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Abstract

We introduce a new class of identifiable DAG
models where the conditional distribution of
each node given its parents belongs to a fam-
ily of generalized hypergeometric distribu-
tions (GHD). A family of generalized hyper-
geometric distributions includes a lot of dis-
crete distributions such as the binomial, Beta-
binomial, negative binomial, Poisson, hyper-
Poisson, and many more. We prove that if the
data drawn from the new class of DAG mod-
els, one can fully identify the graph structure.
We further present a reliable and polynomial-
time algorithm that recovers the graph from
finitely many data. We show through theoreti-
cal results and numerical experiments that our
algorithm is statistically consistent in high-
dimensional settings (p > n) if the indegree
of the graph is bounded, and out-performs
state-of-the-art DAG learning algorithms.

1 INTRODUCTION

Probabilistic directed acyclic graphical (DAG) models
or Bayesian networks provide a widely used frame-
work for representing causal or directional dependence
relationships among many variables. One of the fun-
damental problems associated with DAG models is
learning a causal structure given samples from the joint
distribution P (G) over a set of nodes of a graph G.

Prior works have addressed the question of identifia-
bility for different classes of joint distribution P (G).
Frydenberg (1990); Heckerman et al. (1995) show the
Markov equivalence class (MEC) where graphs that
belong to the same MEC have the same conditional
independence relations. Chickering (2003); Spirtes et al.
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(2000); Tsamardinos and Aliferis (2003); Zhang and
Spirtes (2016) show that the underlying graph of a DAG
model is recoverable up to MEC under the faithfulness
or some related conditions. However since many MECs
contain more than one graph, a true graph cannot be
determined.

Recently, many works show fully identifiable DAG mod-
els under stronger assumptions on P (G). Peters and
Bühlmann (2014) proves that Gaussian structural equa-
tion models with equal or known error variances are
identifiable. In addition, Shimizu et al. (2006) shows
that linear non-Gaussian models where each variable
is determined by a linear function of its parents plus a
non-Gaussian error term are identifiable. Hoyer et al.
(2009); Mooij et al. (2009); Peters et al. (2012) relax
the assumption of linearity and prove that nonlinear
additive noise models where each variable is determined
by a non-linear function of its parents plus an error
term are identifiable under suitable regularity condi-
tions. Instead of considering linear or additive noise
models, Park and Raskutti (2015, 2017) introduce dis-
crete DAG models where the conditional distribution
of each node given its parents belongs to the exponen-
tial family of discrete distributions such as Poisson,
binomial, and negative binomial. They prove that the
discrete DAG models are identifiable as long as the
variance is a quadratic function of the mean.

Learning DAG or causal discovery from count data
is an important research problem because such count
data are increasingly ubiquitous in big-data settings,
including high-throughput genomic sequencing data,
spatial incidence data, sports science data, and disease
incidence data (Inouye et al. 2017). However as we dis-
cussed, most existing methods focus on the continuous
or limited discrete DAG models. Hence it is impor-
tant to model complex multivariate count data using a
broader family of discrete distributions.

In this paper, we generalize the main idea in Park
and Raskutti (2015, 2017) to a family of generalized
hypergeometric distributions (GHD) that includes Pois-
son, hyper-Poisson, binomial, negative binomial, beta-
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binomial, hypergeometric, inverse hypergeometric and
many more (see more examples in Dacey 1972; Kemp
1968; Kemp and Kemp 1974 and Supplementary). We
introduce a new class of identifiable DAG models where
the conditional distribution of each node given its par-
ents belongs to a family of GHDs. In addition, we prove
that the class of GHD DAG models is identifiable from
the joint distribution P (G) using convex relationship
between the mean and the r-th factorial moment for
some positive integer r under the causal sufficiency as-
sumption that all relevant variables have been observed.
However we do not assume the faithfulness assumption
that can be very restrictive (Uhler et al. 2013).

We also develop the reliable and scalable Moments
Ratio Scoring (MRS) algorithm which learns any large-
scale GHD DAG model. We provide computational
complexity and statistical guarantees of our MRS algo-
rithm to show that it has polynomial run-time and is
consistent for learning GHD DAG models, even in the
high-dimensional p > n setting when the indegree of
the graph d is bounded. We demonstrate through sim-
ulations and a real NBA data that our MRS algorithm
performs better than state-of-the-art GES (Chickering
2003), MMHC (Tsamardinos et al. 2006), and ODS
(Park and Raskutti 2015) algorithms in terms of both
run-time and recovering a graph structure.

The remainder of this paper is structured as follows:
Section 2.1 summarizes the necessary notation, Section
2.2 defines GHD DAG models and Section 2.3 proves
that GHD DAG models are identifiable. In Section 3,
we develop a polynomial-time algorithm for learning
GHD DAG models and provide its theoretical guaran-
tees and computational complexity in terms of the triple
(n, p, d). Section 4 empirically evaluates our methods
compared to GES, MMHC, and ODS algorithms on
synthetic and real basketball data.

2 GHD DAG MODELS AND
IDENTIFIABILITY

In this section, we first introduce some necessary nota-
tions and definitions for directed acyclic graph (DAG)
models. Then we propose novel generalized hyper-
geometric distribution (GHD) DAG models. Lastly,
we discuss their identifiability using a convex relation
between the mean and r-th factorial moments.

2.1 Problem Set-up and Notation

A DAG G = (V,E) consists of a set of nodes V =
{1, 2, · · · , p} and a set of directed edges E ∈ V × V
with no directed cycles. A directed edge from node
j to k is denoted by (j, k) or j → k. The set of par-
ents of node k denoted by Pa(k) consists of all nodes

j such that (j, k) ∈ E. If there is a directed path
j → · · · → k, then k is called a descendant of j and
j is an ancestor of k. The set De(k) denotes the set
of all descendants of node k. The non-descendants of
node k are Nd(k) := V \ ({k} ∪De(k)). An important
property of DAGs is that there exists a (possibly non-
unique) ordering π = (π1, ...., πp) of a directed graph
that represents directions of edges such that for every
directed edge (j, k) ∈ E, j comes before k in the order-
ing. Hence learning a graph is equivalent to learning
an ordering and skeleton that is a set of edges without
their directions.

We consider a set of random variables X := (Xj)j∈V
with a probability distribution taking values in prob-
ability space Xv over the nodes in G. Suppose that a
random vector X has a joint probability density func-
tion P (G) = P (X1, X2, ..., Xp). For any subset S of V ,
let XS := {Xj : j ∈ S ⊂ V } and X (S) := ×j∈SXj . For
any node j ∈ V , P (Xj | XS) denotes the conditional
distribution of a variable Xj given a random vector XS .
Then, a DAG model has the following factorization
(Lauritzen 1996):

P (G) = P (X1, X2, ..., Xp) =

p∏
j=1

P (Xj | XPa(j)),

where P (Xj | XPa(j)) is the conditional distribution
of a variable Xj given its parents XPa(j).

We suppose that there are n i.i.d samples X1:n :=
(X(i))ni=1 drawn from a given DAG models where
X(i) := (X

(i)
1 , X

(i)
2 , · · · , X(i)

p ) is a p-variate random
vector. We use the notation ·̂ to denote an estimate
based on samples X1:n. In addition, we assume the
causal sufficiency that all variables have been observed.

2.2 Generalized Hypergeometric
Distribution (GHD) DAG models

We begin by introducing a family of generalized hy-
pergeometric distributions (GHDs) defined by Kemp
(1968). A family of GHDs includes a large number of
discrete distributions and has a special form of prob-
ability generating functions expressed in terms of the
generalized hypergeometric series. We borrow the no-
tations and terminologies in Kemp and Kemp (1974)
to explain detailed properties of a family of GHDs.
Let 〈a〉j = a(a + 1) · · · (a + j − 1) be the rising fac-
torial, (a)j = a(a − 1) · · · (a − j + 1) be the falling
factorial, and 〈a〉0 = (a)0 = 1. In addition, generalized
hypergeometric function is:

pFq[a1, ..., ap; b1, ..., bq; θ] :=
∑
j≥0

〈a1〉j · · · 〈ap〉jθj

〈b1〉j · · · 〈bq〉jj!
.

Kemp (1968); Kemp and Kemp (1974) show that GHDs
have probability generating functions of the following



Gunwoong Park, Hyewon Park

form:

G(s | a, b) = pFq[a1, ..., ap; b1, ..., bq; θ(s− 1)].

This class of distributions includes a lot of discrete dis-
tributions such as the binomial, beta-binomial, Poisson,
Poisson type, displaced Poisson, hyper-Poisson, loga-
rithmic, and generalized log-series. We provide more
examples with their probability generating functions
in Supplementary (see also in Dacey 1972; Kemp 1968;
Kemp and Kemp 1974).

Now we define the generalized hypergeometric distri-
bution (GHD) DAG models:
Definition 2.1 (GHD DAG Models). The DAG mod-
els belong to generalized hypergeometric distribution
(GHD) DAG models if the conditional distribution of
each node given its parents belongs to a family of gen-
eralized hypergeometric distributions and the parameter
depend only on its parents: For each j ∈ V , Xj | XPa(j)
has the following probability generating function

G
(
s; a(j), b(j)

)
=pjFqj [a(j); b(j); θ(XPa(j))(s− 1)]

where a(j) = (aj1, ..., ajpj ), b(j) = (bj1, ..., bjqj ), and
θ : XPa(j) → R.

A popular example of GHD DAG models is a Poisson
DAG model in Park and Raskutti (2015) where a condi-
tional distribution of each node j ∈ V given its parents
is Poisson and the rate parameter is an arbitrary posi-
tive function θj(XPa(j)). Unlike Poisson DAG models,
GHD DAG models are hybrid models where the con-
ditional distributions have various distributions which
incorporate different data types. In addition, the ex-
ponential family of discrete distributions discussed in
Park and Raskutti (2017) is also included in a family
of GHDs. Hence, our class of DAG models is strictly
broader than the previously studied identifiable DAG
models for multivariate count data.

GHD DAG models have a lot of useful properties for
identifying a graph structure. One of the useful prop-
erties is the recurrence relation involving factorial mo-
ments:
Proposition 2.2 (CMR Property). Consider a GHD
DAG model. Then for any j ∈ V and any inte-
ger r = 2, 3, ..., there exists a r-th factorial constant
moments ratio (CMR) function f

(r)
j (x; a(j), b(j)) =

xr
∏pj
i=1

(
(aji+r−1)r

arji

)∏qj
k=1

(
brjk

(bjk+r−1)r

)
such that

E
(
(Xj)r | XPa(j)

)
= f

(r)
j

(
E(Xj | XPa(j)); a(j), b(j)

)
.

as long as maxXj ≥ r.

The detail of the proof is provided in Supplementary.
Prop. 2.2 claims that the GHD DAG models always

X1 X2

G1

X1 X2

G2

X1 X2

G3

Figure 1: Bivariate DAGs of G1, G2 and G3

satisfy the r-th constant moments ratio (CMR) property
that the r-th factorial moment is a function of the mean.
The condition maxXj ≥ r for r ≥ 2 rules out DAG
models with Bernoulli and multinomial distributions
which are known to be non-identifiable (Heckerman
et al. 1995). We will exploit the CMR property for
model identifiability in the next section.

2.3 Identifiability

In this section we prove that GHD DAG models are
identifiable. To provide intuition, we show identifia-
bility for the bivariate Poisson DAG model discussed
in Park and Raskutti (2015). Consider all possible
graphical models illustrated in Fig. 1: G1 : X1 ∼
Poisson(λ1), X2 ∼ Poisson(λ2), where X1 and X2

are independent; G2 : X1 ∼ Poisson(λ1) and X2 |
X1 ∼ Poisson(θ2(X1)); and G3 : X2 ∼ Poisson(λ2)
and X1 | X2 ∼ Poisson(θ1(X2)) for arbitrary positive
functions θ1, θ2 : N ∪ {0} → R+. Our goal is to de-
termine whether the underlying graph is G1, G2 or G3

from the probability distribution P (G).

We exploit the CMR property for Poisson, E((Xj)r) =
E(Xj)

r for any positive integer r ∈ {2, 3, ...}. For G1,
E((X1)r) = E(X1)r and E((X2)r) = E(X2)r. For G2,
E((X1)r) = E(X1)r, while

E((X2)r) = E(E((X2)r | X1)) = E(E(X2 | X1)r)

> E(E(X2 | X1))r = E(X2)r,

as long as E(X2 | X1) is not a constant. The inequality
follows from the Jensen’s inequality.

Similarly for G3, E((X2)r) = E(X2)r and E((X1)r) >
E(X1)r as long as E(X1 | X2) is not a constant. Hence
we can distinguish graphs G1, G2, and G3 by testing
whether a moments ratio E((Xj)r)/E(Xj)

r is greater
than or equal to 1.

Now we state the identifiability condition for the general
case of p-variate GHD DAG models:

Assumption 2.3 (Identifiability Condition). For a
given GHD DAG model, the conditional distribution of
each node given its parents is known. In other words,
the r-th factorial CMR functions (f

(r)
j (x; a(j), b(j)))j∈V

are known. Moreover, for any node j ∈ V , E(Xj |
XPa(j)) is non-degenerated.

Prop. 2.2 and Assumption 2.3 enable us to use the
following property: for any node j ∈ V , E((Xj)r) =
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E(f
(r)
j (E(Xj | XPa(j)); a(j), b(j))), while for any non-

empty Pa0(j) ⊂ Pa(j) and Sj ⊂ Nd(j) \ Pa0(j),

E((Xj)r) = E(E(f
(r)
j (E(Xj | XPa(j)); a(j), b(j)) | XSj ))

> E(f
(r)
j (E(Xj | XSj

); a(j), b(j))),

because the CMR function is strictly convex.

We state the first main result that general p-variate
GHD DAG models are identifiable:

Theorem 2.4 (Identifiability). Under Assumption 2.3,
the class of GHD DAG models is identifiable.

We defer the proof in Supplementary. The key idea of
the identifiability is to search a smallest conditioning
set Sj for each node j such that the moments ratio
E((Xj)r)/E(f

(r)
j (E(Xj | XSj ))) = 1. Thm. 2.4 claims

that the assumption on nodes distributions is suffi-
cient to uniquely identify GHD DAG models. In other
words, the well-known assumptions such as faithfulness,
non-linear causal relation, non-Gaussian additive noise
assumptions are not necessary (Hoyer et al. 2009; Mooij
et al. 2009; Peters and Bühlmann 2014; Peters et al.
2012; Shimizu et al. 2006).

Thm. 2.4 implies that Poisson DAG models are identi-
fiable even when the form of rate parameter functions
θj are unknown because the model assumes all node
(conditional) distributions are Poisson. Thm. 2.4 also
claims that hybrid DAG models, in which the distribu-
tions of nodes are different, are identifiable as long as
the distributions are known while the forms of param-
eter functions are unknown. In Section 4, we provide
numerical experiments on Poisson and hybrid DAG
models to support Thm. 2.4.

3 ALGORITHM

In this section, we present our Moments Ratio Scoring
(MRS) algorithm for learning GHD DAG models. Our
MRS algorithm has two main steps: 1) identifying
the skeleton (i.e., edges without their directions) using
existing skeleton learning algorithms; and 2) estimating
the ordering of the DAG using moments ratio scores,
and assign the directions to the estimated skeleton
based on the estimated ordering.

Although GHD DAG models can be recovered only us-
ing the r-th CMR property according to Thm. 2.4, our
algorithm exploits the skeleton to reduce the search
space of DAGs. From the idea of constraining the
search, our algorithm achieves computational and sta-
tistical improvements. More precisely, Step 1) pro-
vides candidate parents set for each node. The concept
of candidate parents set exploits two properties; (i)
the neighborhood of a node j in the graph denoted

by N (j) := {k ∈ V | (j, k) or (k, j) ∈ E} is a su-
perset of its parents, and (ii) a node j should ap-
pear later than its parents in the ordering. Hence,
the candidate parents set for a node j is the intersec-
tion of its neighborhood and elements of the ordering
which appear before that node j, and is denoted by
Cmj := N (j) ∩ {π1, π2, ..., πm−1} where mth element
of the ordering is j (i.e., πm = j). The estimated can-
didate parents set is Ĉmj := N̂ (j) ∩ {π̂1, π̂2, ..., π̂m−1}
that is specified in Alg.1

This candidate parents set is used as a conditioning
set for a moments ratio score in Step 2). If the idea
of candidate parents set is not applied, the size of the
conditioning set for a moments ratio score could be
p−1. Since Step 2) computes conditional moments, the
sample complexity depends significantly on the number
of variables we condition on as illustrated in Section
3.2. Therefore by making the conditioning set for a
moments ratio score of each node as small as possible,
we gain huge statistical improvements.

The idea of reducing the search space of DAGs has
been studied in many sparse candidate algorithms
(Zhang and Hyvärinen 2009; Hyvärinen and Smith
2013). Hence for Step 1) of our algorithm, any off-
the-shelf candidate parents set learning algorithms can
be applied such as MMPC (Tsamardinos and Aliferis
2003). Moreover, any standard MEC learning algo-
rithms such as PC, GES, and MMHC can be exploited
because MEC provides the skeleton of a graph (Verma
and Pearl 1992). In Section 4, we provide the simu-
lation results of the MRS algorithm where GES and
MMHC algorithms are applied in Step 1).

Step 2) of the MRS algorithm involves learning the
ordering by comparing moments ratio scores of nodes
using Eqn. (1). The ordering is determined one node at
a time by selecting the node with the smallest moments
ratio score because the correct element of the ordering
has the score 1, otherwise strictly greater than 1 in
population.

Regarding the moments ratio scores, the score can be
exploited for recovering the ordering only if the CMR
property holds, which implies that the score should not
be zero. Even if the zero value score is impossible in
population, zero value scores often arise for a low count
data such that all samples are less than r. Hence in
order to avoid zero value scores due to a sample r-th fac-
torial moment (i.e., Ê((X)r) = 0), we use an alternative
ratio E(Xr)/

(
f (r)(E(X))−

∑r−1
k=0 s(r, k)E(Xk)

)
where

s(r, k) is Stirling numbers of the first kind. This alter-
native ratio score comes from (x)r =

∑r
k=0 s(r, k)xk,

therefore E(Xr) = f (r)(E(X))−
∑r−1
k=0 s(r, k)E(Xk).

Hence the moments ratio scores in Step 2) of Alg.1
involve the following equations:
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Algorithm 1: Moments Ratio Scoring
Input :n i.i.d. samples, X1:n

Output :Estimated ordering π̂ and an edge
structure, Ê ∈ V × V

Step 1: Estimate the skeleton of the graph N̂ ;
Step 2: Estimate an ordering of the graph using
r-th moments ratio scores;
Set π̂0 = ∅;
for m = {1, 2, · · · , p− 1} do

for j ∈ {1, 2, · · · , p} \ {π̂1, · · · , π̂m−1} do
Find candidate parents set
Ĉmj = N̂ (j) ∩ {π̂1, · · · , π̂m−1};
Calculate r-th moments ratio scores
Ŝr(m, j) using (1);

end
The mth element of the ordering
π̂m = arg minj Ŝ(m, j);

end
The last element of the ordering
π̂p = {1, 2, · · · , p} \ {π̂1, π̂2, · · · , π̂p−1};
Return :Estimate the edge sets:
Ê = ∪m∈V {(k, π̂m) | k ∈ N̂ (π̂m)∩(π̂1, ..., π̂m−1)}

Ŝr(1, j) :=
Ê(Xr

j )

f
(r)
j (Ê(Xj))−

∑r−1
k=0 s(r, k)Ê(Xk

j )
(1)

Ŝr(m, j) :=
∑

x∈XĈmj

nĈmj
(x)

nĈmj

Ŝr(m, j)(x)

Ŝr(m, j)(x) :=
µ̂r
j|Ĉmj

(x)

f
(r)
j (µ̂1

j|Ĉmj
(x))−

∑r−1
k=0 s(r, k)µ̂k

j|Ĉmj
(x)

where Ĉmj is the estimated candidate parents set
of node j for the mth element of the ordering and
µ̂kj|S(xS) := Ê(Xk

j | XS = xS). In addition, n(xS) :=∑n
i=1 1(X

(i)
S = xS) if n(xS) ≥ Nmin otherwise 0,

that refers to the truncated conditional sample size
for xS , and nS :=

∑
xS
n(xS) refers to the total

truncated conditional sample size for variables XS .
Lastly, we use the method of moments estimators
Ê(Xk

j ) = 1
n

∑n
i=1((X

(i)
j )k) as unbiased estimators.

Since there are many conditional distributions, our
moments ratio score is the weighted average of the
levels of how well each distribution satisfies the r-th
CMR property. The score only contains the conditional
expectations with n(xS) ≥ Nmin for better accuracy
because the accuracy of the estimation of a conditional
expectation Ê(Xj | xS) relies on the sample size.

Finally, a directed graph is estimated combining the
estimated skeleton from Step 1) and the estimated
ordering from Step 2) that is Ê := ∪j∈V {(k, π̂j) | k ∈
N̂ (π̂j) ∩ (π̂1, π̂2, ..., π̂j−1)}.

3.1 Computational Complexity

The MRS algorithm uses any skeleton learning algo-
rithms with known computational complexity for Step
1). Hence we first focus on our novel Step 2) of the MRS
algorithm. In Step 2), there are (p− 1) iterations and
each iteration has a number of moments ratio scores
to be computed which is bounded by O(p). Hence the
total number of scores to be calculated is O(p2). The
computation time of each score is proportional to the
sample size n, the complexity is O(np2).

The total computational complexity of the MRS algo-
rithm depends on the choice of the algorithm in Step 1).
Since learning a DAG model is NP-hard (Chickering
et al. 1994), many state-of-the-art DAG learning algo-
rithms such as PC (Spirtes et al. 2000), GES (Chicker-
ing 2003), MMHC (Tsamardinos et al. 2006), and GDS
(Peters and Bühlmann 2014) are inherently heuristic
algorithms. Although these algorithms take greedy
search strategies, the computational complexities of
greedy search based GES and MMHC algorithms are
empirically O(n2p2). In addition, PC algorithm runs
in the worst case in exponential time. Hence, Step
2) may not the main computational bottleneck of the
MRS algorithm. In Section 4, we compare the MRS
to GES algorithm in terms of log run-time, and show
that the addition of estimation of ordering does not
significantly add to the computational bottleneck.

3.2 Statistical Guarantees

The MRS algorithm exploits well-studied existing al-
gorithms for Step 1). Hence, we focus on theoretical
guarantees for Step 2) of the MRS algorithm given
that the skeleton is correctly estimated in Step 1). The
main result is expressed in terms of the triple (n, p, d)
where n is a sample size, p is a graph node size, and d
is the indegree of a graph. Lastly, we discuss the suffi-
cient conditions for recovering the graph via the MRS
algorithm according to the chosen skeleton learning
algorithm for Step 1).

We begin by discussing three required conditions that
the MRS algorithm recovers the ordering of a graph.

Assumption 3.1. Consider the class of GHD DAG
models with r-th factorial CMR function f (r)j specified
in Prop. 2.2. For all j ∈ V , any non-empty Pa0(j) ⊂
Pa(j), and Sj ⊂ Nd(j) \ Pa0(j),

(A1) there exists a positive constant Mmin > 0 such that

µj|Sj
/
(
f
(r)
j (µj|Sj

)−
∑

s(r, k)µkj|Sj

)
> 1 +Mmin

(A2) there exists a positive constant V1 such that

E(exp(Xj) | XPa(j)) < V1.
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(A3) there are some elements xSj ∈ XSj such that∑n
i=1 1(X

(i)
Sj

= xSj ) ≥ Nmin where Nmin > 0 is
the predefined minimum sample size in the MRS
algorithm.

The first condition is a stronger version of Assump-
tion 2.3 since we move from the population to the finite
sample setting. The second assumption is to control
the tail behavior of the conditional distribution of each
variable given its parents. It enables to control the ac-
curacy of moments ratio scores (1) in high dimensional
settings (p > n). The last assumption ensures that the
score can be calculated.

We now state the second main result under Assump-
tion 3.1. Since the true ordering π is possibly not
unique, we use E(π) to denote the set of all the order-
ings that are consistent with the DAG.
Theorem 3.2 (Recovery of the ordering). Consider
a GHD DAG model where the conditional distribution
of each node given its parents is known. Suppose that
the skeleton of the graph is provided, the maximum
indegree of the graph is d, and Assumptions 3.1(A1)-
(A3) are satisfied. Then there exists constant Cε > 0
for any ε > 0 such that if sample size is sufficiently large
n > Cε log2r+d(max (n, p))(log(p) + log(r)), the MRS
algorithm with the r-th moments ratio scores recovers
the ordering with high probability: P (π̂ ∈ E(π)) ≥ 1−ε.

The detail of the proof is provided in Supplementary.
Intuitively, it makes sense because the method of mo-
ment estimator converges to the true moment as sample
size n increases. This allows the algorithm to recover
a true ordering for the DAG G consistently.

Thm. 3.2 claims that if the sample size n =
Ω(log2r+d(max (n, p)) log(p)), our MRS algorithm ac-
curately estimates a true ordering with high prob-
ability. Hence our MRS algorithm works in high-
dimensional settings (p > n) provided that the in-
degree of the graph d is bounded. This theoretical
result is also consistent with learning Poisson DAG
models shown in Park and Raskutti (2015) where if
n = Ω(log4+d(max (n, p)) log(p)) their algorithm recov-
ers the ordering well. Since Park and Raskutti (2015)
uses the variance (the second order moments r = 2),
both algorithms are expected to have the same perfor-
mance of recovering graphs.

However the MRS algorithm performs better than the
ODS algorithm in general because the moments dif-
ference the ODS algorithm exploits is proportional to
magnitude of the conditional mean while the moments
ratio is not. For a simple Poisson DAG X1 → X2,
E((X2)2) − E(X2)2 = Var(E(X2 | X1)). Hence if
E(X2 | X1) ≈ 0, the score in ODS is inevitably close
to 0, while the score in MRS, E((X2)2)/E(X2)2 =

(a) Poisson: p = 200 (b) Poisson: p = 500

(c) Hybrid: p = 200 (d) Hybrid: p = 500

Figure 2: Comparison of the MRS algorithms using
different values of r = 2, 3, 4 for the scores in terms of
recovering the ordering of Poisson and Hybrid DAG
models given the true skeletons.

1 +Var(E(X2 | X1))/E(X2)2 is not necessarily close to
1. Hence, Assumption 3.1(A1) is much milder than the
related assumption for the ODS algorithm.

Now we discuss the sufficient conditions for recovering
the true graph via the MRS algorithm according to the
choice of the algorithm in Step 1). The PC, GES, and
MMHC algorithms require the Markov, faithfulness,
and causal sufficiency or related assumptions to recover
the skeleton of a graph. Moreover GES, MMHC al-
gorithms are greedy search based algorithms that are
not guaranteed to recover the true skeleton of a graph.
Therefore, the MRS algorithm may require strong as-
sumptions or large sample size to recover the true graph
based on the choice of the algorithm in Step 1). Al-
though these assumptions can be very restrictive, we
show through the simulations that MRS recovers the
directed edges well even in high dimensional settings.

4 NUMERICAL EXPERIMENTS

In this section, we support our theoretical results in
Thm. 3.2 and computational complexity in Section 3.1
with synthetic and real basketball data. In addition, we
show that our algorithm performs favorably compared
to the ODS, GES, and MMHC algorithms in terms of
recovering the directed graphs.

4.1 Synthetic Data

Simulation Settings: We conduct two sets of simu-
lation study using 150 realizations of p-node random
GHD DAG models with the indegree constraints d = 2:
(1) Poisson DAG models where the conditional distri-
bution of each node given its parents is Poisson; and
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(a) Poisson: Precision (b) Poisson: Recall (c) Hybrid: Precision (d) Hybrid: Recall

Figure 3: Comparison of our MRS algorithms using GES and MMHC algorithms in Step 1) and r = 2 to the
ODS, GES, MMHC algorithms in terms of recovering Poisson and Hybrid DAG models with p = 200.

(2) Hybrid DAG models where the conditional distri-
butions are sequentially Poisson, Binomial with N = 3,
hyper-Poisson with b = 2, and Binomial with N = 3.

We set the (hyper) Poisson rate parameter θj(Pa(j)) =
exp(θj +

∑
k∈Pa(j) θjkXk) and the binomial probabil-

ity pj(Pa(j)) = logit−1(θj +
∑
k∈Pa(j) θjkXk). The set

of non-zero parameters θjk ∈ R were generated uni-
formly at random in the range θjk ∈ [−1.75,−0.25] ∪
[0.25, 1.75] and θj ∈ [1, 3] for Poisson, and θjk ∈
[−1.2,−0.2] and θj ∈ [1, 3] for Hybrid DAG models.
These ranges help the generated values of samples to
avoid either all zeros (constant) or too large (> 10309).
However if some samples are all zeros or too large,
we regenerate parameters and samples. We also set
the r ∈ {2, 3, 4} and Nmin = 1 for computing the r-th
moments ratio scores. More simulation results with
different settings are provided in Supplementary.

Simulation Results: In order to authenticate the
validation of Thm. 3.2, we plot the average preci-
sion (# of correctly estimated edges

# of estimated edges ) as a function of sam-
ple size (n ∈ {100, 200, ..., 1000}) for different node
sizes (p = {200, 500}) given the true skeleton. Fig. 2
provides a comparison of how accurately our MRS
algorithm performs in terms of recovering the order-
ings of the GHD DAG models. Fig. 2 supports our
main theoretical results in Thm. 3.2: (i) our algorithm
recovers the ordering more accurately as sample size
increases; (ii) our algorithm can recover the ordering in
high dimensional settings; and (iii) the required sample
size n = Ω(log2r+d(max (n, p)) log(p)) depends on the
choice r because our algorithm with r = 2 performs sig-
nificantly better than our algorithms with r = 3, 4. For
Hybrid DAG models with r = 4, the precision seems
not to increase as sample size increases. It makes sense
because Binomial with N = 3 cannot satisfy the CMR
property 2.2 and Assumption 3.1 (A1) with r = 4 i.e.,
E((Xj)4) = 0. However the precision 0.7 is significantly
better than 0.5 which is the precision of the graph with
a random ordering.

In Fig. 3, we compare the MRS algorithm where
r = 2 for the score, and GES and MMHC algo-
rithms are applied in Step 1) to state-of-the art ODS,
GES and MMHC algorithms by providing two results

(a) Varying n (b) Varying p

Figure 4: Log run-time of the MRS algorithm using
GES algorithm in Step 1) for learning Poisson DAG
models with respect to (a) n ∈ {100, 200, ..., 1300} with
p = 100, and (b) p ∈ {10, 20, ..., 200} with n = 500.

as a function of sample size n ∈ {100, 200, ..., 1000}
for fixed node size p = 200: (i) the average preci-
sion (# of correctly estimated edges

# of estimated edges ); (ii) the average recall
(# of correctly estimated edges

# of ture edges ). We also provide an oracle
where the true skeleton is used while the ordering is
estimated via the moments ratio scores.

As we see in Fig. 3, the MRS algorithm accurately
recovers the true directed edges as sample size increases.
However since the skeleton estimation is not perfect, we
can see the performances of our MRS algorithms using
GES and MMHC in Step 1) are significantly worse
than the oracle.

Fig. 3 also provides that the MRS algorithm is more
accurate than state-of-the-art ODS, GES and MMHC
algorithms in both precision and recall. It makes sense
because the moments ratio scores the MRS algorithm
exploits are less sensitive to the magnitude of the mo-
ments than the score the ODS algorithm uses as dis-
cussed in Section 3.2, and because the GES and MMHC
algorithms recover up to the MEC by leaving some ar-
rows undirected. However it must be pointed out that
our MRS algorithm apply to GHD DAG models while
GES and MMHC apply to general classes of DAG
models.

Computational Complexity: To validate the com-
putational complexity discussed in Section 3.1, we show
the log run-time of Step 1) and Step 2) of the MRS al-
gorithm in Fig. 4 where the GES is applied for Step 1).
We measured the run-time for learning Poisson DAG
models by varying (a) n ∈ {100, 200, ..., 1300} with the
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(a) Hybrid: Precision (b) Hybrid: Recall

Figure 5: Comparison of the MRS algorithms with the
different assumed node conditional distribution and
the GES algorithm in terms of recovering Hybrid DAG
models with p = 20.

fixed node size p = 100, and (b) p ∈ {10, 20, ..., 200}
with the fixed sample size n = 500. As we see in Fig. 4,
the time complexity of Step 1) is O(n2p2), and that
of Step 2) of the MRS algorithm is O(np2). Hence we
confirm the addition of estimation of ordering does not
significantly add to the computational bottleneck.

Deviations from True Distributions: When the
data are generated by a GHD DAG model where the
conditional distribution of each node given its parents
is unknown, our algorithm is not guaranteed to esti-
mate the true graph and its ordering. Therefore, an
important question is how well the MRS algorithm re-
covers graphs when incorrect distributions are used. In
this section, we heuristically investigate this question.

We use the same setting of the data generation for
Hybrid GHD DAG models with the node size p = 20.
We consider (i) the true (conditional) distributions, and
assume all nodes (conditional) distributions are either
(ii) Poisson; (iii) hyper-Poisson with b = 2; or (iv) hyper-
Poisson with b = V̂ar(X)/Ê(X) that is an estimator
for the hyper-Poisson parameter b. We compare the
MRS and GES algorithms by varying sample size n ∈
{100, 200, ..., 1000} in Fig. 5.

Fig. 5 shows that the MRS algorithms recover the true
graph better as sample size increases although there
is no theoretical guarantees. It shows that the MRS
algorithm enables to learn a part of ordering even if the
true (conditional) distributions are unknown as long
as there are sufficient samples.

4.2 Real Multivariate Count Data:
2009/2010 NBA Player Statistics

We demonstrate the advantages of our graphical mod-
els for count-valued data by learning 441 NBA player
statistics from season 2009/2010 (see R package Sport-
sAnalytics for detailed information). We consider 18
discrete variables: total minutes played, total number
of field goals made, field goals attempted, threes made,
threes attempted, free throws made, free throws at-
tempted, offensive rebounds, rebounds, assists, steals,

(a) DAG from MRS (b) DAG from ODS

Figure 6: NBA players statistics DAG estimated by
MRS (left) and DAG estimated by ODS (right).

turnovers, blocks, personal fouls, disqualifications, tech-
nicals fouls, games started and total points. We provide
the procedure of data preprocessing and the detailed
summary of data in Supplementary.

The MRS and ODS algorithms are applied where GES
algorithm is used in Step 1). We assume that the
conditional distribution of each node given its par-
ents is hyper-Poisson because most of NBA statis-
tics we consider are the number of successes or at-
tempts counted in the season. We emphasize that our
method requires a known conditional distribution as-
sumption to recover the true graph. However since we
do not have prior node distribution information, we
set bj = V̂ar(Xj)/Ê(Xj) as we used in simulations that
enables the MRS algorithm successfully recovers the
directed edges.

Fig. 6 shows the estimated directed graphs using
the MRS and ODS algorithms. There are 8 dis-
tinct directed edges in the estimated DAG from the
MRS algorithm while the estimated DAG from the
ODS algorithm has opposite directions: TotalMinute-
sPlayed → PersonalFouls, Steals, and GamesStarted,
ThreeAttempted → ThreeMade, TotalRebounds →
OffensiveRebounds, OffensiveRebounds → Blocks,
FreeThrowsAttempted → Technicals, and Personal-
Fouls → Disqualification. The connections between
rebounds and blocks, and shooting attempted and tech-
nicals do not makes sense in both directions, and hence
they might be incorrectly estimated edges in Step 1).

However the remaining 6 directed edges are better
explainable because the total minutes played would
be a reason for other statistics, and a large number of
shooting attempted would lead to the more shootings
made. It is consistent to our main point that MRS
algorithm provides more legitimate directed edges than
the ODS algorithm by allowing a broader class of count
distributions.
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