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Abstract

The problem of devising learning strategies
for discrete losses (e.g., multilabeling, rank-
ing) is currently addressed with methods and
theoretical analyses ad-hoc for each loss.

In this paper we study a least-squares frame-
work to systematically design learning algo-
rithms for discrete losses, with quantitative
characterizations in terms of statistical and
computational complexity. In particular we
improve existing results by providing explicit
dependence on the number of labels for a
wide class of losses and faster learning rates
in conditions of low-noise.

Theoretical results are complemented with
experiments on real datasets, showing the ef-
fectiveness of the proposed general approach.

1 INTRODUCTION

Structured prediction with discrete labels of high car-
dinality is ubiquitous in machine learning, e.g., in mul-
ticlass problems, multilabel learning, ranking, ordinal
regression, etc. [1, 2, 3, 4].

These supervised learning problems typically come
with computational and theoretical challenges:

(1) how to design efficient algorithms dealing with po-
tentially large number of data and labels?

(2) even if learning is computationally feasible, how
to make sure that the resulting algorithm leads to im-
proved accuracy on the test set?

Many special cases are often addressed in an ad-hoc
fashion in terms of consistency, algorithms and con-
vergence rates, depending on the specific loss used in
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each application to quantify the performance of pre-
dictors.

A few generic learning frameworks exist: (a) condi-
tional random fields [5, 6] use conditional probabilis-
tic modelling typically combined with maximum like-
lihood estimation, but may lead to intractable proba-
bilistic inference and cannot easily incorporate struc-
tured losses which are needed in applications [7]; (b)
Structured SVM [8, 9] extended the class of prob-
lems where a systematic max-margin framework can
be applied, with the incorporation of arbitrary losses,
but they are not consistent in general, that is, even
with infinite amounts of data, they would not lead
to optimal predictions [10]; (c) more recently, least-
squares (or quadratic surrogate) frameworks [11, 12]
have emerged. Such approaches can tackle arbitrary
discrete losses producing consistent estimators and
have the potential to provide a systematic way to de-
sign learning algorithms with both statistical and com-
putational guarantees. However, no sharp analyses ex-
ist yet, quantifying the impact of crucial quantities like
the number of labels or the level of noise on the sta-
tistical and computational properties of the resulting
algorithms. The goal of this paper is to characterize
explicitly such impact for a number of widely used loss
functions in the context of multilabeling and ranking,
showing the effectiveness of least-squares frameworks
for structured prediction with discrete labels.

We make the following contributions:

— We provide quantitative characterizations of the
statistical and computational complexity for the
least-squares framework of [11] depending on the
number of labels and the number of examples.
The characterization is explicit for a wide fam-
ily of common losses in ranking and multilabel
learning (see Secs. 3.1, 3.2 and 4).

— We propose a margin condition for discrete losses
(generalizing the Tsybakov condition for binary
classification [13]) and obtain fast learning rates
for the framework of [11], that are adaptive to the
proposed condition (see Sec. 3.3).



Sharp Analysis of Learning with Discrete Losses

— Our analysis encompasses many previous results
on special cases and provides improved learning
rates over existing generic structured prediction
frameworks (see Sec. 6).

— We conduct a series of experiments highlighting
the benefits of the considered least-squares frame-
work on ranking and multilabel problems (Sec. 5).

2 BACKGROUND

The problem of supervised learning consists in learning
from examples the function relating inputs with obser-
vations/labels. More specifically, let Y be the space of
observations, denoted observation space or label space
and X be the input space. The quality of the pre-
dicted output is measured by a given loss function L.
In many scenarios the output of the function is in a
different space than the observations (see Sec. 3.2 for
some examples). We denote by Z the output space, so

L:ZxY—R, (1)

where L(z,y) measures the cost of predicting z when

the observed value is y. Finally the data are assumed

to be distributed according to a probability measure

P on X xY. The goal of supervised learning is then to

recover the function f* minimizing the expected risk
E(f) of the loss,

f*=arg min &(f),
F:X—2

e(f) =EL(f(X),Y), (2

given only a number of examples (z;, ;)" , with n €
N, sampled independently from P. The quality of an
estimator f for f* is measured in terms of the excess

risk E(f) — E(f™).
2.1 Quadratic Surrogate method

A systematic way to solve the problem in Eq. (2) is to
consider that f* is characterized as follows [14, 11]:

f*(z) = arg min £4(z,z),
Z€EZ
where ¢(z, x) fg z,y)dP(y|x) is the Bayes risk, de-
fined as the conditional expectation of y given x € X.
The quadratic surrogate (QS) for structured predic-
tion, introduced in [11], is a natural estimator that
has the following form,

f(z) = arg min Z(z, x), (3)
z€Z

where ((z, ) := St ai(z)L(z,y;). Here (o)l are
suitable functions defined explicitly in terms of the ob-
served data (not on L) and will be discussed later (see
Egs. (8) and (9)).

Informally, the closer Z(z,:r) is to

(z,2), the closer f will be to f* in terms of the ex-
cess risk. In [11] a detailed statistical framework an-
alyzes the generalization properties of the derived es-
timator, that will be recalled in the next paragraph.
Here we point out that a crucial aspect of the algo-
rithm in Eq. (3), that makes it appealing from a prac-
tical viewpoint, is that we can directly apply it given
the loss at hand, without the need to devise a different
surrogate (and consequently a different algorithm and
theoretical analysis) ad-hoc for each specific loss.

Statistical properties of Quadratic Surrogate.
Here we recall some generalization properties of the
QS estimator from [11], that will be extended in Sec. 3.
First, assume that the loss L is a structure encoding
loss function (SELF), i.e., it can be written as,

L(z,y) = (¢(2), Vi (y))sc, (4)

where H is a separable Hilbert space with (-, )4, the
associated inner product, V : H{ — H is a bounded
linear operator and ¢ : Z — H, ¢ : Y — H.

Note that by assuming Z,Y discrete and finite, then
every loss function on Z,Y is SELF. Indeed Eq. (4) is
recovered by setting H = RI?I V = (L(2,v)).cz.yey €
RIZIXIYI the loss matrix, and ¢(2) = e, ¥(y) = e,
the vectors of the canonical basis in RI* and RIYI
respectively (For the case of continuous Z,Y see [11]).

The key property of a loss being SELF is that, by
linearity of the inner product,

Uz x) = / L(zy)dP(ylz)

:/@(z),vw(y)h{dP(ylx)
= (p(2), Vg™ (z))s

with ¢g*(z) = [ ¢ (y)dP(y|z) being the conditional ex-
pectation of ¢¥(y), given x. This means that in or-
der to estimate ¢, we just need to find an estimator
g for the conditional expectation g*, and then define
E(z m) (p(2), Vg(z))sc. To find a suitable estimator
for g*, note that g* can be written as the minimizer of
the following quadratic surrogate (QS),

g" = arg minRy(g), ()
g:X—H

where Ry (g) = [ |lg(x) — ¥(y)||3:dP(z,y) is the ez-
pected surrogate risk of g. The quality of the surro-
gate estimator g is measured in terms of the surro-
gate excess risk Ry(g) — Ry(g*). In particular, de-
note by d : H — Z the decoding function d(u) =
arg min, ¢, (¢(z), Vu)gc. In [11] it is proven that by
construction, the QS estimator is Fisher consistent,
ie., f* =dog*, with f* g* as above. Moreover, for
any g : X — H, the comparison inequality holds
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Multilabel and Ranking measures

Measure Z Definition T A INFr(]Z])
0-1 (}) P Lz #Y) 2m 2m/2 O(n A2™)
Block 0-1 (|) P,  1(2€Bj,y ¢ Bj, je b)) b Vb O(b)
Hamming (1)  Pn 5 370, 1([=]; # [y]y) m 3 O(m)
F-score (1) P 2 ‘Lzlzm m2+1  V2m O(m?)
Prec@k (1) Pk @ m o O(mlogk)
NDCG (1) &m 5y 2yt G(r1) Do) m Vi (3 D)2 Grax O(mlogm).
PD (}) Gm Wy g1 L [ym ooy R MWFAS(m)
MAP (1) &n I, s Ze ) Yore motD - Imy/log(m +1)  QAP(m)

Table 1: Upper bounds for A in Thms. 3.1 and 3.5 and Cor. 3.6 and computational complexity of evaluating the
QS estimator in Eq. (9), for a number of widely-used losses for multilabel/ranking problems. See Sec. 3.2 for
notation, Sec. 4 for computational considerations and Appendix B for the full derivation of the results.

€(dog) = E(f") < 2cvip\/Ru(9) = Ry(g*),  (6)

where ¢y, = sup,cy [V*¢(2)|l3. In the next para-
graph we recall how to devise a suitable estimator
of g*.

The QS estimator depends only on L. Given
a finite dataset (x;,y;)i~,, an estimator g for g* can
be found by considering the characterization of g* in
terms of Eq. (5). Indeed the problem in Eq. (5) can be
solved using kernel ridge regression (KRR) [15]. Let
k:XxX — R be akernel on X and H+ the associated
reproducing kernel Hilbert space (RKHS). Then given
A > 0, KRR reads

n € arg Iéun - Z lg(xi) =¥ (ya)ll3e + Mollg,  (7)

=1

where G is the space of Hilbert-Schmidt operators
from Hyx to H, which is isometric to H ® Ho.
The minimizer g, can be written in closed form

as gn(-) S ai()Y(y;) € G where a(z) =
(a1(z),...,an(x)) € R™ is defined by

a(r) = (K +nA\) 'K, (8)
with K, = (k(z,21),...,k(z,z,)) € R™ and K €

R™*™ is defined by K;; = k(x;, ;).

The key property here, is that due to the fact that g,
is linear in the 1 (y;)’s, then £(z,z) does not explicitly
depend on the surrogate space H, indeed E(z,m) =
(p(2), V (Cimy i@ (i))ge = Xiy ai(@) Lz, 4i)-
Hence, the final estimator f, = d o g, can be writ-
ten as

f = arg mlnz a;(x)L(z, ys). (9)

z€Z T4

Finally, by combining the comparison inequality with
results on the convergence of g, to g* (see e.g. [15]),
the following theorem holds.

Theorem 2.1 (Thm. 5 of [11]). Let n € N, A, =
n~Y2 and 7 > 0. If L is SELF and g* € G, then the

T

following holds with probability at least 1 — 8e™ 7,
€(fn)

2

—&(f") < C cvprllgt|lgm®n 14 (10)

where k* = sup, k(z,z) and C' a universal constant.

Positioning of our contribution. From a theoret-
ical viewpoint the result above holds for any loss on
discrete and finite Z,Y, and shows a learning rate that
is O(n=1/%). Moreover, from a practical viewpoint,
to define and evaluate the QS estimator in Eq. (9) is
enough to know only the loss L and a kernel k for
X (no knowledge of H, 1), ¢ is required). These con-
siderations show that the QS framework could be a
good candidate to systematically solve learning prob-
lems with discrete outputs.

However, note that constants of the bound depend on
the specific SELF decomposition for L. If we use the
one in [11], H = RI* p(2) = e,,¥(y) = e,V = L,
then the constant cy,, equals the spectral norm of the
loss matrix ||L||, which is exponentially large even for
highly structured loss functions such as Hamming. In
that case ||L|| = 2™~ !, where m is the number of labels
(and a similar behaviour could affect ||g*||g). Then
Eq. (10) can be totally uninformative if the constants
of the rate are exponentially large [12].

In the next section, we prove that by using a suitable
SELF-decomposition it is possible to find a version
of Eq. (10), that depends only polynomially on the



Sharp Analysis of Learning with Discrete Losses

number of labels m. In particular we find the explicit
constants for a number of widely used loss functions
for ranking and multilabel learning. Finally we provide
a refined generalization bound adaptive to the noise-
level of the learning problem.

3 MAIN RESULTS

In this section we study a specific SELF-decomposition
for discrete losses, providing a generalization bound in
the form of Eq. (10), with explicit constants depend-
ing on the specific loss chosen (Thm. 3.1). In Thm. 3.2
and Table 1 we quantify the constants for a number of
widely used loss functions for multilabeling and rank-
ing problems, showing that they are always polynomial
with respect to the number of labels and in many cases
optimal (Remark 3.3). Finally in Thm. 3.5 we general-
ize Eq. (10) (and so the learning rate in [11]), introduc-
ing a Tsybakov-like noise condition for the structured
prediction problem.

3.1 Affine decomposition

Motivated by the limitations given by the possible ex-
ponential magnitude of the constants in the general-
ization bound in Eq. (10), we consider another SELF-
decomposition of the loss, based on the following affine
decomposition of the loss matrix,

L=FU" +cl. (11)

where F € RIZ>X7 U7 € RI¥IX" ¢ € R is a scalar and
1 € RIZIXIYI i the matrix of ones, i.e. 1,;, =1 and
r € N. The minimum 7 for which there exists a de-
composition as Eq. (11) is called the affine dimension
of the loss L and is denoted affdim(L).

Note that the“centered” loss L — ¢ is SELF with
%:RT7 (p(Z) :FZJ ¢(?J) :Uyu V:Irxm (12)

where F, is the z-th row of F' and U, the y-th row of
U. Using the decomposition above, the following theo-
rem gives a new version of the bound Eq. (10) special-
ized to discrete losses. Before giving the result, note
that when we use the SELF-decomposition above for
a loss, the conditional expectation g* is characterized
by g* : X = R", g*(z) = (g;(x))}—y, for gf : X = R
defined as g7 (z) = U/ TII(z), with U’ € R the j-
th column of U and T : X — RIYI TI(x), = P(y|z)
the conditional probability of y given z. In particular
g;(w) < maxyey |Uk;|, (Uk; is the k,j-th element of
U). Finally, G is isometric to H, since H = R".

Theorem 3.1 (Statistical complexity). Let n €
N,7 > 0 and \, = n~Y2. Assume that the loss L

decomposes as Eq. (11). If g* € G, we have that with

T

probability 1 — 8e™ T,
E(f) —E(f) < AQ CrrT?n™ V4 (13)
where C, k are as in Thm. 2.1,
A = V7| FllocUnmasx; (14)
Q = maxi<j<, |95 /Unaxll7¢y » Umax = max; j. [Ug;|.

Proof. First, note that the excess risk E(f) — E(f*) is
the same for L and for L — ¢ for any ¢ € R, moreover
both the definition of f* and f are invariant when L—c
is used instead of L. So we bound &(f) — E(f*) with
Eq. (10) applied to L — ¢, with ¢ as in Eq. (11).

Applying Thm. 2.1 with the affine decomposition in
Eq. (12) for L — ¢ and the definition of ¢y, by [11], we
have that cy,, := sup,cq ||Fsll2 = || Flleo and [|g*||% =
> i g5 115¢, < rmaxicj<rllg;l3.. . The final result
is obtained by multiplying and dividing by Upax. O

The theorem above is essentially a version of Thm. 2.1
where we use the affine decomposition in Eq. (11) for
the loss L, making explicit the dependence of the con-
stants on structural properties of the loss, like the
affine dimension.

In particular, we explicitly identify three distinct terms
A, Q and Crkr?n~'/%. The third term is completely ex-
plicit and does not dependent on the loss nor on the
data distribution. It expresses the dependence of the
statistical error with respect to the number of exam-
ples n and the high probability confidence 7 (C is a
universal constant and  the constant of the kernel).
The second term depends on the data distribution P
and measures in a sense the “regularity” of the most
difficult regression scalar function g; defining the sur-
rogate conditional expectation for the given loss. Note
that the @ is renormalized by Upax SO is invariant to
the magnitude of the representation vector .

Finally A depends only on the chosen loss and mea-
sures the cost of using the QS method as surrogate
approach. In the next subsection we give sharp bounds
on the constant A for many discrete losses used in prac-
tice, together with the computational complexity re-
quired to evaluate the QS estimator. In particular,
we prove that, contrary to what suggested by [12], A
depends only polynomially on the number of labels,
making the QS method a good systematic approach
to deal with discrete losses.

3.2 Sharp constants for multilabel and
ranking losses

In this section (Thm. 3.2, Table 1) we characterize ex-
plicitly the constants introduced in Thm. 3.1, for a
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number of widely used losses for multi-labeling and
ranking problems. In particular we show that they
depend only polynomially on the number of labels
(or equivalently polylog(|Y[,|Z])). Moreover in Re-
mark 3.3 we show that the bounds obtained for many
of the considered losses are sharp in a precise sense
[16]. Finally we characterize the computational com-
plexity of evaluating the QS estimator in Eq. (9) for
such losses.

In the following we denote by m € N the number of
classes of a multilabel/ranking problem, by P,, the
power-set of [m] = {1,...,m} and by &,, the set of
permutations of m-elements. In particular note that in
the multilabel problems both the output space Z and
the observation space Y are equal to P,,, while in rank-
ing Z=6,, and Y ={1,...,R}"™ = [R]™, the set of
observed relevance scores for the m documents where
R is the highest relevance [17]. Finally we denote by
[v]; the j-th element of a vector v and we identify P,
with {0, 1}, moreover o(j) is the j-th element of the
permutation o, for o € &,,, j € [m].

Theorem 3.2. The constant A and the computa-
tional complexity of the QS estimator for the multilabel
losses: 0-1, block 0-1, Hamming, Prec@k, F-score and
ranking losses: NDCG-type, PD and MAP, appearing
in Table 1 hold.

Proof. We sketch here the analyses for the Hamming
loss and the NDCG-type ranking measures. The com-
plete analysis for all the losses is in Appendix B.

Hamming. Let m € N be the number of labels.
We represent each output element as a binary vec-
tor (Z =Y = {0,1}"). We re-write the Hamming
loss as L(y,y) = 5 — 50 2521 5i(¥)s;(y), where
sj(y) = 2[y]; — 1. Hence, this corresponds to an affine
decomposition by setting

1 . . 1
F, = _%(Sj(z))jzla U, = (sj(y))jzla c= om’
We have that 1 = m, ||F|lee = ﬁ, Unax = 1.

This implies that A = %

sponds to f;(z) = (sign (§;(x)) + 1)/2 where g;(z) =
St si(yi)ai(z). This is done in O(m).

NDCG-type. [18, 17, 19] Let Z = &,, be the set
of permutations of m elements and Y = [R]™ the set
of relevance scores for m documents. Let the gain
G : R — R be an increasing function and the discount
vector D = (D;)L; be a coordinate-wise decreasing
vector. The NDCG-type losses are defined as the nor-
malized discounted sum of the gain of the relevance
scores ordered by the predicted permutation:

Finally, inference corre-

Lour) = 1= 505 3G Dey. (19

where N(r) = maxyee,, >.;—; G([1];)Do(jy is a nor-
malizer.

Note that looking at Eq. (15) we can directly write
that r = m and

G(Mj)>m c=1. (16)

o= ~(Dry U= (5

9
Jj=1

It follows that, HF”{)Q - HD||27Umax = DmaxGmaxa
50 A = \/MGrmax Dimax (3], D?)1/2. For Table 1, as-
sume D; = 1. If we define the vector v € R™ as

nG’I“ijO[i$
-y ([ri];)evi(x)

P = 1<5< 1
Uj N(T»L) Y —.] —m? ( 7)

i=1

then inference corresponds to  f*(z)
argsort,cs, (v), which can be done in O(mlogm
operations.

o=

The key result in Table 1 is that the generalization
properties and the computational complexity of the
algorithm are both polynomial in the number of la-
bels m (or equivalently polylog(|Y|,|Z|)) for all con-
sidered losses except the 0-1, which does not provide
any structural information of the observation/output
spaces Y, Z. This theoretically explains why in discrete
structured prediction and in particular multi-labeling
and ranking, learning is possible even if the size of the
output space is exponentially large compared to the
number labels and, potentially, to the number of ex-
amples. Moreover this result shows that the Quadratic
Surrogate is a valid candidate for systematically ad-
dressing learning problems with discrete losses both
from a statistical and from a computational viewpoint
(in contrast with what conjectured in [12]).

Remark 3.3 (On the sharpness of the QS estima-
tor). It is natural to ask to what extent the statistical
rates provided by Thm. 3.1 can be considered represen-
tative of the statistical difficulty of solving the problem
in Eq. (2). Of course, formally answering this ques-
tion necessarily requires a study of the corresponding
minimaz rates under certain priors. In particular, one
would be interested in studying the dependence of those
rates both in the number of samples and the size of the
output space Z.

Although far from answering this question, we can pro-
vide a weaker notion of optimality on the framework
of surrogate-based methods. In particular, by using the
results in [16], we prove that cannot exist a consis-
tent convexr surrogate that maps the discrete problem
in a vector valued problem of lower dimension than r
(the one used by the QS estimator through the affine-
decomposition) for the following losses: 0-1, block 0-1,
Hamming, Prec@k, NDCG, PD and MAP (see Ap-
pendiz B).
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More in detail, for the Hamming loss we obtain that
the statistical complexity of the problem is indepen-
dent of the number of labels. Intuitively this is ex-
plained by the fact that the QS estimator corresponds
to estimating the m marginals independently. Our re-
sult is to be compared with [12], where they obtain a
constant in the order of O(m?). For Prec@k, we ob-
tain A = /7%, which is coherent with the intuition
that the problem becomes more challenging when k is
fixed and m increases. For the F-score the computa-
tional bound of the resulting algorithm is essentially in
[20]. For the NDCG-type losses, G : R — R, the gain
is an increasing function and D = (D;)7; € [0,1]™,
the discount, is a coordinate-wise decreasing vector.
For this family of losses A depends crucially on the
discount factor D;, tending to \/m (the constant of
Prec@1) for fast decaying D; and to m for low decay-
ing ones. For PD and MAP, estimating the surrogate
function is statistically tractable, but both inference
algorithms are NP-Hard (Minimum Weight Feedback
Arcset problem (MFWAS) for PD and an instance of
Quadratic Assignment Problem (QAP) for MAP), as
was already noted in [21].

3.3 Improved rates under low-noise
assumption

Intuitively, if there is small noise at the decision
boundary between different labels, then it should be
statistically easier to discriminate between them. To
formalize this intuition, we define the margin v(z) as

Y(@) = min (2 x) = L(f(x),2).  (18)
2 #f*(x)

The margin function v measures the minimum subop-
timality gap in terms of the Bayes risk. If for a given
x the margin is small, then its cost at the optimum is
very close to the cost at a suboptimal label. We will

say that the p-noise condition is satisfied if
Pr(y(X) <€) = o(e?), (19)

where Py is the marginal of P over X, with p > 0. The
parameter p characterizes how fast the noise vanishes
at the boundary and corresponds to no assumption
when p = 0.

Note that Eq. (19) is a generalization of the Tsy-
bakov condition for binary classification [13] and of
the condition in [22] for multi-class classification, to
general discrete losses. Indeed, for the binary 0-1 loss
Y ={-1,1}), v(z) = | E[Y |x]|, so we recover the clas-
sical Tsybakov condition.

Example 3.4 (Generalized Tsybakov for multiclass).
For every P(y|z) in the simplex, one associates the
corresponding optimal label as z* = arg min, (2, x).
Fig. 1 represents the partition of the simplex corre-
sponding to the 0-1 loss for Z =Y = {1,2,3}. In this

(1,0,0) (0,1,0)

Figure 1: Generalized Tsybakov condition for discrete
losses, Eq. (19), in the case of multi-class. See Exam-
ple 3.4 for more details.

case, y(x) corresponds to the distance to the boundary
decision depicted in Fig. 1 and so {P(y|z) | v(z) < e}
corresponds to the yellow area. Eq. (19) says that the
probability of falling in that region vanishes as o(gP).

In the next theorem we improve the comparison in-
equality of Eq. (6) to take into account the generalized
Tsybakov condition for discrete losses of Eq. (19).

Theorem 3.5 (Improved comparison inequality). As-
sume Y,2Z to be finite and v to satisfy Eq. (19) for
p > 0. Then the following holds

1. 1/y € Ly(Px).
2. Assume a decomposition as in Eq. (11) for the loss
L. Then, for any bounded measurable g : X — H,
1 Pl
E(f) = E(f") S aw™ (Ry(g) = Ry(g™)) 72, (20)

p+1

where v, = |[1/9|z,(Px)» = (16]F13)+.

The proof of the first part can be found in Lemma A.7,
while the second part is Cor. A.11, both in the Ap-
pendix A. As you can note, the comparison inequality
of Eq. (6) is recovered when p = 0 (i.e. when the gen-
eralized Tsybakov condition is always verified), while
an exponent close to 1, instead of 1/2 is obtained when
p > 0. Finally, by using the improved comparison in-
equality we refine the rates for the QS estimator in
Thm. 3.1.

Corollary 3.6 (Improved rates). Under the p-noise
condition, we have the following improvement on the

generalization bound in Eq. (13),

+1
+2

R L i1
E(fa) — E(/7) < Caf* (R2Q22r4n3) " (21)
with C' universal constant and A, Q, k as in Thm. 3.1.

Note that the result of Thm. 3.1 is recovered for p =
0 (always verified), while we obtain a learning rate
essentially in the order of n~1/2, instead of n=/%, in
conditions of low-noise (i.e. p > 0).
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4 COMPUTATIONAL
CONSIDERATIONS

As already observed in [11]: (1) the computation of
the QS estimator (Eq. (9)) is divided in training step
and inference step (or evaluation step), (2) the SELF-
decomposition of the loss is not needed to run the al-
gorithm, but only to derive the theoretical guarantees.
Here we show how the explicit knowledge of the affine
decomposition of the loss can be useful to improve also
the computational complexity of the method (its the-
oretical implications have been studied in Sec. 3.1).
First we recall the training and test steps.

Training. The training step requires only to have
a kernel function k over X and to have access to the
training input examples (x;)"_ ;. It consists essentially
in computing the inverse of the kernel matrix necessary
for the second step, i.e. W = (K + Anl)~!, with K
defined in Eq. (8).

Evaluation. The evaluation step requires only the
knowledge of the loss L and to have access to the train
observations (y;)? ;. Given a test input point z € X, it
consists in: first, computing the coefficients (o ()",
according to Eq. (8), i.e. a(x) = WK,, with the no-
tation in Eq. (8); second predicting the output z € Z
associated to the test input z, by solving Eq. (9).

4.1 Using the affine decomposition to speed
up the QS estimator

Note that, to run the algorithm described above, only
the loss L and kernel k are needed. This makes the
QS-method (1) systematically applicable to any su-
pervised learning problem with discrete loss, since it
does not require to devise a specific surrogate for each
loss (2) theoretically grounded with basic guarantees
from [11] in terms of consistency and learning rates.
Indeed note that the SELF-decomposition in terms of
H, ¢, for the loss and in particular the affine decom-
position of Eq. (11) is needed only to prove the sharper
guarantees in Thms. 3.1, 3.2 and 3.5 and Cor. 3.6.

However it is possible to additionally exploit the affine
decomposition to have even a computational benefit
for the presented algorithm, as we are going to show
in the rest of the section.

Improved training when U is known. When we
know the affine decomposition of the loss, we have H =
R" and ¢(y) = Uy, so we can compute explicitly the
solution to Eq. (7) [15], g, : X — R” that is g, (z) =
St k(z,z;)C;, where C; € R" is the i-th row of C' €
R™ " the solution of the linear system

(K4+AnDC =0T,

with ¥ = (¢¥(y1), ..., %(yn)) € R™*™. This is the same

as solving r scalar KRR problems independently and
its computation can be efficiently reduced from essen-
tially O(n3r) to O(n+/nr) via suitable random projec-
tion techniques [24, 25, 26].

Improved evaluation when F' is known. Given
a test point z € X, first we evaluate 6 := g, (z) € R",
requiring essentially O(nr) (up to O(y/nr) by using
random projection techniques [24, 25, 26]). Then we
use the characterization of f,(z) = (dogn)(z) = do#,
to obtain the equivalent problem

min F,-0, (22)
where F, € R" is the z-th row of F (see Egs. (11)
and (12)) and (-) the dot-product. The computational
complexity of Eq. (22) (we denote it by INFz(|Z]))
has been devised for a number of widely used losses in
Thm. 3.2, Table 1 (see Appendix B for the proofs).

5 NUMERICAL EXPERIMENTS

We perform numerical experiments for the QS-
estimator on multilabeling (9 datasets [27]) and rank-
ing problems (1 dataset [28]), see Table 2. We use
three evaluation measures for multilabel, namely, 0-1,
Hamming and F-score, and NDCG@k for ranking (in
the NDCG-type family [18]), which have been theoret-
ically analysed in Sec. 3 and Table 1. All experiments
are performed using 60% of the dataset for training,
20% for validation and 20% for testing. We compare
the performance of the QS-estimator with a threshold-
based method, which we denote by THBM [23], and
the Structural SVM [9] (SSVM). THBM is a common
method for multilabelling where learning is done in two
stages. The method first estimates the m marginals
G;(-) and then learns the best threshold function #(-)
minimizing via least-squares the measure of interest.
The inference is performed via thresholding the esti-
mated marginals by #(z) (see Sec. 2 in [23]). The
SSVM corresponds to the multilabel-SVM [29], which
is an instance of the SSVM with unary potentials that
optimizes the Hamming loss. Note that we have used
the same multilabel-SVM for all multilabel losses; for
the F-score, there is no principled way of optimizing
the measure with SSVMs. The experimental results in
Table 2 show that the QS-estimator outperforms the
other methods for 0-1 loss and F-score. Indeed, the
method depends on the loss and is designed to be con-
sistent with it. THBM achieves approximatively the
same accuracy for Hamming as it is based on estimat-
ing the marginals, while the SSVM is proven to be in-
consistent even in this case [30], as the experimental re-
sult empirically shows. For the ranking experiment, we
have used the SSVM from [9] called RankSVM as base-
line to compare with the QS-estimator. The algorithm
corresponding to the QS-estimator for NDCG, which
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Multilabel bibtex  birds CAL500 corelsk  enron  mediamill medical scene yeast Ranking Ohsumed
n 7395 645 502 5000 1702 43907 978 2407 2417 n 106
d 1836 260 68 499 1001 120 1449 294 103 d 25
m 159 19 174 374 53 101 45 6 14 m 150
THBM 0.82 0.57 1.0 0.99 0.92 0.93 0.31 049  0.93 SSVM 047
0-1 () SSVM  0.91 0.53 1.0 0.99 0.90 1.0 0.35 0.51  0.95 NDCG@3 (1) Qs 0:51
QS 0.78 0.52 1.0 0.95 0.86 0.86 0.29 0.34 0.76
THBM 1.3e-2 7.9e-2 0.14 1.1e-2  5.9e-2  3.1e-2 9.4e-3 0.11 0.26 SSVM  0.45
Ham ({) SSVM  1.3e-2 6.4e-2 0.13 1.0e-2  7.1le-2  8.Te-2 1.07e-2  0.11  0.40 NDCG@5 (1) QS 0.48
QS 1.3e-2  4.9e-2 0.14 9.4e-3 8.6-2 3.1e-2 9.6e-3 0.11  0.42
THBM 0.44 0.25 0.46 0.25 0.51 0.56 0.80 0.63  0.48 SSVM  0.43
F-score (1) SSVM  0.19 0.16 0.33 0.11 0.49 0.40 0.74 0.57 0.48 NDCG@10 (1) QS 0.46
QS 0.47 0.28 0.47 0.26 0.52 0.56 0.83 0.68 0.47

Table 2: Numerical results on real-world multilabeling and ranking datasets comparing our QS estimator, THBM
[23] and SSVM [9]. n is the size of the full dataset, d the dimensionality of the data and m the number of classes
(multilabel), or the avg. number of query-document pairs (ranking). See Sec. 5 for more details.

corresponds to the one in [17] for this measure, out-
performs the SSVM. This highlights the importance of
consistency in learning, and the importance of making
the algorithm dependent on the measure willing to use
for evaluation.

6 RELATED WORKS &
DISCUSSION

While the QS for structured prediction generalizes
the QS for binary classification, Structural SVMs
(SSVMs) [8, 2] and Conditional Random Fields
(CRFs) [5, 6, 31] generalize the binary SVM and lo-
gistic regression to the structured case. All of them
are surrogate methods based on minimizing the ex-
pected risk of a certain surrogate loss S(v,y) : € x
Y — R in a convex surrogate space C. The cor-
responding surrogates are Sqs(v,y) = |lv — U,l3.,
Sssvm(v,y) = maxyey(vy + LY,y)) — v, and
Scrr(v,y) = log(3_, ey expvy ) — vy (See Examples
in Appendix A.1) for QS, SSVM and CRF, respec-
tively. SSVMs and CRFs exploit the structure of
the problem by decomposing each output element into
cliques and considering only the features on this parts.
This is necessary for the tractability of the methods.
Moreover, for SSVMs, the loss L must decompose into
these cliques to make possible the maximization in-
side the surrogate, often called augmented inference.
The clique decomposability of the loss, can be seen
as a low rank decomposition, analogous to our SELF-
decomposition. While the QS has attractive statistical
properties, it is generally not the case for the other sur-
rogate methods. CRF's are only consistent for the 0-1
loss in the case that the model is well-specified [31].
This lack of calibration to a given loss is an important
drawback of this method [7]. SSVMs are in general
not Fisher consistent, even for the 0-1 loss, for which
is only consistent if the problem is deterministic, i.e,
there always exists a majority label y with probability

larger than 1/2 [32].

QS for structured prediction. [21] proposed the
QS through an affine decomposition of the loss and
derived Fisher consistency of the corresponding surro-
gate method. They analyzed the inference algorithms
for Prec@k, ERU (NDCG-type measure that we study
in Appendix B), PD and MAP. As Fisher consistency
is a property only at the optimum, their analysis is not
able to provide any statistical guarantees. [17] analy-
ses consistency and calibration properties for the QS
specialized for NDCG-type losses. In particular, they
highlight the fact that estimating the normalized rele-
vance scores is key to be consistent, which is a property
that follows directly from our framework.

As far as we know, [12] is the only work that addresses
the learning complexity of general discrete losses for
structured prediction. They consider a different QS
surrogate than ours, which could be potentially in-
tractable to compute since it is defined on the space
of labels (even when the loss is low-rank) E || Fg(X) —
L(-,Y)|3z/, and not in the low dimensional space of
the decomposition E ||g(X) — Uy ||2.. They also obtain
rates of the form oc An~'/4, however, their constants
are always larger than ours and computed explicitly
only for a small number of loss functions. In partic-
ular, for A, they obtain O(2™), O(b), 9(m?), while we
obtain O(27/2), 0(v/b), O(1) for the 0-1, block 0-1 and
Hamming, respectively. In addition, our constants are
interpretable and most of them can be proven to be
optimal (in the sense explained in Remark 3.3). Fi-
nally we provide a refined bound adaptive to the noise
of the problem as in Cor. 3.6.

To conclude, [16] introduces and studies the concept
of convex calibration dimension. We use their lower
bound on this quantity to study the optimality of the
dimension of the QS as reported in Remark 3.3.
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