better than a trivial predictor that as-
signs to each example the same response E(y). Notice
that this lower bound is independent of n, and in fact
we prove it under a more powerful model, whereby the
algorithm P is given access to an oracle that computes
expectations with respect to D. On the other hand,
under unbounded computation, it is possible to find a
neural network of the form (1), with zero test error.

Remark 2: A large part of the theoretical literature
adopts the same model of the above theorem, namely
random Gaussian features x ∼ N(0d, Id), and data
generated according to a two-layer network with ran-
dom weights, see e.g. [Janzamin et al., 2015,Ge et al.,
2018, Zhong et al., 2017, Soltanolkotabi et al., 2019].
Our theorem implies that, within the assumptions of
these papers, r � d3/2 is a computational hardness
barrier (under the stated conjecture on tensor decom-
position). Note that several of these papers use tensor
decomposition procedures as a key subroutine (typi-
cally to initialize the weights before gradient descent).
Theorem 1 implies that the appearance of tensor de-
composition in these algorithms is a consequence of a
fundamental connection between the two problems.

sition, the problems of learning a single component and
of learning all components are either both solvable or both
unsolvable, e.g., see [Ma et al., 2016,Schramm and Steurer,
2017]. It is also easy to see that they are equivalent if we
demand exact reconstruction of the weights.
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In the rest of this introduction we provide a brief
overview of related work. We then present our tech-
nical contributions. In Section 3, we show that, if
we cannot estimate the weights {wi}1≤i≤r accurately,
then the error E{|y(x)− ŷ(x)|2}, typically called gen-
eralization error2, of the predictor ŷ(x) is close to that
of a trivial predictor. We prove this result in two sepa-
rate settings: for deterministic and for random weights
(wi)i≤r. In Section 4, we present reductions from the
problem of tensor decomposition to the problem of es-
timating the weights {wi}1≤i≤r in the two-layer neu-
ral network model. By combining these two results, in
Section 5 we present reductions from the problem of
tensor decomposition to the problem of learning a two-
layer neural network with small generalization error.
These results generalize Theorem 1 in two directions:
we consider non-random weights, and a broader set of
polynomial activation functions σ( · ). Finally, in Sec-
tion 6, we present numerical experiments supporting
our theoretical findings.

In summary, we consider a popular model for theoret-
ical research (random two-layer neural network with
Gaussian feature vectors) and show that: (i) learn-
ing in this model requires accurate weight estimation;
and (ii) the latter requires solving a tensor decompo-
sition problem, which is computationally expensive. A
promising direction of research would be to understand
whether these conclusions can be avoided by consider-
ing different generative models.

1.1 Related Work

Several recent papers provide recovery guarantees for
neural network models, and what follows is a neces-
sarily incomplete overview. In [Arora et al., 2014], the
weights are assumed to be sparse and random, and
the proposed algorithm learns almost all the models in
this class with polynomial sample and computational
complexity. In [Brutzkus and Globerson, 2017], the
authors consider a two-layer neural network with con-
volutional structure, no overlap3, and ReLU activation
function. It is shown that learning is NP-complete
in the worst case, but gradient descent converges to
the global optimum in polynomial time when the in-
put distribution is Gaussian. A similar positive re-
sult, i.e., convergence to the global optimum of gra-
dient descent with polynomial complexity and Gaus-
sian input, is proved in [Tian, 2017]. In this work,

2The term ‘generalization error’ is often used inter-
changeably with ‘risk’ and it refers to the expected loss of
a prediction rule also in the realizable case, see [Bousquet
and Elisseeff, 2002,Zhong et al., 2017] and [Shalev-Shwartz
and Ben-David, 2014, pp. 34-35].

3The filter of the convolutional neural network is applied
to non-overlapping parts of the input vector.

the author considers a two-layer neural network model
of the form (1), where σ is a ReLU activation func-
tion and the weights {wi}1≤i≤r are orthogonal (which
implies that r ≤ d). However, [Tian, 2017] requires
a good initialization and does not discuss initializa-
tion methods. In [Panigrahy et al., 2018], the au-
thors design an activation function that guarantees
provable learning, but the proposed algorithm runs in
dO(d). In [Sedghi and Anandkumar, 2015], the sub-
space spanned by the weight matrix is provably recov-
ered with a tensor decomposition algorithm, and the
weights can also be recovered under an additional spar-
sity assumption. The works [Brutzkus and Globerson,
2017,Tian, 2017,Sedghi and Anandkumar, 2015] con-
sider only the population risk and do not give bounds
on the sample complexity. The paper [Janzamin et al.,
2015] presents a tensor based algorithm that learns a
two-layer neural network with sample complexity of or-
der d3 ·poly(r)/ε2, where ε is the precision. In [Zhong
et al., 2017], a tensor initialization algorithm is com-
bined with gradient descent to obtain a procedure with
sample complexity of order d · poly(r) · log(1/ε) and
computational complexity n·d·poly(r)·log(1/ε), where
n is the number of samples and it is assumed that
r ≤ d. The connection between tensors and neural
networks is also studied in [Ge et al., 2018].

As mentioned above, several hardness results are avail-
able for training neural networks or even simple lin-
ear classifiers [Blum and Rivest, 1989, Bartlett and
Ben-David, 1999,Kuhlmann, 2000,Šíma, 2002,Daniely,
2016]. However, these results are either worst-case or
rely on special constructions of the distribution D. In
contrast here, we consider a class of distributions that
has been frequently studied in the algorithms litera-
ture, in order to estabilish rigorous guarantees. Simi-
lar in spirit to our results is the recent work [Shamir,
2018] which considers data generated according to the
model (1) with smooth distributions of the feature vec-
tors x, and periodic activation functions (while we con-
sider low-degree polynomials). Apart from technical
differences in the model, our results are different and
complementary to the ones of [Shamir, 2018]. While
[Shamir, 2018] analyzes a specific class of ‘approximate
gradient’ algoritms, we prove a general average-case
hardness result, conditional on a complexity-theoretic
assumption. Notice that proving average-case hard-
ness under weak assumptions (e.g., P not equal to NP)
is extremely difficult, and has been achieved only in a
handful of cases. Recently, significant progress in un-
derstanding the hardness of statistical problems has
been achieved by making stronger assumptions, as in
this work. For instance, several results have been ob-
tained conditional on hardness of the planted clique
problem [Berthet and Rigollet, 2013, Brennan et al.,
2018].
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2 Preliminaries

2.1 Notation and System Model

Let [n] be a shorthand for {1, . . . , n}. Let 0n and 1n
denote the vector consisting of n 0s and n 1s, respec-
tively, and let In denote the n × n identity matrix.
Given a vector x ∈ Rn, we let x(i) be its i-th ele-
ment, where i ∈ [n], and ‖x‖ be its `2 norm. Given
a matrix A, we let AT be its transpose, Tr(A) be its
trace, ‖A‖F be its Frobenius norm, and ‖A‖op be its
operator norm. We use A ⊗ B to denote the Kro-
necker product of A and B, and A⊗k as a shorthand
for A⊗· · ·⊗A, where A appears k times. We also set
A⊗0 = 1. Given two k-th order tensors x,y ∈ (Rd)⊗k,
we let 〈x,y〉 =

∑d
i1,...,ik=1 x(i1, . . . , ik) · y(i1, . . . , ik)

be their scalar product. Given a k-th order tensor
x ∈ (Rd)⊗k, we let ‖x‖F =

√
〈x,x〉 be its Frobenius

norm. Given an integer k, we denote by par(k) its
parity, i.e., we set par(k) to 0 if k is even and to 1 if k
is odd. Given a polynomial f , we denote by deg(f) its
degree. If f is either even or odd, we denote by par(f)
its parity, i.e., we set par(f) to 0 if f is even and to 1 if
f is odd. Given a function σ in the weighted L2 space4
L2(R, e−x2/2), we denote by σ̂k its k-th Hermite coef-
ficient. It is helpful to write explicitly the formulas to
compute σ̂1 and σ̂2:

σ̂1 = EG∼N(0,1) {G · σ(G)} ,

σ̂2 =
1√
2
EG∼N(0,1)

{
(G2 − 1)σ(G)

}
.

(5)

Throughout the paper, we consider a two-layer neural
network with input dimension d and r hidden nodes
with weights w = (wi)1≤i≤r ∈ (Rd)r. We denote the
input by x ∈ Rd and the output by y(x;w) ∈ R, which
is defined by

y(x;w) =

r∑
i=1

σ(〈x,wi〉) . (6)

We will often omit the argument w from y. Given n
samples from the neural network, we obtain the es-
timates {ŵi}1≤i≤r on the weights {wi}1≤i≤r, which
allows us to construct ŷ(x) given by (1). Two er-
ror metrics can be considered. A stronger require-
ment is to learn accurately (up to a permutation) the
weights. More formally, we require that the estima-
tion error minπ

∑r
i=1

∥∥wi − ŵπ(i)

∥∥2 is small, where
the minimization is with respect to all permutations
π : [r]→ [r]. If we assume that the vectors {wi}1≤i≤n
and {ŵi}1≤i≤n have unit norm, then this quantity is
small if and only if maxπ

∑r
i=1

〈
wi, ŵπ(i)

〉
is large. A

weaker requirement is to predict accurately the out-
put of the network. More formally, we require that

4L2(R, e−x2/2) =
{
σ :

∫
R |σ(x)|2e−x2/2 dx <∞

}
.

the generalization error E
{
|y(x)− ŷ(x)|2

}
is small,

where the expectation is with respect to the distribu-
tion of x. Our results of Section 3 prove that these
two requirements are equivalent when x is Gaussian:
if the stronger requirement does not hold, i.e., the
estimates {ŵi}1≤i≤r have small correlation with the
weights {wi}1≤i≤r, then also the weaker requirement
does not hold, i.e., the generalization error is large.

2.2 Tensor Decomposition

Tensors are arrays of numbers indicized by multiple
integers. As for the problem of learning a neural net-
work, many problems involving tensors (e.g., the com-
putation of the rank or the spectral norm) are NP-hard
in the worst case [Håstad, 1990,Hillar and Lim, 2013].
However, recent work has focused on provably effi-
cient algorithms by making assumptions on the input
and allowing for approximations [Anandkumar et al.,
2015,Anandkumar et al., 2017,Ge and Ma, 2015,Hop-
kins et al., 2015, Hopkins et al., 2016, Barak et al.,
2015, Ma et al., 2016, Schramm and Steurer, 2017].
The typical setting for the problem of tensor decom-
position is as follows. Let w1, . . . ,wr ∈ Rd be vectors
of unit norm and, for k ≥ 3, define the k-th order
tensor T (k) =

∑r
i=1 w

⊗k
i . Given a subset of tensors

{T (k)}3≤k≤`, the goal is to recover {wi}i≤r. A classi-
cal algorithm based on matrix diagonalization [Harsh-
man, 1970, De Lathauwer et al., 1996] solves tensor
decomposition when {wi}i≤r are linearly independent
and ` ≥ 3. The requirement that {wi}i≤r are linearly
independent implies that r ≤ d. Recent works have fo-
cused on the overcomplete case, where r > d, and on
a more general setup where the vectors {wi}i≤r are
smoothed, i.e., randomly perturbed [Bhaskara et al.,
2014,Ma et al., 2016]. The best algorithms are based
on (or match the guarantees of) the SoS hierarchy and
some of these results are reviewed below.

Random vectors. Assume that {wi}i≤r are chosen
i.i.d. from the unit sphere in Rd. Then, with high
probability, tensor decomposition can be solved given
T (3) and r as large as d3/2 (up to logarithmic factors),
see Theorem 1.2 in [Ma et al., 2016].

Separated unit vectors. Assume that {wi}i≤r have
at most δ-correlation, i.e., for any i, j ∈ [r] with i 6= j,
| 〈wi,wj〉 | ≤ δ. Then, tensor decomposition can be
solved given the tensors of order up to log r/ log(1/δ)
[Schramm and Weitz, 2015].

General unit vectors. Here, {wi}i≤r can be any
vectors in Rd. Then, tensor decomposition can be ap-
proximated given the tensors of order up to poly(1/ε),
where ε denotes the Hausdorff distance between the
original set of weights and the set of estimates, see
Theorem 1.6 in [Ma et al., 2016].
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3 Lower Bounds on Generalization
Error

In our results, we consider a more general predictor
ŷ(x) given by

ŷ(x) =

R∑
i=1

σ(〈x, ŵi〉), (7)

i.e., we allow the number R of estimated weights to
be different from the number r of unknown weights.
Our first theorem holds when the weights {wi}1≤i≤r
are separated and isotropic, and our second theorem
when the weights {wi}1≤i≤r are random.

3.1 Separated Isotropic Weights

We make the following assumptions on {wi}1≤i≤r.

(A1) Unit norm: ‖wi‖ = 1, ∀ i ∈ [r].

(A2) At most δ-correlation: | 〈wi,wj〉 | ≤
δ, ∀ i, j ∈ [r], with i 6= j.

(A3) Mean ηavg-close to zero: ‖
∑r
i=1 wi‖

2 ≤ ηavg · r.

(A4) Covariance ηvar-close to scaled identity :∥∥∑r
i=1 wiw

T
i − r

dId
∥∥
op
≤ ηvar · r/d.

It is simple to produce weight vectors that satisfy these
assumptions. If the weight matrix is the identity, then
the assumptions hold with δ = 0, ηavg = 1, and ηvar =
0. If we center and rescale the weights by a factor√
d/(d− 1), the assumptions hold with δ = d+1

d(d−1) ≈
1/d, ηavg = 0, and ηvar = 2. For r = d+1, we can take
W̃ to be Haar distributed conditional on W̃ T1d+1 =
0d, and let {wi}1≤i≤r be

√
(d+ 1)/d times the rows

of W̃ (these are just the rotations of the vertices of
the standard simplex). Then, the assumptions hold
with δ = 1/d and ηavg = ηvar = 0. For r > d + 1, we
concatenate r/(d+ 1) of these matrices. By doing so,
we still have that ηavg = ηvar = 0. We expect δ to be
small (say of order 1/

√
d).

The result below, whose proof is contained in Ap-
pendix A of the supplementary material, considers the
case of a Gaussian input distribution and rules out a
scenario in which the weights are not estimated well,
but the generalization error is still small.
Theorem 2 (Lower Bound on Generalization Er-
ror for Separated Isotropic Weights). Consider a two-
layer neural network with input dimension d, r hid-
den nodes, and activation function σ ∈ L2(R, e−x2/2).
Assume that the weights {wi}1≤i≤r satisfy the as-
sumptions (A1)-(A4) for positive δ, ηavg and ηvar such
that 1 − δ · (1 + ηvar) · r/d ≥ 0. Let y(x) and ŷ(x)
be defined in (6) and (7). Assume that the esti-
mated weights {ŵi}1≤i≤R satisfy the assumption (A1)

and have at most ε-correlation with the ground-truth
weights {wi}1≤i≤r, i.e., for some ε > 0, | 〈wi, ŵj〉 | ≤
ε, for all i ∈ [r] and j ∈ [R]. Then, the following lower
bound on the generalization error holds:

E
{
|y(x)− ŷ(x)|2

}
(8)

≥
(
min
a,b∈R

E
{∣∣∣y(x)− (a+ b ‖x‖2

)∣∣∣2}− c1) (1− c2) ,

where the expectation is with respect to x ∼ N(0d, Id)
and the terms c1 and c2 are given by

c1 = 2σ̂2
1 ηavg r + 2σ̂2

2 η
2
var

r2

d
, c2 =

2ε (1 + ηvar)
R

d

1− δ (1 + ηvar)
r

d

,

(9)

with σ̂1 and σ̂2 defined in (5). If we also assume that
σ is even, then (8) holds with c1 and c2 given by

c1 = 2σ̂2
2 η

2
var

r2

d
, c2 =

2ε2 (1 + ηvar)
R

d

1− δ2 (1 + ηvar)
r

d

. (10)

Some remarks are of order. First, note that the gen-
eralization error mina,b∈R E

{∣∣y(x)− (a+ b ‖x‖2
)∣∣2}

is that of a trivial predictor having access only to the
norm of the input. Hence, if the weights are not es-
timated well, then the generalization error is close to
that of a predictor that does not really use the input.
Second, the assumption that the weights {wi}1≤i≤r
and {ŵi}1≤i≤R have unit norm mainly serves to sim-
plify the proof. On the contrary, the assumption that
the weights {wi}1≤i≤r are roughly isotropic is crucial.
Indeed, if either (A3) or (A4) do not hold, then it might
be possible to learn the mean vector or the covariance
matrix of the weights, which could reduce the gen-
eralization error for activation functions that have a
non-zero linear or quadratic component. Indeed, con-
sider the following example: σ(x) = x, {wi}i≤r arbi-
trary, and ŵi = w ≡

∑r
i=1 wi/r for all i. Clearly,

the weights are not estimated correctly. However, the
generalization error is 0 for any input x ∈ Rd (and is
superior to the one of the trivial predictor).

Let us evaluate the bound for some natural choices of
the weights {wi}1≤i≤r. Recall that, if σ is even (odd),
then σ̂k = 0 for k odd (even). If the matrix of the
weights is equal to the identity matrix and σ is even,
then the generalization error of the neural network is
close to that of a trivial predictor, namely, the neural
network does not generalize well, as long as ε2 · R/d
is small. Suppose now that we center and rescale the
weights and that we pick σ odd. Then, the neural
network does not generalize well as long as ε · R/d is
small. If the weights are the rescaled rows of r/(d+1)



On the Connection Between Learning Two-Layer Neural Networks and Tensor Decomposition

matrices W̃ , where W̃ is Haar distributed conditional
on W̃ T1d+1 = 0d, then, for any σ, the neural network
does not generalize well as long as ε·R/d and δ ·r/d are
small. Furthermore, when σ is even, we only require
that ε2 ·R/d and δ2 · r/d are small.

3.2 Random Weights

We assume that the weights {wi}1≤i≤r have the fol-
lowing form:

wi =
gi − 1

r

∑r
j=1 gj∥∥∥gi − 1

r

∑r
j=1 gj

∥∥∥ , ∀ i ∈ [r], (11)

where {gi}1≤i≤r ∼i.i.d. N(0d, Id/d). The result below,
whose proof is contained in Appendix B of the sup-
plementary material, is similar in spirit to Theorem 2
and it applies to a setting with random weights.
Theorem 3 (Lower Bound on Generalization Er-
ror for Random Weights). Consider a two-layer neu-
ral network with input dimension d, r hidden nodes,
and activation function σ ∈ L2(R, e−x2/2) such that
σ̂2 = 0, where σ̂2 is defined in (5). Assume that the
weights {wi}1≤i≤r have the form (11). Let y(x) and
ŷ(x) be defined in (6) and (7). For some ε ∈ (0, 1),
define

Ŝε = {{ŵi}i≤R : ‖ŵi‖ = 1 ∀ i, | 〈wi, ŵj〉 | ≤ ε ∀ i, j}.
(12)

As r, d→∞, assume that

ε = o(1), r = o(d2/(log d)2). (13)

Then, for a sequence of vanishing constants η(r, d) =
o(1), with high probability with respect to w = (wi)i≤r,

sup
{ŵi}1≤i≤R∈Ŝε

E
{
|y(x)− ŷ(x)|2

}
(14)

≥ (Var {y(x)} − r · η(r, d))
(
1− R

r
· η(r, d)

)
,

where the expectation and the variance are with respect
to x ∼ N(0d, Id).

Some remarks are of order. First, note that 〈x,wi〉
is of order 1, hence the term Var {y(x)} is of order r.
Consequently, in the limit r, d→∞, the term r η(r, d)
is negligible compared to Var {y(x)}. Second, the hy-
pothesis that σ̂2 = 0 can be removed at the cost of a
less tight lower bound. For general σ, we have that

sup
{ŵi}1≤i≤R∈Ŝε

E
{
|y(x)− ŷ(x)|2

}
≥

 min
a∈R

A∈Rd×d
E
{
|y(x)− (a+ 〈x,Ax〉)|2

}
− r · η(r, d)


·
(
1− R

r
· η(r, d)

)
.

(15)

Third, Theorem 3 covers regimes different from those
of Theorem 2. Indeed, the result of this section guar-
antees that the generalization error of the neural net-
work is close to that of a trivial predictor for any σ
such that σ̂2 = 0 and for r up to d2 (modulo logarith-
mic factors), unless the weights are estimated ‘better
than random’, namely with a non-vanishing correla-
tion. We also allow predictors with a number of nodes
R that can be larger than the number of nodes r of
the original neural network, as long as R and r are of
the same order.

The key technical step in the proof is upper bounding
the third-order correlation

∑
i≤r,j≤R〈wi, ŵj〉3/R uni-

formly over all estimates such that maxi,j |〈wi, ŵj〉| ≤
ε. A naive bound would be rε3, while using the approx-
imate isotropicity of the wi yields an upper bound of
order εmax(1, r/d). For ε ≈ 1/

√
d this would vanish

only in the regime r � d3/2. In order to obtain a
non-trivial result for r � d3/2, we use the randomness
of the wi, together with an epsilon-net argument and
several ad-hoc estimates, which eventually yields that∑
i≤r,j≤R〈wi, ŵj〉3/R = o(1).

4 Learning a Neural Network and
Tensor Decomposition

We present reductions from tensor decomposition to
the problem of learning the weights of a two-layer neu-
ral network. Note that no assumption on the input dis-
tribution is necessary. Before giving the statement, let
us formally define what we mean when we say that it
is algorithmically hard to learn the weights {wi}1≤i≤r.
Definition 1 (ε-Hardness of Learning). A weight-
learning problem is defined by a triple (ε,S, f), where
ε ∈ (0, 1), S is a set of possible weights

S ⊆ {{wi}1≤i≤r : ‖wi‖ = 1, ∀ i ∈ [r]}, (16)

and f : S → I is a function, where I denotes a set of
inputs. We always assume that r and the size of I are
bounded by polynomials in d. We say that the problem
(ε,S, f) is hard (or, the problem is ε-hard) if there
is no algorithm A that, given as input f(w1, . . . ,wr),
fulfills the following two properties:

(P1) A outputs {ŵi}1≤i≤R of unit norm such that, for
some i ∈ [r] and j ∈ [R], | 〈wi, ŵj〉 | ≥ ε;

(P2) A has complexity which is polynomial in d.

The result below, whose proof is contained in Ap-
pendix C of the supplementary material, provides a
reduction for activation functions that are polynomi-
als whose degree is at most the order of the tensor to
be decomposed.
Theorem 4 (Learning a Neural Network and Tensor
Decomposition). Fix an integer ` ≥ 3 and let y(x)
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be defined in (6), where σ is the activation function.
For x1, . . . ,xn ∈ Rd, let P(x1, . . . ,xn) be the problem
of learning {wi}1≤i≤r given as input {xj}1≤j≤n and
{y(xj)}1≤j≤n. Then, the following results hold.

1) Assume that, given as input the tensor T (`) =∑r
i=1 w

⊗`
i , the problem of learning {wi}1≤i≤r ∈ S is

ε-hard in the sense of Definition 1 for some ε > 0.
Let the activation function σ be a polynomial with
deg(σ) ≤ ` and par(σ) = par(`). Then, for any
x1, . . . ,xn ∈ Rd, the problem P(x1, . . . ,xn) is ε-hard
in the sense of Definition 1.

2) Assume that, given as input the tensors T (`) =∑r
i=1 w

⊗`
i and T (`+1) =

∑r
i=1 w

⊗`+1
i , the problem of

learning {wi}1≤i≤r ∈ S is ε-hard in the sense of Def-
inition 1 for some ε > 0. Let the activation function
σ be a polynomial with deg(σ) ≤ `+ 1. Then, for any
x1, . . . ,xn ∈ Rd, the problem P(x1, . . . ,xn) is ε-hard
in the sense of Definition 1.

In words, learning a two-layer neural network whose
activation function is a polynomial of degree ` and as-
signed parity (i.e., either even or odd) is as hard as
solving tensor decomposition given the tensor of or-
der ` with the same parity. Furthermore, learning a
two-layer neural network whose activation function is a
polynomial of degree `+1 (without any assumption on
its parity) is as hard as solving tensor decomposition
given the tensors of order ` and `+ 1. In Appendix D
of the supplementary material, we consider a slightly
different model of two-layer neural network with an
additive error term. By doing so, we can prove a re-
duction with activation functions that are polynomials
with degree larger than the order of the tensor.

5 Generalization Error and Tensor
Decomposition

We present reductions from tensor decomposition to
the problem of finding a predictor of a two-layer neural
network with small generalization error. As in Section
4, no assumption is necessary on the distribution of
the samples given as input to the learning algorithm.
However, when taking the expectation to compute the
generalization error, we assume that x ∼ N(0, Id).
The corollary below considers the case of separated
and isotropic weights and its proof is readily obtained
by combining the results of Theorem 2 and 4.

Corollary 1 (Generalization Error and Tensor De-
composition for Separated Isotropic Weights). Fix an
integer ` ≥ 3, and, for positive δ, ηavg and ηvar such
that 1− δ · (1 + ηvar) · r/d ≥ 0, let

S ′ ⊆ {{wi}1≤i≤r : assumptions (A1)-(A4) hold}.
(17)

We have the following results.

1) Assume that, given the tensor T (`) =
∑r
i=1 w

⊗`
i ,

the problem of learning {wi}1≤i≤r ∈ S ′ is ε-hard in
the sense of Definition 1 for some ε > 0. Let y(x) be
defined in (6), where σ is a polynomial with deg(σ) ≤ `
and par(σ) = par(`). Then, for any x1, . . . ,xn ∈ Rd
and for any polynomial algorithm that, given as input
{xj}1≤j≤n and {y(xj)}1≤j≤n, outputs {ŵi}1≤i≤R of
unit norm, we have that

E
{
|y(x)− ŷ(x)|2

}
(18)

≥
(
min
a,b∈R

E
{∣∣∣y(x)− (a+ b ‖x‖2

)∣∣∣2}− c1) (1− c2) ,

where ŷ(x) is defined in (7), the expectation is with
respect to x ∼ N(0d, Id) and the terms c1 and c2 are
given by (9) with σ̂1 and σ̂2 defined in (5). If we also
assume that σ is even, then (18) holds with c1 and c2
given by (10).

2) Assume that, given the tensors T (`) =
∑r
i=1 w

⊗`
i

and T (`+1) =
∑r
i=1 w

⊗`+1
i , the problem of learning

{wi}1≤i≤r ∈ S ′ is ε-hard in the sense of Definition
1 for some ε > 0. Let y(x) be defined in (6), where
σ is a polynomial with deg(σ) ≤ ` + 1. Then, for
any x1, . . . ,xn ∈ Rd and for any polynomial algorithm
that, given as input {xj}1≤j≤n and {y(xj)}1≤j≤n, out-
puts {ŵi}1≤i≤R of unit norm, we have that (18) holds,
where ŷ(x) is defined in (7), the expectation is with
respect to x ∼ N(0d, Id) and the terms c1 and c2 are
given by (9). Furthermore, if σ is even, then the terms
c1 and c2 are given by (10).

A reduction for the case of random weights is contained
in Theorem 1, stated in Section 1. Its proof follows by
combining the result of Theorem 3 with R = r with
the same proof of Theorem 4.

Let us now summarize briefly some implications of our
results. The discussion in Section 2.2 suggests that
tensor decomposition is hard in the following cases:
if the weights are random vectors, given T (3) and for
r � d3/2; if the weights are separated unit vectors,
given {T (k)}3≤k≤`, for fixed ` and for r � d. By
setting R = r, in our paper we consider a model similar
to that of [Tian, 2017,Sedghi and Anandkumar, 2015,
Janzamin et al., 2015,Zhong et al., 2017]. Our results
suggest that it will be difficult to extend those recovery
schemes to several interesting regimes:

1) d3/2 � r � d2 for random weights and activation
function σ(x) = a0+a1x+a3x

3 for some a0, a1, a3 ∈ R.

2) d � r � d/ε for separated isotropic weights and
polynomial activation function;

3) d � r � d/ε2 for separated isotropic weights and
even polynomial activation function.
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(b) Generalization error, r = 350.

0 1 2 3 4 5

10
6

10
-3

10
-2

10
-1

10
0

(c) Generalization error, r = 2500.
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(d) Estimation error, r = 50.
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(e) Estimation error, r = 350.
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(f) Estimation error, r = 2500.

Figure 1: Performance of stochastic gradient descent with Gaussian feature vectors and Haar distributed weights
for different numbers of hidden nodes r. Different curves correspond to a different step size s.

6 Numerical Experiments

We consider a two-layer neural network with input
dimension d = 50 and r hidden nodes, with r ∈
{50, 350, 2500}. The activation function σ is equal
to tanh (5x/2). The weights {wi}1≤i≤r are obtained
by concatenating r/d random unitary matrices of
size d × d that are independent and identically dis-
tributed according to the Haar measure. In par-
ticular, each of these matrices is obtained from the
SVD of a matrix whose entries that are ∼i.i.d. N(0, 1).
Then, the weights are centered by subtracting their
empirical mean. We generate n = 5 · 106 samples
{(xj , y(xj))}1≤j≤n, where {xj}1≤j≤n ∼i.i.d. N(0, Id)
and y(x) is given by (6). We perform n iterations
of stochastic gradient descent with a fixed step size
s. We also perform Polyak-Ruppert averaging, i.e.,
the algorithm outputs at step j ∈ [n] the average of
the estimates obtained so far, in order to smooth the
performance of the algorithm. Let ŷj(x) be the pre-
dictor given by (1), where {ŵi}1≤i≤r are the weights
outputted by the algorithm at step j ∈ [n].

The results are presented in Figure 1, where we plot
two different performance metrics. On top, we have
the generalization error (y(xj) − ŷj(xj))

2/(y(xj) −
yLS(xj))

2, for j ∈ [n], where yLS(xj) is the predic-

tion of the least-squares estimator with access only
to the norm of the input. In order to obtain a
smoother curve, we average the results over a window
of size 104. Note that, for r = 2500, the estimator
yLS(xj) generalizes poorly, in the sense that its loss
is close to Var {y(x)}. On the bottom, we have the
weight estimation error 1

2r

∑r
i=1 minj∈[r] ‖ŵi −wj‖2+

1
2r

∑r
i=1 minj∈[r] ‖ŵj −wi‖2, which represents the av-

erage of the minimum distances between the ground-
truth weights {wi}1≤i≤r and the estimated weights
{ŵi}1≤i≤r. Different pairs of plots correspond to dif-
ferent choices for the number of hidden nodes r, and
in each plot we have several curves for different values
of the step s. Similar results are obtained by taking
random weights of the form (11).

The numerical results corroborate the picture that we
have proved in the paper for Gaussian features. As the
number of hidden units r becomes much larger than
d (from r = d to r ≈ d3/2 and r ≈ d2), the problem
of learning the weights of the neural network becomes
harder and harder, similarly to what happens for ten-
sor decomposition. Furthermore, the generalization
error has the same qualitative behavior of the weight
estimation error: the neural network generalizes well
if and only if the weights are learned accurately.
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