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A Proof of Theorem 3

We start our proof with the following auxiliary claims.

Claim 1. Suppose that maxikWi �Aik  � and kWik = 1. We have:

1. hWi, Aii � 1� �
2
/2 for any i 2 [m];

2. |hWi, Aji|  µ/
p
n+ �, for any j 6= i 2 [m];

3.
P

j2S\{i}hWi, Aji2  O(µ2
k/n+ �

2) for any S ⇢ [m] of size at most k.

Proof. The claims (i) and (ii) clearly follow from the �-closeness and µ-incoherence properties as shown below.

hWi, Aii = 1� (1/2)kWi �Aik2 � 1� �
2
/2,

and
|hWi, Aji| = |hAi, Aji+ hWi �Ai, Aji|  µ/

p
n+ �.

For (iii), we apply Cauchy-Schwarz to bound each term inside the summation. Precisely, for any j 6= i,

hWi, Aji2  2
�
hAi, Aji2 + hWi �Ai, Aji2

�
 2µ2

/n+ 2hWi �Ai, Aji2.

Together with kAk = O(
p
m/n) = O(1), we finish proving (iii) by noting that

X

j2S\{i}

hWi, Aji2  2µ2
k/n+ 2kAT

S
(Wi �Ai)k2F  2µ2

k/n+ 2kASk2kWi �Aik2  O(µ2
k/n+ �

2).

⌅

Claim 2. Suppose kWik = 1, then maxi|hWi, ⌘i|  �⌘ log n holds with high probability.

Proof. Since ⌘ is a spherical Gaussian random vector and kWik = 1, hWi, ⌘i is Gaussian with mean 0 and variance
�
2
⌘
. Using the Gaussian tail bound for hWi, ⌘i and taking the union bound over i = 1, 2, . . . ,m, we have that

maxi|hWi, ⌘i|  �⌘ log n holds with high probability. ⌅

Proof of Theorem 3. Denote z = W
T
y + b and let i 2 [m] be fixed for a moment. (Later we use a union bound

argument for account for all i). Denote S = supp(x⇤) and R = S\{i}. Notice that xi = 0 if i 62 S by definition.
One can write the i

th entry zi of the weighted sum z as

zi = W
T

i
(ASx

⇤
S
+ ⌘) + bi

= hWi, Aiix⇤
i
+

X

j2R

hWi, Ajix⇤
j
+ hWi, ⌘i+ bi

= hWi, Aiix⇤
i
+ Zi + hWi, ⌘i+ bi,

where we write Zi =
P

j2R
hWi, Ajix⇤

j
. Roughly speaking, since hWi, Aii is close to 1, zi approximately equals x

⇤
i

if we can control the remaining terms. This will be made precise below separately for different generative models.

A.1 Case (i): Sparse coding model

For this setting, the hidden code x
⇤ is k-sparse and is not restricted to non-negative values. The nonzero entries

are mutually independent sub-Gaussian with mean 1 = 0 and variance 2 = 1. Note further that a1 2 (0, 1] and
a2 = 1 and the dictionary is incoherent and over-complete.

Since the true code takes both positive and negative values as well as sparse, it is natural to consider the hard
thresholding activation. The consistency is studied in [16] for the case of sparse coding (see Appendix C and also
work [28], Lemma 8 for a treatment of the noise.)
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A.2 Case (ii) and (iii): Non-negative k-sparse model

Recall that S = supp(x⇤) and that x
⇤
j
2 [a1, a2] for j 2 S. Cauchy-Schwarz inequality implies

|Zi| =
���
X

j2R

hWi, Ajix⇤
j

��� 
sX

j2R

hWi, Aji2kx⇤k  a2

r
µ2k2

n
+ k�2,

where we use bound (ii) in Claim 1 and kx⇤k  a2

p
k.

If i 2 S, then w.h.p.

zi = hWi, Aiix⇤
i
+ Zi + hWi, ⌘i

� (1� �
2
/2)a1 � a2

r
µ2k2

n
+ k�2 � �⌘ log n+ bi > 0

for bi � �(1� �)a1 + a2�
p
k and a2�

p
k ⌧ (1� �)a1, k = O(1/�2) = O(log2 n), µ  �

p
n/k, and �⌘ = O(1/

p
n).

On the other hand, when i /2 S then w.h.p.

zi = Zi + hWi, ⌘i+ bi

 a2

r
µ2k2

n
+ k�2 + �⌘ log n+ bi

 0

for bi  �a2

q
µ2k2

n
+ k�2 � �⌘ log n ⇡ �a2�

p
k.

Due to the use of Claim 2, these results hold w.h.p. uniformly for all i and so supp(x) = S for x = ReLU(WT
y+b)

w.h.p. by We re-use the tail bound P[Zi � ✏] given in [11], Theorem 3.1.

Moreover, one can also see that with high probability zi > a1/2 if i 2 S and zi < a2�
p
k < a1/4 otherwise. This

results hold w.h.p. uniformly for all i and so x = threshold1/2(z) has the same support as x
⇤ w.h.p. ⌅

B Proof of Theorem 4

B.1 Case (i): Mixture of Gaussians

We start with simplifying the form of gi using the generative model 3 and Theorem 3. First, from the model we
can have pi = P[x⇤

i
6= 0] = ⇥(1/m) and E[⌘] = 0 and E[⌘⌘T ] = �

2
⌘
I. Second, by Theorem 3 in (i), 1xi 6=0 = x

⇤
i
= 1

with high probability. As such, under the event we have xi = �(WT

i
y + bi) = (WT

i
y + bi)1x⇤

i 6=0 for both choices
of � (Theorem 3).

To analyze gi, we observe that

� = E[(WT

i
yI + biI + yW

T

i
)(y �Wx)(1x⇤

i 6=0 � 1xi 6=0)]

has norm of order O(n�w(1)) since the failure probability of the support consistency event is sufficiently small for
large n, and the remaining term has bounded moments. One can write:

gi = �E[1x⇤
i 6=0(W

T

i
yI + biI + yW

T

i
)(y �Wx)] + �

= �E[1x⇤
i 6=0(W

T

i
yI + yW

T

i
+ biI)(y �WiW

T

i
y � biWi)] + �

= �E[1x⇤
i 6=0(W

T

i
yI + yW

T

i
)(I �WiW

T

i
)y] + biE[1x⇤

i 6=0(W
T

i
yI + yW

T

i
)]Wi

� biE[1x⇤
i 6=0(I �WiW

T

i
)y] + b

2
i
WiE[1x⇤

i 6=0] + �

= g
(1)
i

+ g
(2)
i

+ g
(3)
i

+ pib
2
i
Wi + �,
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Next, we study each of g(t)
i

, t = 1, 2, 3, by using the fact that y = Ai + ⌘ as x
⇤
i
= 1. To simplify the notation,

denote �i = hWi, Aii. Then

g
(1)
i

= �E[(WT

i
(Ai + ⌘)I + (Ai + ⌘)WT

i
)(I �WiW

T

i
)(Ai + ⌘)1x⇤

i 6=0]

= �E[(�iI +AiW
T

i
+ hWi, ⌘iI + ⌘W

T

i
)(I �WiW

T

i
)(Ai + ⌘)1x⇤

i 6=0]

= �(�iI +AiW
T

i
)(Ai � �iWi)P[x⇤

i
6= 0]� E[(hWi, ⌘iI + ⌘W

T

i
)(I �WiW

T

i
)⌘1x⇤

i 6=0]

= �pi�iAi + pi�
2
i
Wi � E[(hWi, ⌘iI + ⌘W

T

i
)(I �WiW

T

i
)⌘1x⇤

i 6=0],

where we use pi = P[x⇤
i
6= 0] and denote kWik = 1. Also, since ⌘ is spherical Gaussian-distributed, we have:

E[(hWi, ⌘iI + ⌘W
T

i
)(I �WiW

T

i
)⌘1x⇤

i 6=0] = piE[hWi, ⌘i⌘ � hWi, ⌘i2Wi]

= pi�
2
⌘
(1� kWik2)Wi = 0,

To sum up, we have

g
(1)
i

= �pi�iAi + pi�
2
i
Wi (6)

For the second term,

g
(2)
i

= biE[1x⇤
i 6=0(W

T

i
yI + yW

T

i
)]Wi = biE[1x⇤

i 6=0(W
T

i
(Ai + ⌘)I + (Ai + ⌘)WT

i
)]Wi

= biE[(�iWi + kWik2Ai)1x⇤
i 6=0]

= pibi�iWi + pibiAi. (7)

In the second step, we use the independence of spherical ⌘ and x. Similarly, we can compute the third term:

g
(3)
i

= �bi(I �WiW
T

i
)E[y1x⇤

i 6=0] = �bi(I �WiW
T

i
)E[(Ai + ⌘)1x⇤

i 6=0]

= �pibi(I �WiW
T

i
)Ai

= �pibiAi + pibi�iWi (8)

Putting (6), (7) and (8) together, we have

gi = �pi�iAi + pi(�
2
i
+ 2bi�i + b

2
i
)Wi + �

Having established the closed-form for gi, one can observe that when bi such that �2
i
+ 2bi�i + b

2
i
⇡ �i, gi roughly

points in the same desired direction to A
⇤ and suggests the correlation of gi with Wi �Ai. Now, we prove this

result.

Proof of Lemma 1. Denote v = pi(�2
i
+ 2bi�i + b

2
i
� �i)Wi + �. Then

gi = �pi�iAi + pi(�
2
i
+ 2bi�i + b

2
i
)Wi + � (9)

= pi�i(Wi �Ai) + v,

By expanding (9), we have

2hv,Wi �Aii =
1

pi�i

kgik2 � pi�ikWi �Aik2 �
1

pi�i

kvk2.

Using this equality and taking inner product with Wi �Ai to both sides of (9), we get

2hgi,Wi �Aii = pi�ikWi �Aik2 +
1

pi�i

kgik2 �
1

pi�i

kvk2.

We need an upper bound for kvk2. Since

|(bi + �i)
2 � �i|  2(1� �i)
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and
2(1� �i) = kWi �Aik2,

we have:
|(bi + �i)

2 � �i|  kWi �Aik2  �kWi �Aik

Notice that

kvk2 = kpi(�2
i
+ 2bi�i + b

2
i
� �i)Wi + �k2

 2p2
i
�
2kWi �Aik2 + 2k�k2.

Now one can easily show that

2hgi,Wi �Aii � pi(�i � 2�2)kWi �Aik2 +
1

pi�i

kgik2 �
2

pi�i

k�k2.

⌅

B.2 Case (ii): General k-Sparse Coding

For this case, we adopt the same analysis as used in Case 1. The difference lies in the distributional assumption of
x
⇤, where nonzero entries are independent sub-Gaussian. Specifically, given the support S of size at most k with

pi = P[i 2 S] = ⇥(k/m) and pij = P[i, j 2 S] = ⇥(k2/m2), we suppose E[x⇤
i
|S] = 0 and E[x⇤

S
x
⇤T
S

|S] = I. For
simplicity, we choose to skip the noise, i.e., y = Ax

⇤ for this case. Our analysis is robust to iid additive Gaussian
noise in the data; see [28] for a similar treatment. Also, according to Theorem 3, we set bi = 0 to obtain support
consistency. With zero bias, the expected update rule gi becomes

gi = �E[(WT

i
yI + yW

T

i
)(y �Wx)1xi 6=0].

For S = supp(x⇤), then y = ASx
⇤
S
. Theorem 3 in (ii) shows that supp(x) = S w.h.p., so under that event we can

write Wx = WSxS = WS(WT

S
y). Similar to the previous cases, � denotes a general quantity whose norm is of

order n
�w(1) due to the converging probability of the support consistency. Now, we substitute the forms of y and

x into gi:

gi = �E[(WT

i
yI + yW

T

i
)(y �Wx)1xi 6=0]

= �E[(WT

i
yI + yW

T

i
)(y �WSW

T

S
y)1x⇤

i 6=0] + �

= �E[(I �WSW
T

S
)(WT

i
ASx

⇤
S
)ASx

⇤
S
1x⇤

i 6=0]� E[(ASx
⇤
S
)WT

i
(I �WSW

T

S
)ASx

⇤
S
1x⇤

i 6=0] + �

= g
(1)
i

+ g
(2)
i

+ �.

Write
g
(1)
i,S

= �E[(I �WSW
T

S
)(WT

i
ASx

⇤
S
)ASx

⇤
S
1x⇤

i 6=0|S],

and
g
(2)
i,S

= �E[(ASx
⇤
S
)WT

i
(I �WSW

T

S
)ASx

⇤
S
1x⇤

i 6=0|S],

so that g
(1)
i

= E(g(1)
i,S

) and g
(2)
i

= E(g(2)
i,S

). It is easy to see that E[x⇤
j
x
⇤
l
1x⇤

i 6=0|S] = 1 if i = j = l 2 S and
E[x⇤

i
x
⇤
l
1x⇤

i 6=0|S] = 0 otherwise. Therefore, g(1)
i,S

becomes

g
(1)
i,S

= �E[(I �WSW
T

S
)(WT

i
ASx

⇤
S
)ASx

⇤
S
1x⇤

i 6=0|S] (10)

= �
X

j,l2S

E[(I �W
T

S
WS)(W

T

i
Aj)Alx

⇤
j
x
⇤
l
1x⇤

i 6=0|S]

= ��i(I �WSW
T

S
)Ai, (11)
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where we use the earlier notation �i = W
T

i
Ai. Similar calculation of the second term results in

g
(2)
i,S

= �E[(ASx
⇤
S
)WT

i
(I �WSW

T

S
)ASx

⇤
S
1x⇤

i 6=0|S] (12)

= �E[
X

j2S

x
⇤
j
AjW

T

i
(I �WSW

T

S
)
X

l2S

x
⇤
l
Al1x⇤

i 6=0|S]

= �
X

j,l2S

E[AjW
T

i
(I �WSW

T

S
)Alx

⇤
j
x
⇤
l
sgn(x⇤

i
)|S]

= �AiW
T

i
(I �WSW

T

S
)Ai (13)

Now we combine the results in (10) and (12) to compute the expectation over S.

gi = E[g(1)
i,S

+ g
(2)
i,S

] + � (14)

= �E[�i(I �WSW
T

S
)Ai +AiW

T

i
(I �WSW

T

S
)Ai] + �

= �E[2�iAi � �i

X

j2S

WjW
T

j
Ai �AiW

T

i

X

j2S

WjW
T

j
Ai] + �

= �2pi�iAi + E[�i

X

j2S

WjW
T

j
Ai +

X

j2S

hWi,WjihAi,WjiAi] + �

= �2pi�iAi + E[�2
i
Wi +

X

j2R

hAi,WjiWj + �ikWik2Ai +
X

j2R

hWi,WjihAi,WjiAi] + �,

where pi = P[i 2 S] and R = S\{i}. Moreover, kWik = 1, hence

gi = �pi�iAi + pi�
2
i
Wi +

X

j2[m]\{i}

pij�ihAi,WjiWj + pijhWi,WjihAi,WjiAi) + �

= �pi�iAi + pi�
2
i
Wi + �iW�idiag(pij)W

T

�i
Ai + (WT

i
W�idiag(pij)W

T

�i
Ai)Ai + �, (15)

for W�i = (W1, . . . ,Wi�1,Wi+1, . . . ,Wm) with the i
th column being removed, and diag(pij) denotes the diagonal

matrix formed by pij with j 2 [m]\{i}.

Observe that ignoring lower order terms, gi can be written as pi�i(Wi � Ai) + pi�i(�i � 1)Wi, which roughly
points in the same desired direction to A. Rigorously, we argue the following:

Lemma 2. Suppose W is (�, 2)-near to A. Then

2hgi,Wi �Aii � pi�ikWi �Aik2 +
1

pi�i

kgik2 �O(pik
2
/n

2
�i)

Proof. We proceed with similar steps as in the proof of Lemma 1. By nearness,

kWk  kW �Ak+ kAk  3kAk  O(
p
m/n).

Also, pi = ⇥(k/m) and pij = ⇥(k2/m2). Then

kW�idiag(pij)W
T

�i
Aik  pikW�idiag(pij/pi)W

T

�i
k

 pikW�ik2 max
j 6=i

(pij/pi) = O(pik/n).

Similarly,
kWT

i
W�idiag(pij)W

T

�i
Ai)Aik  O(pik/n).

Now we denote

v = pi�i(�i � 1)Wi + �iW�idiag(pij)W
T

�i
Ai + (WT

i
W�idiag(pij)W

T

�i
Ai)Ai + �.

Then
gi = pi�i(Wi �Ai) + v
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where kvk  pi�i(�/2)kWi �Aik+O(pik/n) + k�k. Therefore, we obtain

2hgi,Wi �Aii � pi�i(1�
�
2

2
)kWi �Aik2 +

1

pi�i

kgik2 �O(pik
2
/n

2
�i).

where we assume that k�k is negligible when compared with O(pik/n). ⌅
Adopting the same arguments in the proof of Case (i), we are able to get the descent property column-wise for
the normalized gradient update with the step size ⇣ = maxi(1/pi�i) such that there is some ⌧ 2 (0, 1):

kW s+1
i

�Aik2  (1� ⌧)kW s

i
�Aik2 +O(pik

2
/n

2
�i).

Since pi = ⇥(k/m), Consequently, we will obtain the descent in Frobenius norm stated in Theorem 4, item (ii).

Lemma 3 (Maintaining the nearness). kW �Ak  2kAk.

Proof. The proof follows from [16] (Lemma 24 and Lemma 32).

B.3 Case (iii): Non-negative k-Sparse Coding

We proceed with the proof similarly to the above case of general k-sparse code. Additional effort is required
due to the positive mean of nonzero coefficients in x

⇤. For x = �(WT
y + b), we have the support recovery for

both choices of � a shown in (ii) and (iii) of Theorem 3. Hence we re-use the expansion in [11] to compute the
expected approximate gradient. Note that we standardize Wi such that kWik = 1 and ignore the noise ⌘.

Let i be fixed and consider the approximate gradient for the i
th column of W . The expected approximate gradient

has the following form:

gi = �E[1xi 6=0(W
T

i
yI + biI + yW

T

i
)(y �Wx)] = ↵iWi � �iAi + ei,

where

↵i = 2pi�
2
i
+ 2

X

j 6=i

pijhWi, Aji2 + 22
1

X

j 6=i

pij�ihWi, Aji+ 
2
1

X

j 6=l 6=i

pijlhWi, AjihWi, Ali

+ 21pibi�i + 21

X

j 6=i

pijbihWi, Aji+ pib
2
i
;

�i = 2pi�i � 2

X

j 6=i

pijhWi,WjihAi,Wji+ 
2
1

X

j 6=i

pijhWi, Aji � 
2
1

X

j 6=i

pijhWi,WjihWj , Aji

� 
2
1

X

j 6=l 6=i

pijlhWi,WjihWj , Ali � 1

X

j 6=i

pijbihWi,Wji;

and ei is a term with norm keik  O(max (2
1,

2
2)pik/m) – a rough bound obtained in [11] (see the proof of

Lemma 5.2 in pages 26 and 35 of [11].) As a sanity check, by plugging in the parameters of the mixture of
Gaussians to ↵i,�i and ei, we get the same expression for gi in Case 1. We will show that only the first term in
↵i is dominant except ones involving the bias bi. The argument for �i follows similarly.

Claim 3.

↵i = 2pi�
2
i
+ 2O(pik/m) + 22

1pi�iO(k/
p
m) + 

2
1O(pik

2
/m)

+ 21pibi�i + 21pibiO(k/
p
m) + pib

2
i
.

Proof. We bound the corresponding terms in ↵i one by one. We start with the second term:
mX

j 6=i

pijhWi, Aji2  max
j 6=i

pij

mX

j 6=i

hWi, Aji2

 max
j 6=i

pijkAT

�i
Wik2F

 O(pik/m),
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since pij = ⇥(k2/m2) = ⇥(pik/m). Similarly, we have

|
mX

j 6=i

pijhWi, Aji| = |WT

i

mX

j 6=i

pijAj |

 kWikkAk
sX

j 6=i

p2
ij

 O(pik/
p
m),

which leads to a bound on the third and the sixth terms. Note that this bound will be re-used to bound the
corresponding term in �i.

The next term is bounded as follows:

X

j 6=l

j,l 6=i

pijlhWi, AjihWi, Ali = W
T

i

X

j 6=l

j,l 6=i

pijlAjA
T

l
Wi


���
X

j 6=l

j,l 6=i

pijlAjA
T

l

���kWik2

 O(pik
2
/m),

where M =
P

j 6=l

j,l 6=i

pijlAjA
T

l
= A�iQA

T

�i
for Qjl = pijl for j 6= l and Qjl = 0 otherwise. Again, A�i

denotes the matrix W with its i
th column removed. We have pijl = ⇥(k3/m3)  O(qik2/m); therefore,

kMk  kQkF kAk2  O(qik2/m). ⌅

Claim 4.

�i = 2pi�i � 2O(pik/m) + 
2
1O(pik/

p
m)� 

2
1O(pik/

p
m)

+ 
2
1O(pik

2
/m)� 1biO(pik/

p
m).

Proof. We proceed similarly to the proof of Claim 3. Due to nearness and the fact that kA⇤k = O(
p
m/n) = O(1),

we can conclude that kWk  O(1). For the second term, we have

k
X

j 6=i

pijhWi,WjihAi,Wjik = kWT

i

X

j 6=i

pijWjW
T

j
Aik

 max
j 6=i

pijkW�iW
T

�i
kkWikkAik

 O(pik/m),

where WjW
T

j
are p.s.d and so 0 �

P
j 6=i

pijWjW
T

j
� (maxj 6=i pij)(

P
j 6=i

WjW
T

j
) � maxj 6=i pijW�iW

T

�i
. To

bound the third one, we use the fact that |�j | = |hWj , Aji|  1. Hence from the proof of Claim 3,

k
X

j 6=i

pijhWi,WjihWj , Ajik = k
X

j 6=i

pij�jhWi,Wjik

 kWikkWk
sX

j 6=i

(pij�j)2

 O(pik/
p
m),
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which is also the bound for the last term. The remaining term can be bounded as follows:

k
X

j 6=l 6=i

pijlhWi,WjihWj , Alik  k
X

j 6=l 6=i

pijlWjW
T

j
Alk


X

l 6=i

kpijlW�iW
T

�i
k


X

l 6=i

max
j 6=l 6=i

pijlkW�ik2

 O(pik
2
/m).

⌅
When bi = 0, from (3) and (4) and bi 2 (�1, 0), we have:

↵i = pi(2�
2
i
+ 21pibi�i + b

2
i
) +O(max(2

1,2)k/
p
m)

and
�i = 2pi�i +O(max(2

1,2)k/
p
m),

where we implicitly require that k  O(
p
n), which is even weaker than the condition k = O(1/�2) stated in

Theorem 3. Now we recall the form of gi:

gi = �2pi�iAi + pi(2�
2
i
+ 21pibi�i + b

2
i
)Wi + v (16)

where v = O(max(2
1,2)k/

p
m)Ai +O(max(2

1,2)k/
p
m)Wi + ei. Therefore kvk  O(max(2

1,2)k/
p
m).

Lemma 4. Suppose A is �-close to A
⇤

and the bias satisfies |2�
2
i
+ 21pibi�i + b

2
i
� 2�i|  22(1� �i), then

2hgi,Wi �Aii � 2pi(�i � 2�2)kWi �Aik2 +
1

2pi�i

kgik2 �O(max(1,2/
2
1)

k
2

pim
)

The proof of this lemma and the descent is the same as that of Lemma 1 for the case of Gaussian mixture. Again,
the condition for bias holds when bi = 0 and the thresholding activation is used; but breaks down when the
nonzero bias is set fixed across iterations.

Now, we give an analysis for a bias update. Similarly to the mixture of Gaussian case, the bias is updated as

b
s+1 = b

s
/C,

for some C > 1. The proof remains the same to guarantee the consistency and also the descent.

The last step is to maintain the nearness for the new update. Since it is tedious to argue that for the complicated
form of gi, we can instead perform a projection on convex set B = {W |W is �-close to A

⇤ and kWk  2kAk} to
guarantee the nearness. The details can be found in [16].

B.4 Auxiliary Lemma

In our descent analysis, we assume a normalization for W ’s columns after each descent update. The descent
property is achieved for the unnormalized version and does not directly imply the �-closeness for that current
estimate. In fact, this is shown by the following lemma:

Lemma 5. Suppose that kW s

i
k = kAik = 1 and kW s

i
� Aik  �s. The gradient update fW s+1

i
satisfies

kfW s+1
i

�Aik  (1� ⌧)kW s

i
�Aik+ o(�s). Then, for

1��s
2��s

 ⌧ < 1, we have

kW s+1
i

�Aik  (1 + o(1))�s,

where W
s+1
i

=
fW s+1

i

kfW s+1
i k

.
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Proof. Denote w = kfW s+1
i

k. Using a triangle inequality and the descent property, we have

kfW s+1
i

� wAik = kfW s+1
i

�Ai + (1� w)Aik

 kfW s+1
i

�Aik+ k(1� w)Aik (kAik = 1)

 (1� ⌧)kW s

i
�Aik+ (1� ⌧)kW s

i
�Aik+ o(�s)

 2(1� ⌧)kW s

i
�Aik+ o(�s).

At the third step, we use |1�w|  kfW s+1
i

�Aik  (1�⌧)kW s

i
�Aik+o(�s). This also implies w � 1�(1�⌧�o(1))�s.

Therefore,

kW s+1
i

�Aik  2(1� ⌧)

w
kW s

i
�Aik+ o(�s)

 2(1� ⌧)

(1 + (1� ⌧ � o(1))�s)
kW s

i
�Aik+ o(�s).

This implies that when the condition 1+�s
2+�s

 ⌧ < 1 holds, we get:

kW s+1
i

�Aik  (1 + o(1))�s.

⌅


