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PSL Research University

Paris, France

Organization of the Appendix

A. Calibration and fast rates for surrogate methods

A.1. Prerequisites on surrogate methods

A.2. Calibration

A.3. Improved calibration under low noise

B. Multilabel and ranking losses

B.1. Prerequisites

B.2. On the optimality of the QS

B.3. Analysis of the losses

1 Calibration and fast rates for surrogate methods

The goal of Sec. 1 is to provide a generic method to sistematically improve the relation between
excess risks of surrogate methods. Our analysis is a generalization of the one in [1], which was
done for binary classification under 0-1 loss, to the case of general discrete losses.

In Sec. 1.1, we introduce the basic quantities used for the analysis of surrogate methods. Then,
in Sec. 1.2 we focus on the central concept of calibration, which is key to study the statistical
properties of these methods. In particular, we will re-derive the calibration properties of the
Quadratic Surrogate (QS), which were proved in [2]. Finally, in Sec. 1.3, we derive our main result,
which generalizes the Tsybakov condition, existing for multiclass and binary [3, 4] classification.

1.1 Prerequisites on surrogate methods

Given a loss L : Z×Y→ R and a probability measure P on X×Y, recall that the goal of supervised
learning is to find the function f∗ that minimizes the expected risk E(f) of the loss,

f∗(x) = arg min
z∈Z

`(z, x), E(f) = E `(f(X), X), (1)

where `(z, x) =
∫
L(z, Y )dP (Y |x) is the Bayes risk. The goal of surrogate methods is to design a

tractable surrogate loss S : C×Y→ R defined on a surrogate space C, such that when approximately
minimized by a surrogate function ĝ : X → C, then it produces a good estimator f̂ of f∗. The
mapping from ĝ to f̂ is performed with a decoding function d : C→ Z.
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For a given surrogate S, we define the following quantities,

g∗(x) = arg min
v∈C

W (v, x), W (v, x) =

∫
S(v, Y )dP (Y |x), R(g) = EW (g(X), X), (2)

were here, g∗ is the optimal surrogate function, W (v, x) is the Bayes surrogate risk and R(g) is the
expected surrogate risk of g.

An important requirement for a surrogate method is the so-called Fisher consistency, which says
that the optimum g∗ of the surrogate S gives the optimum f∗ of the loss L. It can be written as
f∗ = d ◦ g∗.

Example 1.1 (Surrogate elements for the QS). In the case of the QS, we have that ,

S(v, y) = ‖v − Uy‖2Rr , C = Rr, d(v) = arg min
z∈Z

Fz · v, (3)

and its Bayes excess risk W (ĝ(x), x)−W (g∗(x), x) has the following form,

W (ĝ(x), x)−W (g∗(x), x) = ‖ĝ(x)− g∗(x)‖22. (4)

Moreover, it is Fisher consistent by construction ([2]).

Example 1.2 (Surrogate elements for the CRFs and SSVMs). (Assume Z = Y) Conditional
Random Fields (CRFs) and Structural SVMs (SSVMs) are also surrogate methods for structured
prediction. In this case, they split the output into a set of parts/cliques C as {Yc}c∈C , which encode
the structure of the output set. Then, they both consider

C = Rr, d(v) = arg max
z∈Z

∑
c∈C

vzc , (5)

where r =
∑
c∈C |Yc|. The surrogate for CRFs has the following form (note that it does not

dependent on any L),

S(v, y) = log

∑
y′∈Y

exp

(∑
c∈C

vy′c

)−∑
c∈C

vyc . (6)

For SSVM, one assumes that the loss decomposes accordingly to the structure given by C. Then,
it takes the following form,

S(v, y) = max
y′∈Y

{∑
c∈C

(
{L(yc, y

′
c) + vy′c}

)}
−
∑
c∈C

vyc . (7)

1.2 Calibration

Fisher consistency is an essential property of a surrogate method, nevertheless, it is only a property
at the optimum. In practice the surrogate will be never optimized exactly, this is why it is important
to study the concept of calibration, i.e, how the excess risk of the surrogate relates to the excess
risk of the loss of interest.

This concept is formalized through the following definition 1.3.

Definition 1.3 (Calibration and Calibration function). We say that a surrogate S is calibrated
w.r.t a loss L if there exists a convex function HL,S : R → R with HL,S(0) = 0 and positive in
(0,∞), such that,

HL,S(`(d ◦ g(x), x)− `(f∗(x), x)) ≤W (g(x), x)−W (g∗(x), x), (8)

for every x ∈ X.

Calibration means that for every x, one can control the excess of the Bayes risk by the excess
Bayes risk of the surrogate.

Let’s re-derive the form of the calibration function for the QS.
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Lemma 1.4 (Calibration function for QS [2]). Assumption 1 holds for the QS with

HL,S(ε) =
ε2

4‖F‖2∞
(9)

Proof. Let’s first decompose the Bayes risk into two terms A and B:

`(f̂(x), x)− `(f∗(x), x) = {`(f̂(x), x)− ̂̀(f̂(x), x)}

+ {̂̀(f̂(x), x)− `(f∗(x), x)}
= A+B.

The first term, clearly A ≤ supz∈Z |̂̀(z, x)− `(z, x)|. For the second term , we use the fact that for
any given two functions η, ζ : Z→ R, it holds that |minz η(z)−minz ζ(z)| ≤ supz |η(z)− ζ(z)|. As

f̂(x) minimizes ̂̀(·, x) and f∗(x) minimizes `(·, x), we can conclude also that B ≤ supz∈Z |̂̀(z, x)−
`(z, x)|. Using the fact that ̂̀(z, x) = Fz ĝ(x) and `(z, x) = Fzg

∗(x), we can conclude that,

(`(f(x), x)− `(f∗(x), x))2 ≤ 2 sup
z∈Z

(̂̀(z, x)− `(z, x))2 = 4‖F‖2∞‖ĝ(x)− g∗(x)‖22. (10)

Re-arranging and using Eq. (4) gives the final result.

The following important Theorem shows how Eq. (9) translates into a relation between excess
risks, which are the quantities that we are ultimately interested at.

Theorem 1.5 (From Bayes risks to risks). Suppose Assumption 1 holds. Then,

HL,S(E(f)− E(f∗)) ≤ R(g)− R(g∗) (11)

Proof. This is a simple application of Jensen inequality.

HL,S(E(f)− E(f∗)) = HL,S(EX(`(d ◦ g(x), x)− `(f∗(x), x)))

≤ EX HL,S(`(d ◦ g(x), x)− `(f∗(x), x))

= EXW (g(x), x)−W (g∗(x), x)

= R(g)− R(g∗)

If we combine Thm. 1.5 with Lemma 1.4, we obtain the comparison inequality for the QS.

Corollary 1.6 (Comparison inequality for QS [2]). For the QS, we have that

E(f)− E(f∗) ≤ 2 ‖F‖∞
√
R(g)− R(g∗) (12)

1.3 Improved calibration under low noise

Thm. 1.5 gives the ability to translate learning rates of the surrogate to learning rates of the full
risk. However, as we will show, Eq. (11) can be loose in the presence of low noise at the boundary
decision.

To formalize this, we will improve the result from the relation given by Thm. 1.5 under the
p-noise assumption. We recall that the p-noise condition states that

PX(γ(X) < ε) = o(εp), (13)

where γ(x) = minz′ 6=f∗(x) `(z
′, x)−`(f∗(x), x), is called the margin, and is defined as the minimum

suboptimality gap between labels.
We have the following Lemma 1.7.

Lemma 1.7. If the p-noise condition holds, then 1/γ ∈ Lp(PX).
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Proof.

‖1/γ‖pLp(PX) = E 1/γ(X)p

=

∫ ∞
0

ptp−1PX(1/γ(X) > t)dt

=

∫ ∞
0

ptp−1PX(γ(X) < t−1)dt.

The integral converges if PX(γ(X) < t−1) decreases faster than t−p.

Let’s now define the error set as Xf = {x ∈ X | f(x) 6= f∗(x)}. The following Lemma 1.8, which
bounds the probability of error by a power of the excess risk, is a generalization of the Tsybakov
Lemma [4, Prop.1] for general discrete losses.

Lemma 1.8 (Bounding the size of the error set). If 1/γ ∈ Lp(PX), then

PX(Xf ) ≤ γ
1

p+1
p (E(f)− E(f∗))

p
p+1 (14)

Proof. By the definition of the margin γ(x), we have that:

1(f(x) 6= f∗(x)) ≤ 1/γ(x)∆`(f(x), x) (15)

By taking the p
p+1 -th power on both sides, taking the expectation w.r.t PX and finally applying

Hölder’s inequality, we obtain the desired result.

Before proving Thm. 1.10, we will need the following useful Lemma 1.9 of convex functions.

Lemma 1.9 (Property of convex functions). Suppose h : R → R is convex and h(0) = 0. Then,
for all x > 0, 0 ≤ y ≤ x,

h(y) ≤ y

x
h(x) and h(x)/x is increasing on (0,∞). (16)

Proof. Take α = y
x < 1. The result follows directly by definition of convexity, as h(y) = h((1 −

α)0 +αx) ≤ (1−α)h(0) +αh(x) = y
xh(x). For the second part, re-arrange the terms in the above

inequality.

The following Thm. 1.10, is an adaptation of Thm. 10 of [1], which was specific for binary 0-1
loss, now adapted to the case of general discrete losses.

Theorem 1.10 (Improved Calibration). Suppose that the surrogate S is calibrated with calibration
function HL,S (see Eq. (8)) and the p-noise condition holds. Then, we have that

HL,S,p(E(d ◦ g)− E(f∗)) ≤ R(g)− R(g∗), (17)

where

HL,S,p(ε) = (γpε
p)

1
p+1HL,S

(
1

2
(γ−1
p ε)

1
p+1

)
. (18)

Moreover, we have that HL,S,p(ε) ≥ γ
1

p+1
p HL,S(ε/(2γ

1
p+1
p )). Hence, HL,S,p never provides a worse

rate than HL,S.

Proof. (Of Thm. 1.10). Write the excess Bayes risk as ∆`(z′, x) = `(z′, x)− `(f∗(x), x).
We split the excess Bayes risk into a part with low noise ∆`(f(x), x) ≤ t and a part with high

noise ∆`(f(x), x) ≥ t. The first part will be controlled by the p-noise assumption and the second
part by Eq. (8).

E(d ◦ g)− E(f∗) = EX ∆`(f(X), X)

= E {1(Xf )∆`(f(X), X)}
= E {∆`(f(X), X)1(Xf ∩ {∆`(f(X), X) ≤ t}}
+ E {∆`(f(X), X)1(Xf ∩ {∆`(f(X), X) ≥ t}}
= A+B.
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• Bounding the error in the region with low noise A:

A ≤ tPX(Xf ) ≤ tγ
1

p+1
p (E(d ◦ g)− E(f∗))

p
p+1 , (19)

where in the last inequality we have used Lemma 1.8.

• Bounding the error in the region with high noise B:

We have that

∆`(f(x), x)1(∆`(f(x), x) ≥ t) ≤ t

HL,S(t)
HL,S(∆`(f(x), x)) (20)

In the case ∆`(f(x), x) < t, inequality in Eq. (20) follows from the fact that HL,S is nonneg-
ative. For the case ∆`(f(x), x) > t, apply Lemma 1.9 with h = HL,S , x = ∆`(f(x), x) and
y = t.

From Eq. (9), we have that E{1(Xf )HL,S(∆`(f(X), X))} ≤ R(g)− R(g∗). Hence,

B ≤ t

HL,S(t)
(R(g)− R(g∗)) (21)

Putting everything together,

E(d ◦ g)− E(f∗) ≤ tγ
1

p+1
p (E(d ◦ g)− E(f∗))

p
p+1 +

t

HL,S(t)
(R(g)− R(g∗)), (22)

and hence, (
E(d ◦ g)− E(f∗)

t
− γ

1
p+1
p (E(d ◦ g)− E(f∗))

p
p+1

)
HL,S(t) ≤ R(g)− R(g∗). (23)

Choosing t = 1
2γ

−1
p+1
p (E(d ◦ g)− E(f∗))

1
p+1 and substituting finally gives Eq. (18). The second part

of the Theorem follows because
HL,S(t)

t is non-decreasing by Lemma 1.9.

Finally, if we apply Thm. 1.10 to the QS, we get the desired result as Cor. 1.11.

Corollary 1.11 (Improved comparison inequality for QS). For the QS, we have that

E(f)− E(f∗) ≤ γ
1

p+2
p

(
16‖F‖2∞(R(g)− R∗)

) p+1
p+2 . (24)

Proof. Substituting HL,S(ε) = ε2

4‖F‖2∞
in Eq. (18), gives that,

HL,S,p =
ε

p+2
p+1

γ
1

p+1
p 16‖F‖2∞

. (25)

Reversing the relation gives the comparison inequality in Eq. (24).

2 Multilabel and ranking losses

The goal of this section is to derive all of the constants appearing on Table 1 of the paper.
In Sec. 2.1, we recall the elements that we need in order to derive the constants. In Sec. 2.2, we

introduce the main tool from [5] that we use in order to study the optimality of the QS. Finally,
the main bulk is in Sec. 2.3, where we analyse each loss separately.
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2.1 Prerequisites.

Remember that the goal here is to study the statistical and computational properties of the QS-
estimator f̂n : X −→ Z defined as

f̂n(x) = arg min
z∈Z

n∑
i=1

αi(x)L(z, yi). (26)

Recall that the statistical complexity is determined by the following quantity,

L = FU> + c1. (27)

where F = (Fz)z∈Z ∈ R|Z|×r, U = (Uy)y∈Y ∈ R|Y|×r, c ∈ R is a scalar and 1 ∈ R|Z|×|Y| is the
matrix of ones, i.e. 1ij = 1 and r ∈ N. Here, Fz is the z-th row of F and Uy the y-th row of U .
We denote by affdim(L) the affine dimension of the loss L, which is defined as the minimum r for
which Eq. (27) holds.

Recall that the quantity of interest for the statistical complexity is

A =
√
r‖F‖∞Umax. (28)

The inference complexity corresponds to the computational complexity of solving Eq. (26).

2.2 On the optimality of the QS.

We use results from [5] in order to study the optimality of the dimension of the QS. We implicitly
use the concept of convex calibration dimension of a loss L (see Def. 10 in [5]), which is defined as
the minimum dimension over all consistent convex surrogates w.r.t L. In the following Thm. 2.1
(their Thm. 18), they provide a sufficient condition to lower bound this dimension.

Theorem 2.1. (In [5]) Let L ∈ R|Z|×|Y| the loss matrix. If ∃Π ∈ relint(∆|Y|), c ∈ R, such
that LΠ = c1, then there cannot exist any consistent convex surrogate with dimension less than
affdim(L)−1. Here, ∆|Y| is the simplex of |Y| dimensions and relint(A) denotes the relative interior
of the set A.

In particular, Thm. 2.1 says that if there exists at least one distribution Π at the interior of the
simplex for which the Bayes risk is the same for all labels, then one can’t hope to be consistent
by estimating less than affdim(L) − 1 scalar functions. In particular, this means that the QS
is essentially optimal over all surrogate methods, in the sense that it estimates affdim(L) scalar
functions.

For each loss, we test the condition given by Thm. 2.1 to show the optimality (or not) of the
Quadratic Surrogate approach.

Note that there exist problems for which you can find consistent surrogates with dimension much
smaller than affdim(L). In ordinal regression, where the discrete labels have a natural order, there
exist one dimensional surrogates [6] despite the loss matrix being full rank.

2.3 Analysis of the losses

Notation. In the following we denote by m ∈ N the number of classes of a multilabel/ranking
problem, by Pm the power-set of [m] = {1, . . . ,m} and by Sm the set of permutations of m-
elements. In particular note that in the multilabel problems both the output space Z and the
observation space Y are equal to Pm, while in ranking Z = Sm and Y = [R]m, the set of observed
relevance scores for the m documents where R is the highest relevance [7]. Finally we denote by
[v]j the j-th element of a vector v and we identify Pm with {0, 1}m, moreover σ(j) is the j-th
element of the permutation σ, for σ ∈ Sm, j ∈ [m].
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0-1 loss

The 0-1 loss is defined as 0 if the subsets are exactly equal and 1 otherwise, i.e, it does not provide
any structural information. In this case, Y = Z = {0, 1}m and

L(z, y) = 1(z 6= y). (29)

• Statistical complexity. We can decompose it as

Fz = −(1[z=z′])z′∈{0,1}m , Uy = (1[y=y′])y′∈{0,1}m , c = 1. (30)

We have that
r = 2m, ‖F‖∞ = 1, Umax = 1. (31)

Hence,
A = 2m/2. (32)

• Inference. Inference corresponds to

f̂(x) ∈ arg max
z∈Pm

∑
i|yi=z

αi(x), (33)

which can be done in
O(2m ∧ n). (34)

• Optimality of r. Taking Πy = 1/2m for every y ∈ Y and applying Thm. 2.1, one has that
affdim(L) = 2m is optimal.

Block 0-1 loss

Assume that the prediction space Pm is partitioned into b regions Pm = tbj=1Bj . The block
0-1 loss is defined as 0 if the subsets belong to the same region and 1 otherwise. In this case,
Y = Z = {0, 1}m and

L(z, y) = 1(z ∈ Bj , y /∈ Bj , for some j ∈ [b]). (35)

• Statistical complexity. We can decompose it as

Fz = −(1[z∈Bj ])
b
j=1, Uy = (1[y∈Bj ])

b
j=1, c = 1. (36)

We have that
r = b, ‖F‖∞ = 1, Umax = 1. (37)

Hence,
A =
√
b. (38)

• Inference. Inference corresponds to

f̂(x) ∈ arg max
1≤j≤b

∑
i|yi∈Bj

αi(x), (39)

which can be done in
O(b) (40)

• Optimality of r. Taking Πy = 1
b|B(y)| , where B(y) is the partition where y ∈ Y belongs to

and applying Thm. 2.1, one has that affdim(L) is optimal.
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Hamming

The Hamming loss counts the average number of classes that disagree. In this case, Y = Z = {0, 1}m
and

L(z, y) =
1

m

m∑
j=1

1([z]j 6= [y]j). (41)

• Statistical complexity. If we define sj(y) = 2[y]j − 1, we can re-write the Hamming loss
as

L(z, y) =
1

m

m∑
j=1

(
1− sj(z)sj(y)

2

)
=

1

2
− 1

2m

m∑
j=1

sj(z)sj(y).

This implies that

Fz = − 1

2m
(sj(z))

m
j=1, Uy = (sj(y))mj=1, c =

1

2
. (42)

We have that

‖F‖∞ =
1

2
√
m
, Umax = 1. (43)

Hence,

A =
1

2
. (44)

• Inference. Inference corresponds to

f̂j(x) =

(
sign (ĝj(x)) + 1

2

)
, where ĝj(x) =

n∑
i=1

sj(yi)αi(x), (45)

which can be done in
O(m). (46)

• Optimality of r. Taking Πy = 1/2m for every y ∈ Y and applying Thm. 2.1, one has that
affdim(L) = m is optimal.

Prec@k

Prec@k (Precision at k) measures the average number of elements in the predicted k-set that also
belong to the ground truth. In this case, the prediction space is Z = Pm,k, i.e, subsets of [m] of
size k, and Y = Pm.

L(z, y) = 1− |y ∩ z|
k

= 1− 1

k

m∑
j=1

[z]j [y]j . (47)

• Statistical complexity. We have that r = m,Fz = − 1
k ([z]j)

m
j=1, Uy = ([y]j)

m
j=1, c =

1, ‖F‖∞ = 1√
k
, Umax = 1. Hence,

A =

√
m

k
. (48)

• Inference. Inference corresponds to

f̂(x) ∈ arg topk
z∈Pm,k

 ∑
i|[yi]j=1

αi(x)

m

j=1

 , (49)

which can be done in
O(m log k). (50)

• Optimality of r. Taking Πy = 1/2m for every y ∈ Y and applying Thm. 2.1, one has that
affdim(L) = m is optimal.
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F-score

The F-score is defined as the harmonic mean of precision and recall. In this case Z = Y = Pm and

L(z, y) = 1− 2
|z ∩ y|
|z|+ |y|

, (51)

where we treat the case y = 0 as follows:

2
|z ∩ y|
|z|+ |y|

=

{
2
∑m
j=1

∑m
`=0

[z]j
`+|z|1([y]j = 1, |y| = `) y 6= 0

1(z = 0) y = 0
. (52)

Let’s define the matrix P (x) ∈ Rm×m and p0(x) ∈ R as,

Pj`(x) = P ([Y ]j = 1, |Y | = `|X = x), p0(x) = P (Y = 0|X = x). (53)

Then, the Bayes risk reads

`(z, x) =

{
2
∑m
j=1

∑m
`=0

[z]j
`+|z|Pj`(x) y 6= 0

p0(x) y = 0
. (54)

Hence, for every x, one needs no more than r = m2 + 1 parameters to compute the F-score Bayes
risk.

We have the following Lemma 2.2.

Lemma 2.2. Given the matrix P (x) ∈ Rm×m and the scalar p0(x), inference can be performed
through the following two-step procedure:

1. Compute the matrix A(x) ∈ Rm×m:

Ajk(x) =

m∑
`=0

Pj`(x)

`+ k
(55)

This is a matrix-by-matrix multiplication that takes O(m3).

2. From A(x) and p0(x), the prediction f(x) can be computed in O(m2) through an iterated
maximization procedure.

Proof. Suppose we have already computed A(x) ∈ Rm×m and p0(x) ∈ R. Now, we perform the
following m maximizations:

f (k)(x) = arg max
z∈Pm,k

AT·,k(x)z, for k = 1, . . . ,m. (56)

Then, f∗(x) is computed by taking the maximum over the f (k)(x)’s together with p0(x), which
corresponds to z = 0.

• Statistical complexity.

Note that depending on whether we approximate P or directly A, we have different computa-
tional complexities. In particular, if the surrogate approximates directly A, then it avoids the
operation Eq. (55). As the estimator is the same, the statistical complexity is the minimum
of both.

Decomposition 1. Estimating P (x), corresponds to the following decomposition:

Fz,m(`−1)+j = −
(

1([z]j = 1)

|z|+ `

)
, 1 ≤ j, ` ≤ m

Uy,m(`−1)+j = 1([y]j = 1, |y| = `), 1 ≤ j, ` ≤ m
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and Fz,m2+1 = 1(z = 0), Uy,m2+1 = 1(y = 0). In this case,

r = m2 + 1,
1

2
≤ ‖F‖∞ ≤ 1, Umax = 1. (57)

Hence,

A1 ≤
√
m2 + 1 ≤

√
2m (58)

Decomposition 2. Estimating A(x), corresponds to the following decomposition:

Fz,m(`−1)+j = −1([z]j = 1, |z| = `), 1 ≤ j, ` ≤ m

Uy,m(`−1)+j =

(
1([y]j = 1)

|y|+ `

)
, 1 ≤ j, ` ≤ m

and Fz,m2+1 = 1(z = 0), Uy,m2+1 = 1(y = 0).

In this case,
r = m2 + 1, ‖F‖∞ =

√
m, Umax = 1. (59)

Hence,
A2 =

√
m(m2 + 1) ≤ m

√
2m. (60)

We take A = min(A1,A2), hence,

A ≤
√

2m. (61)

• Inference. The quadratic surrogate approximates A(x) and P (x) as:

P̂j`(x) =
∑

i|[yi]j=1,|yi|=`

αi(x), Âjk(x) =

m∑
`=0

P̂j`(x)

`+ k
, p̂0(x) =

∑
i|yi=0

αi(x). (62)

If we use Decomposition 1, i.e, ĝ(x) = (P̂ (x), p̂0(x)), then we have cubic inference,

O(m3). (63)

If we use Decomposition 2, i.e, ĝ(x) = (Â(x), p̂0(x)), then we have quadratic inference,

O(m2). (64)

• Optimality of r. We can’t say anything about the potential existence of a convex calibrated
surrogate with smaller dimension than affdim(L)−1. This is because the sufficient condition
from Theorem 18 of [5] does not hold for any Π even for m = 2.

NDCG-type

Let Z = Sm be the set of permutations of m elements and Y = {1, . . . , R}m = [R]m the space
of relevance scores for m documents. Let the gain G : R → R be an increasing function and
the discount vector D = (Dj)

m
j=1 be a coordinate-wise decreasing vector. NDCG-type losses

are defined as the normalized discounted sum of the gain of the relevance scores ordered by the
predicted permutation:

L(σ, r) = 1− 1

N(r)

m∑
j=1

G([r]j)Dσ(j) (65)

where N(r) = maxσ∈Sm

∑m
j=1G([r]j)Dσ(j) is the normalizer. The discount is performed in order

to give more importance to the relevance of the top ranked elements.
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• Statistical complexity.

Note that looking at Eq. (65) we can directly write that r = m and Fσ = −(Dσ(j))
m
j=1, Ur =(

G([r]j)
N(r)

)m
j=1

, c = 1.

It follows that,

‖F‖∞ =

√√√√ m∑
j=1

D2
j , Umax = GmaxDmax, (66)

hence,

A =
√
mGmaxDmax

√√√√ m∑
j=1

D2
j . (67)

• Inference.

The inference corresponds to,

f̂(x) = argsortσ∈Sm
(v), where vj =

n∑
i=1

G([ri]j)αi(x)

N(ri)
, (68)

which can be done in
O(m logm) (69)

operations.

• Optimality of r. Optimal. As Hamming, the barycenter of the simplex satisfies Thm. 2.1.

Normalized Discounted Cumulative Gain (NDCG) This is the most widely used configuration,

in this case, G(t) = 2t − 1 and Dj = 1
log(j+1) . We have that ‖D‖2 ∼

(∫m
2

1
log2(t)

dt
)1/2

∼
√

m
logm .

And hence,

A ≤ c Gmax
m√

logm
. (70)

Expected Rank Utility (ERU) In this case, G(t) = max(t − r̄, 0) and Dj = 21−j , where r̄
corresponds to a neutral score. We have that ‖D‖2 ≤ 2√

3
,

A ≤ 2√
3
Gmax

√
m. (71)

The QS-estimator estimates the marginals of the normalized relevance scores and sorts the
estimates at inference. As it was shown in [7], in order to be consistent for NDCG, one has to
estimate the normalized relevance scores and not the unnormalized ones as one would do at the
first place. In particular, the QS-estimator for the NDCG that follows directly from our framework
corresponds exactly to their proposed consistent algorithm.

Due to the discount factor, the statistical complexity grows with the number of elements to sort.
In particular, faster the decay is, more samples you need to optimize the corresponding loss. This
is shown in the two examples we have shown, where the NDCG is statistically easier to optimize
than the ERU.

Pairwise Disagreement (PD)

The pairwise disagreement computes the cost associated to a given permutation in terms of pairwise
comparisons using binary relevance scores. In this case, Z = Sm, Y = [0, 1]m = Pm, and,

L(σ, y) =
1

N(y)

m∑
j=1

∑
` 6=j

1([y]j < [y]`)1(σ(j) > σ(`)), (72)

where N(y) = supσ∈Sm

∑m
j=1

∑
6̀=j 1([y]j < [y]`)1(σ(j) > σ(`)) = |y|(m− |y|) is a normalizer.
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• Statistical complexity. Note that we can re-write

1([y]j < [y]`) =
sign([y]` − [y]j) + 1

2
, 1(σ(j) > σ(`)) =

sign(σ(j)− σ(`)) + 1

2
. (73)

Hence,

L(σ, y) =
1

4
+

1

4N(y)

m∑
j=1

∑
6̀=j

sign([y]` − [y]j)sign(σ(j)− σ(`)) (74)

Note that Fσ = 1/4(sign(σ(j)− σ(`)))mj,`=1 and Uy = (
sign([y]`−[y]j)

N(y) )mj,`=1 are anti-symmetric

matrices. Hence, they can be described with m(m− 1)/2 numbers. We can then consider Fσ
and Uy as vectors of m(m− 1)/2 coordinates.

This implies that r = m(m − 1)/2, c = 1/4, ‖F‖∞ = 1/4
√
m(m− 1)/2, Umax = 2

m−1 .
Hence,

A =
m

4
(75)

• Inference. In this case, the optimization problem reads

f̂(x) ∈ arg min
σ∈Sm

m∑
j=1

∑
` 6=j

γj`(x)1(σ(j) > σ(`)), (76)

with

γj`(x) =
∑

i|[yi]j<[yi]`

αi(x)

N(yi)
. (77)

This is precisely a Minimum Weight Feedback Arcset (MWFAS) problem with associated
directed graph having weights γj`(x). This problem is known to be NP-Hard.

• Optimality of r. Optimal. See Corollary 19 and Proposition 20 from [5].

As it was shown in [8], there is no hope of devising a consistent convex surrogate method which
is based on sorting an estimated vector of relevance scores. In particular, one needs to estimate
m(m−1)

2 scalar functions corresponding to the weights of a graph between the classes. Although
estimating the graph structure is statistically feasible, inference corresponds to finding a directed
acyclic graph (DAG) with minimum cost. This is equivalent to the Minimum Weight Feedback
Arcset Problem (MWFAS), which is known to be NP-Hard. Consequently, one can state that,
unless P = NP , there does not exist any polynomial surrogate-based consistent algorithm for
the PD loss. If it existed, one could solve the Bayes risk minimization problem, i.e., MFWAS, to
ε-accuracy in poly( 1

ε ).

Mean Average Precision (MAP)

The mean average precision (MAP) is a widely used ranking measure in information retrieval. The
precision associated to a relevant document j ([y]j = 1) ranked at position σ(j) is the Precision
at σ(j) of the σ(j) retrieved documents ranked before (and including), j. In this case, Z = Sm

and Y = [0, 1]m = Pm. The mean average precision corresponds to the mean over all relevant
documents in y. Hence, MAP has the following form:

L(σ, y) = 1− 1

|y|
∑

j|[y]j=1

1

σ(j)

σ(j)∑
`=1

[y]σ−1(`). (78)
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Note that it can be re-written as

L(σ, y) = 1− 1

|y|

m∑
j=1

[y]j
σ(j)

σ(j)∑
`=1

[y]σ−1(`)

= 1− 1

|y|

m∑
j=1

j∑
`=1

[y]σ−1(`)[y]σ−1(j)

j

= 1− 1

|y|

m∑
j=1

j∑
`=1

[y]`[y]j
max(σ(j), σ(`))

.

• Statistical complexity. We have that r = m(m+1)
2 , Fσ =

(
max(σ(j), σ(`))−1

)
j≥` , Uy =

−
(

[y]j [y]`
|y|

)
j≥`

, c = 1, ‖F‖∞ ≤
√

log(m+ 1), Umax = 1/2. Hence,

A =
1

2
m
√

log(m+ 1) (79)

• Computational complexity. The inference problem reads

f̂(x) = arg max
σ∈Sm

m∑
j=1

j∑
`=1

1

max(σ(j), σ(`))

∑
i|[yi]j [yi]`=1

αi(x)

|yi|
(80)

Denote by

Wj` =

{ ∑
i|[yi]j [yi]`=1

αi(x)
|yi| j ≥ `

0 otherwise
, Dj` =

{
max(j, `)−1 j ≥ `

0 otherwise
(81)

We have that,

f̂(x) = arg max
σ∈Sm

m∑
j,`=1

Wj`Dσ(j)σ(`) ≡ arg max
P∈Πm

Tr(WTPDPT ), (82)

where Πm is the set of permutation matrices of size m. This is an instance of the Quadratic
Assignment Problem (QAP).

• Optimality of r. Optimal. See Corollary 19 and Proposition 21 from [5].

As for PD, inference for MAP corresponds to a NP-Hard problem, more specifically, to an
instance of the Quadratic Assignment Problem (QAP). Consequently, one can conclude analogously
as for the PD loss, i.e., that no efficient and consistent surrogate algorithm exists for MAP.
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