
A recurrent Markov state-space generative model for sequences

Anand Ramachandran1, Steven S. Lumetta1, Eric Klee2, Deming Chen1

1University of Illinois at Urbana-Champaign, 2Mayo Clinic

Abstract
While the Hidden Markov Model (HMM) is a
versatile generative model of sequences capa-
ble of performing many exact inferences effi-
ciently, it is not suited for capturing complex
long-term structure in the data. Advanced
state-space models based on Deep Neural
Networks (DNN) overcome this limitation
but cannot perform exact inferences. In this
article, we present a new generative model
for sequences that combines both aspects,
the ability to perform exact inferences and
the ability to model long-term structure, by
augmenting the HMM with a deterministic,
continuous state variable modeled through a
Recurrent Neural Network. We empirically
study the performance of the model on (i)
synthetic data comparing it to the HMM, (ii)
a supervised learning task in bioinformatics
where it outperforms two DNN-based regres-
sors and (iii) in the generative modeling of
music where it outperforms many prominent
DNN-based generative models.

1 Introduction

The Hidden Markov Model (HMM) [25] has been ap-
plied to a wide range of applications from speech recog-
nition [10] to read alignment [8]. While it is versa-
tile, the HMM is unable to represent complex long-
term patterns due to a parsimonious state-space [30].
Specifically, at any time-step, the future of a sequence
generated by an HMM is conditionally independent
of its past, given the HMM’s state at that time-step.
The HMM’s state, being a discrete random variable,
is not descriptive enough to capture sufficient informa-
tion about the history of its operation. Hence, the past
can only exert a limited influence on the future, con-
tributing to an inability to model long-term patterns
with complex structure.

One approach to modeling long-term patterns is to
use the internal state of a Recurrent Neural Network

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

(RNN) to parameterize an output distribution [13] or
to set the hidden state and parameters of a genera-
tive model such as a Restricted Boltzmann Machine
[31] or a Neural Autoregressive Distribution Estima-
tor [5]. However, the only information about history
here is the RNN state, which due to its deterministic
nature, does not suit applications where it is neces-
sary to determine higher order features or “regimes”
under which the data is generated. Models with highly
descriptive stochastic state-spaces have also been con-
structed. For example, discrete state-spaces which can
encode exponentially higher amount of information
than the HMM [11][30], and models where stochastic
state variables are associated with an RNN’s deter-
ministic state [7][9][19][12] have been proposed. These
methods cannot perform exact inference, instead an
approximate posterior distribution parameterized by
a neural network is provided.

The advanced state-space models do not have some
functional aspects of the HMM that make it success-
ful in applications where domain knowledge about a
stochastic, discrete latent space is used to design a so-
lution in a principled, and well-reasoned manner. E.g.,

• Cases where the type of distribution under dif-
ferent regimes is known (e.g., [2], or HMMs used
in speech). The HMM allows constructing a se-
quential model of these regimes with training and
inference posed as optimization problems. Alter-
natives using advanced regressors such as RNNs
may depend on sub-optimal algorithms for infer-
ence (e.g., Connectionist Temporal Classification
[14] in speech) that may require heuristics or man-
ual tuning.

• Cases where temporal logic is important, where
the regimes need to conform to rules. For ex-
ample, in sequence alignment [8], the alignments
produced by the model should have logical con-
sistency (one character should not be aligned to
two places etc). In other cases, certain state-
transitions may be disallowed. Such logic may be
coded into the HMM's architecture easily. It is
not readily clear how such logic may be enforced
on many advanced generative models with com-
plex state spaces.

• Cases where specialized inferences are used. The

A recurrent Markov state-space generative model for sequences

HMM offers the popular Viterbi, forward, and
backward inferences which are exact and efficient.
In addition, the HMM allows drawing of infer-
ences where arbitrary regimes are included or ex-
cluded. The likelihood ratio test popular in bioin-
formatics uses such inferences to compare hy-
potheses.

Hence, while the HMM cannot capture long-term pat-
terns, it provides an interface to encode domain-
specific knowledge, with the ability to draw exact infer-
ences. Complex state-space models that can represent
long-term patterns lack such an interface, or cannot
perform exact inference. Hence, there is currently a
need for a model that can represent complex long-term
patterns well, and provide a framework in which do-
main knowledge may be incorporated efficiently with
the ability to perform exact inference.

In this paper, we present such a model. It augments
the HMM by adding a continuous, deterministic state
variable that is modeled using an RNN. This augmen-
tation removes the conditional independence of state
transition and emission on history, boosting the ability
of the model to represent long-term patterns. At the
same time, the model preserves the powerful interface
of the HMM, as well as its ability to perform exact
inferences. We examine the model’s performance em-
pirically in three cases, spanning supervised and un-
supervised learning applications, where the ability to
represent complex long-term relationships can be help-
ful. The model performs at par or better than existing
methods in these cases. Specifically, the contributions
of this work are as follows.

• A generative model for sequences that can repre-
sent long-term structure in the data and perform
exact inferences.

• An emprical comparison of the model with the
HMM using two synthetic datasets that contain
non-linear long-range patterns.

• Application of the model to the bioinformatic task
of determining the binding-specificity of Tran-
scription Factors, where it outperforms two DNN-
based regressors. This is a supervised learning
application.

• Application of the model to the generative mod-
eling of piano music sequences, where the model
outperforms competing methods in two out of four
cases. This is an unsupervied learning applica-
tion.

2 Methods

2.1 Model description

We term the sequence generative model we introduce
in this paper, the Long Short-term Graphical Model
(LSGM).

The LSGM consists of a finite set of discrete states
(say Π), and a continuous state, Q ∈ Rn, where n is
a positive integer indicating the dimensionality of the
state. Consider the generation of a sequence of length
T from the LSGM, namely X1:T = {x1, x2, · · ·xT }.
The generative process may be described as follows.
At the start of the time-step, t, the LSGM is said to
be in one of the discrete states πt ∈ Π, and a contin-
uous state Qt−1. During the time-step, the following
operations are performed (Figure 2a).

• πt emits xt according to a probability distribu-
tion, P [xt|πt, Qt−1]. This is called the emission
distribution.

• Qt−1 is updated to Qt in a deterministic fashion
following Qt = f(Qt−1, xt). f is an RNN.

• LSGM transitions to a state πt+1 ∈ Π sampled
randomly from a second probability distribution,
P [πt+1|πt, Qt], called the transition distribution.

The first state of the LSGM, π1, may be determined
by sampling from a distribution P [π1|Q0]. This may
be considered as a separate initializing distribution.
Alternatively, we may assume that the LSGM rests in a
start state prior to any symbols being emitted. In this
case, P [π1|Q0] is considered the transition distribution
at time t = 0 from the start state. Q0 is some fixed
parameter of the model.

Dependence on Qt may be rewritten as dependence
on X1:t and Φ, the LSGM’s parameter set. Hence, we
may rewrite the emission and transition distributions
as follows.

P [xt|πt, Qt−1] = P [xt|πt, X1:t−1,Φ] , et(πt) (1)

P [πt+1|πt, Qt] = P [πt+1|πt, X1:t,Φ] , γt(πt, πt+1) (2)

There are different ways to implement et. In one im-
plementation (an example of which is given in Figure
1a), we associate a feed-forward fully-connected (FC)
neural network with each state. The input to each
neural network is Qt and the kth neural network mod-
els the emission distribution associated with state k
(or et(k)). In another implementation (an example of
which is given in Figure 1b), there is a single feed-
forward fully-connected neural network for the entire
LSGM. In this case, to model the emission distribution
associated with state k, the neural network accepts
Qt and k as inputs. Instead of using a single scalar
value, k, as the input identifying the state, we could
input an embedding of the state k. The embedding of
a state is simply a real-valued vector associated with
the state. The LSGM carries a dictionary mapping
states to their embeddings. The second implementa-
tion scales well for large state-spaces as it shares a sin-
gle fully-connected network among the states. Other

Anand Ramachandran, Steven S. Lumetta, Eric Klee, Deming Chen

parameter sharing schemes are possible - e.g., states
may share all parameters of the Emission Network ex-
cept the biases of the output layer, which may be ini-
tialized to reflect prior assumptions. The FC (inter-
changeably called “dense”) network(s) implementing
the emission distributions are collectively termed, the
Emission network.

γt consists of |Π| categorical distributions. Each dis-
tribution allows sampling from the LSGM state set, Π.
This is implemented as a fully-connected feed-forward
neural network which takes Qt as input and provides
|Π|2 outputs which are arranged in a |Π| × |Π| ma-
trix where each row is normalized using the softmax
function. The kth row represents the transition dis-
tribution associated with state k. Modeling of the
transition distribution is illustrated in Figure 1c. The
FC network implementing the transition distribution
is termed the Transition network.

Implicit in the description of the generative process of
the LSGM are the following conditional independence
assumptions.

xt ⊥ πt′ |
(
πt, X1:t−1

)
, for t′ < t (3)

πt ⊥ πt′ |
(
πt−1, X1:t−1

)
, for t′ < t− 1 (4)

Under these assumptions, the following recursions are
applicable to the LSGM. The recursions are derived in
the supplementary document.

P
[
X1:t+1, πt+1 = j|Φ

]
= αt+1(j) = et+1(j)

∑
k

αt(k)γt(k, j) (5)

P
[
Xt+1:T |πt = k,X1:t,Φ

]
= βt(k) =

∑
j

βt+1(j)γt(k, j)et+1(j)

(6)

The recurrences in Equations 5 and 6 are similar to the
forward and backward recurrences in the HMM. Given
the parameters γt and et, they have the same complex-
ity, O(N2T), as the HMM versions for N states and
T time-steps (O(N) operations required per state per
time-step). Similar to the forward and backward re-
cursions, the Viterbi recursion is also applicable to the
LSGM. At the same time, it may be noted that two of
the independence assumptions used in the HMM have
been removed in the LSGM. The assumptions not used
in the LSGM, but used in the HMM are

xt ⊥ xt′ |πt, for t′ < t (7)

πt+1 ⊥ xt′ |πt, for t′ ≤ t (8)

Figure 2a summarizes the generative process in the
LSGM. The generative process in an HMM is shown
in Figure 2b. Compared to the HMM, the LSGM emis-
sions and transitions are stochastically influenced by
Qt, which is a function of unlimited past history of

model outputs. This function has the capability to
represent rich information about the past because it
is continuous and multidimensional. Figure 2c repre-
sents the relationships among the states in a three-
state LSGM at time step t. Figure 3a represents the
overall LSGM architecutre. It assumes the emission
modeling method in Figure 1b.

2.2 Maximum Likelihood estimation

The LSGM may be trained through Maximum Like-
lihood (ML) estimation performed through gradient
descent. During Maximum Likelihood (ML) estima-
tion, a model’s parameters are adjusted to improve
the likelihood with which it generates a training set.
For this, first, it must be possible to determine the
likelihood of an observed sequence under the model.
For the LSGM, this may be done by marginalizing the
probability term in Equation 5 as follows.

P
[
X1:t|Φ

]
=
∑
πt

P
[
X1:t, πt|Φ

]
=
∑
k

αt(k) (9)

Second, it must be possible to determine the derivative
of an observed sequence with respect to the parame-
ters of the model. The parameters of the LSGM (Φ)
are the parameters of the emission (Φe) and transition
networks (Φγ), and the parameters of the RNN im-
plementing the Qt updates (ΦQ), as shown in Figure

3a. Hence, we should be able to compute ∂P [X1:T]
∂Φe

etc.
This may be achieved as follows (also, Figure 3b).

1. Determine ∂P [X1:T]
∂et

and ∂P [X1:T]
∂γt

, for all t

2. Use the derivatives in step 1 to determine
∂P [X1:T]
∂Φe

, ∂P [X1:T]
∂Φγ

, and ∂P [X1:T]
∂Qt

through the back-

propagation algorithm

3. Invoke the backpropagation-through-time algo-

rithm to determine ∂P [X1:T]
∂ΦQ

from ∂P [X1:T]
∂Qt

Among these steps, the backpropagation (step 2) and
the backpropagation through time (step 3) algorithms
are well-known. Hence, we will treat step 1 in this ar-
ticle. Let Y be the likelihood of an observed sequence,
or a function of its likelihood. Then, the following
recursions hold, and summarize the steps needed to
achieve step 1.

∂Y

∂αt(j)
=
∑
k

∂Y

∂αt+1(k)

∂αt+1(k)

∂αt(j)
=
∑
k

et+1(k)πt(j, k)
∂Y

∂αt+1(k)

(10)

∂Y

∂et(j)
=

∂Y

∂αt(j)

∂αt(j)

∂et(j)
=

∂Y

∂αt(j)

∑
k

αt−1(k)γt−1(k, j) (11)

∂Y

∂γt(j, k)
=

∂Y

∂αt+1(k)

∂αt+1(k)

∂γt(j, k)
= et+1(k)αt(j)

∂Y

∂αt+1(k)
(12)

A recurrent Markov state-space generative model for sequences

Figure 1: (a) Emissions: |Π| FC networks model |Π| pairs, (µi, σi); the correct pair is picked based on the value
of πt and it parameterizes a Gaussian distribution that emits xt (b) Emissions: an FC network accepts Qt−1

and [πt] as inputs and provides the mean and standard deviation of a Gaussian distribution that emits xt (c)
Transitions: An FC network outputs |Π|2 outputs, which are arranged as a |Π| × |Π| matrix; each row is a
probability vector thanks to the application of the softmax function

Equation 10 tells us how to propagate the derivative of
the learning objective, Y , backward through the time-
steps with respect to the forward variable. Equations
11 and 12 tell us, given the back-propagated objec-
tive with respect to the forward variable at different
time-steps, ∂Y/∂αt(k), how to compute the deriva-
tives with respect to et and γt. Once these recursions
are finished, we have ∂Y/∂γt and ∂Y/∂et, and steps
2-3 may be executed as described above. The specific
chain rules shown in Equations 10–12 arise from the
following dependencies (i) αt(j) is used in the com-
putation of αt+1(k),∀k (ii) et(j) is used only in the
computation of αt(j) (iii) γt(j, k) is used only in the
computation of αt+1(k). Equations 10-12 have a com-
plexity of O(N2T) to be completed, for T time-steps.

2.3 LSGM variants

We term the LSGM model presented so far a first-order
full LSGM. A first-order half LSGM would addition-
ally use one of the two independence assumptions in
Equations 7, 8. In this case, one of (not both) tran-
sition or emission parameters will be decoupled from
the RNN. In a zeroth-order LSGM model (full or half),
the next-state transition is independent of the current
state, πt, but dependent on the history of observations
Qt. In these cases, the RNN state variable, Q is part
of the model, and hence the model does not fall under
the standard HMM paradigm. Half- and zeroth-order
LSGMs may be used in cases where domain knowledge
provides evidence for a simpler temporal structure in
the data than that implied by the full LSGM formula-
tion. The forward, backward, and Viterbi recurrences
and their derivations given in the Supplementary doc-
ument, and the ML estimation method for training
given in Section 2.2 are valid in these cases.

2.4 Synthetic data and model overview

To empirically compare the LSGM to the HMM, we
construct two sets of synthetic data. The first is a
set of sequences of multidimensional data into which
long-term non-linear relationships are introduced in in-

creasing degrees. We compare two toy models, one an
HMM and the other an LSGM, with matched number
of parameters and see how their performance varies as
the data becomes more complex. The second dataset
consists of a single set of scalar sequences, also with
long-term structure. We use the Bayesian Informa-
tion Criterion (BIC) [27] to select an HMM instance
that fits to the data. The BIC uses probabilistic argu-
ments to determine the model instance that explains
the data well, but without using too many parameters.
We then find a smaller LSGM instance that can model
the data at par or better than the HMM, demonstrat-
ing the ability of the LSGM to scale more efficiently
for such datasets.

Figure 4: Architecture of the multi-dimensional syn-
thetic data generation system

Figure 4 illustrates the setup for creating the multidi-
mensional synthetic dataset. There are three regimes
in the system, each of which produces samples from
a Gaussian distribution. A switch chooses one of the
three samples at each time-step and outputs it. The
goal is to learn the distribution of the outputs without
information regarding which regime is chosen at each
time-step. Some details are as follows:

• f(X1:t−1) is a function of the history of the se-
quence that can modify the behaviour of the
switch and the regimes. We implemented f us-

Anand Ramachandran, Steven S. Lumetta, Eric Klee, Deming Chen

Figure 2: Diamond arrowheads indicate deterministic dependencies, and regular arrowheads indicate stochas-
tic dependencies. (a,b) Generative process in the LSGM, HMM respectively. (c) Graphical model describing
temporal relationships in the latent space of a 3-state LSGM. γt(p, q) are functions of X1:t,Φ,p, q.

Figure 3: (a) The complete architecture of the LSGM (b) Invoking backpropagation algorithms for Maximum
Likelihood estimation through gradient descent; shaded portions indicate derivatives of the sequence likelihood
with respect to the parameters of the LSGM

ing randomly initialized GRU
• λ is a mixing factor that determines the impact

of long-term history on the system’s parameters.
λ ∈ [0, 1], λ̄ = 1− λ
• The regimes may be described as N (λ̄µi +
λµit, λ̄σ

2
i + λσ2

it) for i ∈ {1, 2, 3}. All covariance
used is diagonal for multidimensional data.
• λ̄apq + λapqt is the probability of switching from

regime p to regime q at time t

As λ is increased, long-term structure starts manifest-
ing in the data through the function f(X1:t−1). The
HMM will attempt to model each state’s emissions us-
ing a static distribution that assumes that emissions
at a time-step are conditionally independent of the
past, given the state. However, with a full covari-
ance matrix, the HMM does not assume independence
among the different dimensions of the data. Temporal
structure through f may manifest in the form of lo-
cal correlations that the HMM can use to improve its
predictions. The LSGM does not assume that emis-
sions are conditionally independent of the past. The
LSGM implemented for this experiment uses a diago-
nal covariance matrix, which cannot model local cor-
relations. However, the behavior of the synthetic data
arises from temporal structure which is modeled by
the LSGM. Hence, we expect the LSGM to be able to
capture these dynamics more faithfully.

We generated four-dimensional xt; f is a single RNN
layer with 33 GRU units initialized randomly. We con-
structed a three-state first-order HMM and a three-
state first-order full LSGM. The HMM emissions use
non-diagonal covariance matrices. The LSGM uses the
emission architecture shown in Figure 1a. Every state
gets a separate dense network with eight outputs - four
for mean, and four for a diagonal covariance matrix.

For the second dataset consisting of sequences of
scalars, we built a second system with three regimes,
0, 1, and 2. Regime 0 emits exponentially increasing
values, 1 maintains the previous value, and 2 emits
exponentially decreasing values. Regime switching is
conditional on the sum of a fixed number of past emis-
sions from the system. Details are in the Supplemen-
tary document. The HMM and LSGM models used
are similar to the ones described for the first dataset.

2.5 Transcription Factor Binding Specificity

It is well known that sequences in the Deoxyribonucleic
Acid (DNA) called genes code for proteins. As the
first step in protein synthesis, a gene is trascribed into
an intermediate molecule called the Ribonucleic Acid
(RNA). Transcription is regulated by the presence of
other proteins called Transcription Factors (TF) that
bind to locations on the DNA called binding sites. TFs

A recurrent Markov state-space generative model for sequences

have been observed to bind preferentially to sites with
certain patterns or motifs. A motif may be visualized
through a Position Weight Matrix (PWM), which is a
tabulation of the relative frequency of the DNA bases
observed at different positions in the binding site. The
columns of a PWM may be normalized and interpreted
as probabilities (e.g., Figure 5a).

Traditional methods that study TF binding preference
build probabilistic models using PWMs [34][33][6][28]
that try to reason about the binding process. For in-
stance, HMM-based methods try to determine a bind-
ing score for a TF for a given DNA sequence by con-
sidering all consistent alignments of a set of known
PWMs associated with the TF to the DNA sequence.
Recent DNN-based methods such as DeepBind [1] and
DeeperBind [16] recognize that 1-D convolutional ker-
nels can represent PWMs and include such layers in
the DNN architecture, but do not explicitly reason
about the binding process; instead a binding score is
derived from a black-box DNN. DeepBind uses convo-
lutional kernels, while DeeperBind uses both convolu-
tional and recurrent layers based on LSTM.

Protein Binding Microarray [20] (PBM) is a sequenc-
ing technology that provides measurements reflecting
TF binding preference. For a given TF, PBM provides
a list of DNA sequences and a score for each sequence,
called intensity, reflecting the binding preference of the
TF to that sequence (higher intensity implies higher
preference). Localization of the specific binding site
within each DNA sequence is not provided. Computa-
tional methods such as those mentioned above are used
to predict PBM intensity from DNA sequence, and are
usually trained from available PBM measurements.

We build a probabilistic model for predicting PBM
intensity, following traditional methods which explic-
itly design methods to determine binding score. How-
ever, we use the LSGM instead of a traditional model
such as the HMM, which allows us to operate with-
out the strong conditional independence assumptions.
We believe that the combination of the ability to rea-
son about the binding process, as well as the ability
to represent contextual distributions proves to be a
strong point for our model in this application.

The LSGM instance in our model has “motif” and
“non-motif” states. If a DNA sequence has strong
evidence for one or more motif states, then the chances
of a TF binding to that sequence are high and the PBM
intensity measure will also be high. If a DNA sequence
contains no motifs, then it’s PBM intensity value will
be low. To capture this behaviour, we compare the
likelihood of the DNA sequence allowing all states, to
the likelihood when motifs are disallowed, and convert
the result to a binding score through a simple nonlinear

function. Details follow.

LSGM emissions. This is a half-LSGM (Section 2.3)
meaning Qt doesn’t influence emissions. There are
multiple motif states which use PWMs for emissions,
and a single background state that uses a multinomial
distribution. A modified forward recursion accounting
for motif states that emit symbols of length greater
than 1 is given in the Supplementary document.

LSGM transitions. Transition distributions are
modeled using an LSTM-based RNN. Transitions are
zeroth-order. An alternative view is possible; motif
states that emit symbols of length longer than one
may be considered a string of states, each emitting
length=1 symbols, connected in a linear fashion; in
this view, the transitions are first order for these states.

Computing intensity. The likelihood of the se-
quence allowing all states, logP [X|Θ], is computed
from the forward recursion. The likelihood allowing
only non-motif states, logP [X|Θ′], is obtained by re-
moving motif states from the same recursion. Θ,Θ′ are
the hypotheses under which the likelihoods are com-
puted. Then, we compute intensity as,

Intensity = F
(

log
P
(
X|Φ

)
P
(
X|Φ′

)) = σ(η log
P
(
X|Φ

)
P
(
X|Φ′

))w + b (13)

η, w, b are scalar parameters, and σ is a nonlinear
function.

Training. The Mean Square Error (MSE) between
the predicted intensity and actual intensity in the
training set is minimized through gradient descent.

HMM baseline. We implement an HMM baseline
for comparison. The expression in Equation 13 is used
to compute intensity and the MSE of the prediction is
minimized through gradient descent.

Figure 5: (a) Emission distributions (b) a DNA se-
quence is scored using an LSGM with 2 motif states
and a background state; the likelihoods are converted
to predicted intensity values using the function F
2.6 Generative modeling of music

Polyphonic piano music belonging to four different cat-
egories with predefined test, train, validation splits has
been previously introduced [5]. The four categories
represent different types of music, from folk tunes to a

Anand Ramachandran, Steven S. Lumetta, Eric Klee, Deming Chen

classical music collection. Piano music data is in the
form of sequences of frames, where a frame is a list
of piano keys pressed at a time step in the sequence.
We encode each frame into an 88-dimensional binary
vector corresponding to the 88 keys in the piano. Each
bit in the vector indicates whether the corresponding
piano key is pressed. The goal of this learning task is
to train an LSGM model to generate music sequences
of these types.

We construct a first-order full LSGM following the ar-
chitecture in Figure 3a, except for a small modification
- a dense network is inserted at the output of the RNN
feeding both the Emission and Transition networks.
State emissions follow the embedding architecture pre-
sented in Figure 1b where the emission layer param-
eters are shared by all the states of the LSGM. State
identities are encoded into multidimensional embed-
dings. The emission layer provides 88 outputs which
are terminated using sigmoid activation, modeling the
parameters of 88 independent Bernoulli distributions
(independent given the state, and the history).

Training is through Maximum Likelihood estimation.
In addition to dropout regularization, we modified the
learning objective in the first few epochs of train-
ing by adding an additional cost function. The goal
of this regularizing cost function is to prevent the
LSGM from heavily favouring any state during the
first few epochs. Specifically, the regularizing cost
is -

∑
t

∑
πt
P [πt|X1:t] logP [πt|X1:t]. This is the sum

of the entropy of the probability distribution of the
LSGM state at time-step t given the sequence X1:t,
over the length of the sequence. Maximizing this
quantity pushes the conditional distribution of states
towards a uniform distribution, thus preventing the
LSGM from favoring any state. This regularizer is eas-
ily computed as a by-product of the forward algorithm,
which is used to compute the sequence likelihood for
training.

3 Experiments

3.1 Synthetic Data

Multidimensional sequences. The HMM and the
LSGM instances have 68 and 65 parameters respec-
tively. The means and covariances of the HMM states
are initialized from k-means clustering and global co-
variance (similar to [23]). The means and variances of
the LSGM are initialized similarly by setting the bias
values in the Emission Network. Additional details are
provided in the Supplementary document. The train-
ing set has 90000 sequences and validation and test sets
have 5000 sequences each. Sequences have length 25.
The HMM implementation is from the Pomegranate
package [26]. The average log-likelihood per sample
(one item in a sequence) in the test set is presented in

Table 1. The HMM and LSGM perform identically for
the case where long-term structure is not introduced
(λ = 0 case) into the data. When long-term structure
is introduced, the LSGM performs better.

Scalar sequences. We generated 1000 sequences of
length 25. HMMs with 3 to 60 states were trained
on the data. The BIC was computed for each model
using −2 log(L) + k log(n) where L is the maximum
likelihood estimate, k the number of free parameters
in the model, and n the number of data points. An
HMM with 52 states (2807 parameters) came out to
be the best, with an average log likelihood of 1.416
per data point. We tried a single LSGM configuration
with 10 states and 2 recurrent neurons (284 parame-
ters), and it achieved an average log likelihood of 2.259
per data point. The LSGM instance hence seems to
be significantly more efficient on average (approx. 10×
fewer parameters). Additional details are in the Sup-
plementary document.

Table 1: Log-likelihood per sample in the test set

Setting HMM LSGM

λ = 0.0 2.70 2.70
λ = 0.25 -0.58 -0.47
λ = 0.50 -2.47 -2.29
λ = 1.00 -4.43 -4.36

3.2 TF-binding specificity

We perform experiments on five TFs, PBM data for
which have been published [4]. Experiments on two of
these TFs were presented before [16] using two DNN-
based methods, DeepBind [1] and DeeperBind[16]. To
expand the dataset and also to subject all models
to similar training flows, we reimplemented DeepBind
(our DeepBind implementation uses both avg and max
pooling) and DeeperBind architectures. Our experi-
ments result in a slightly higher accuracy than those
presented in [16] for the two TFs presented in that
paper. We also built LSGM-based and HMM-based
models as outlined in Section 2.5. Architecture search
of the implementations is performed; the search space
is summarized in the Supplementary document. The
largest DeeperBind model has a larger parameter set
than the largest LSGM. Following the experiments
in [16], we included a configuration with 5 motifs of
length 11 for all models. Additionally, for DeepBind
we included configurations with 16 motifs and mo-
tifs with length 24 following the original publication
of DeepBind.

For each TF, two sets of PBM measurements are avail-
able, designated array 1 and array 2. Each set con-
tains over 40,000 sequences and associated intensity
measurements. Training and validation are performed
using array 1 for the different architectures of the four

A recurrent Markov state-space generative model for sequences

Table 2: Testset Spearman rank correlation coefficient

TF HMM DeepBind DeeperBind LSGM

Oct-1 0.48 0.56 0.61 0.67
CEH-22 0.27 0.43 0.45 0.54
Zif268 0.38 0.45 0.45 0.50
Cbf1 0.16 0.14 0.16 0.23
Rap1 0.29 0.15 0.26 0.22

different models, and the best performing architectures
are picked for each model for testing on array 2. Per-
formance is measured in terms of the Spearman rank
correlation coefficient between prediction and ground
truth intensity. The results are in Table 2.

3.3 Music modeling

We built LSGM instances as described in Section 2.6
and trained them on the four music corpuses. All our
models except for JSB use a single layer of 512 GRU
units, and 16 states. For JSB, we used a single RNN
layer of 128 GRU units and 32 states. Further details
are in the Supplementary document.

During the training iteration, the log-likelihood of the
training sequences is improved through gradient de-
scent. We applied regularization cost described in Sec-
tion 2.6 for ten epochs. Early stopping comes into force
after the regularizing epochs; if validation accuracy
does not improve in three consecutive epochs, training
is terminated. The trained models are evaluated on
the test set to measure the average log-likelihood per
frame per sequence (the higher, the better). We com-
pare our method with others in Table 3. LSGM per-
forms best for Nottingham and Muse datasets, which
are of different characteristics: Nottingham is a collec-
tion of folk tunes and Muse is a collection of classical
music. Hence the LSGM may be a good alternative to
other methods for music generation.

Previously, the RNN-NADE [5] had the highest per-
formance in this task. The RNN-NADE makes the
observation that notes occur in highly correlated si-
multaneities. NADEs used in that model are capable
of modeling such simultaneities. Our model is a de-
parture from this approach in that, given a state and
the history of emissions, the note distributions are in-
dependent. The strong performance of our model in
two cases provides evidence to suspect that the pat-
terns of such note correlations may be clustered into a
discrete set of regimes in some cases. In the two cases
where the model does not perform as well, it is likely
that such correlations need to be explicitly modeled
in each regime just like in the RNN-NADE. However,
this will need further study.

4 Related Work
In a previous work [32] one of the conditional inde-
pendence assumptions in the HMM (Equation 8) is

Table 3: Performance of models on music dataset
Method Nottingham JSB Muse Piano-midi

SRNN [9] ≥ −2.94 ≥ −4.74 ≥ −6.28 ≥ −8.20
TSBN [11] ≥ −3.67 ≥ −7.48 ≥ −6.81 ≥ −7.98

NASMC [15] ≈ −2.72 ≈ –3.99 ≈ −6.89 ≈ −7.61
STORN [3] ≈ −2.85 ≈ −6.91 ≈ −6.16 ≈ −7.13

RNN-NADE [5] ≈ −2.31 ≈ −5.56 ≈ −5.60 ≈ –7.05
RNN [5] ≈ −4.46 ≈ −8.71 ≈ −8.13 ≈ −8.37

DMM-Aug [19] ≈ −2.87 ≈ −6.69 ≈ −5.76 ≈ −8.02
LSGM (this work) –2.09 −5.91 –5.31 −7.96

removed by using an RNN to model transitions for a
single application with discrete data. Compared to
that work, we consider models that remove two con-
ditional independent assumptions in the HMM (Equa-
tions 7 and 8) as both emissions and transitions are
conditioned on the RNN state. Removing the con-
ditional independence of emissions can be a powerful
tool in modeling high-dimensional data with complex
dependencies across time. We also present ways to im-
plement LSGM instances for continuous, multidimen-
sional data, and evaluate it across multiple applica-
tions in supervised and unsupervised learning. HMMs
with autoregressive emissions [29] and time-varying
transitions [21][17] have been presented before. The
autoregression is linear, of fixed window, and the tran-
sitions vary according to some simple function, such
as a logistic function or a generalized linear model
(GLM), of exogenous covariates. In contrast, we im-
plement an explicit internal state modeled using an
RNN, which is not limited to looking at a fixed window
in the past, and it can represent more complex struc-
ture than that implied by simpler functions such as
the logistic function or GLMs. There is another work
[18], where graphical models that use neural networks
to parameterize observation models are adapted from
the structure of Linear Dynamical Systems (LDS) and
Switching LDS (SLDS). The SLDS includes a discrete
latent space which manifests itself through a second
continuous state space that also evolves stochastically.
Compared to this, our state-space structure is simpler
in that the continuous state-space is deterministic, and
our model is closer to the HMM than LDS.

5 Conclusions
We present a generative model for sequences that com-
bines a powerful interface suitable for application de-
velopment using domain knowledge, with the ability to
perform exact inferences and represent complex long-
term relationships. The model performs strongly in
supervised and unsupervised applications in different
domains. In the future, we plan to apply the method
to bioinformatic tasks at a higher level of abstraction
than that presented in this work [24][35][22] where the
type of function served by a DNA sequence is impor-
tant, rather than simply the physical mechanics of its
activity such as binding preference. We also plan to
tackle more complex data augmenting our model with
sophistcated distribution estimators such as NADEs.

Anand Ramachandran, Steven S. Lumetta, Eric Klee, Deming Chen

Acknowledgements

This material is based upon work supported by the
National Science Foundation (NSF) under Grant Nos.
CNS 1624790, and CNS 1337732. Any opinions, find-
ings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

We thank Tanmay Gangwani, Ashok Vardhan
Makkuva, and Professors Mark Hasegawa-Johnson,
Saurabh Sinha and Pramod Viswanath from the Uni-
versity of Illinois at Urbana-Champaign for helpful dis-
cussions.

References

[1] B. Alipanahi, A. Delong, M. T. Weirauch, and
B. J. Frey. Predicting the sequence specificities of
dna- and rna-binding proteins by deep learning.
Nature Biotechnology, 2015.

[2] P. Arnold, I. Erb, M. Pachkov, N. Molina,
and E. van Nimwegen. MotEvo: integrated
Bayesian probabilistic methods for inferring reg-
ulatory sites and motifs on multiple alignments of
DNA sequences. Bioinformatics, 2012.

[3] J. Bayer and C. Osendorfer. Learning stochastic
recurrent networks. CoRR, 2014.

[4] M. F. Berger, A. A. Philippakis, A. M. Qureshi,
F. S. He, P. W. E. III, and M. L. Bulyk. Com-
pact, universal DNA microarrays to comprehen-
sively determine transcription-factor binding site
specificities. Nature Biotechnology, 2006.

[5] N. Boulanger-Lewandowski, Y. Bengio, and
P. Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to poly-
phonic music generation and transcription. 2012.

[6] X. Chen, T. R. Hughes, and Q. Morris. RankMo-
tif++: a motif-search algorithm that accounts for
relative ranks of K-mers in binding transcription
factors. Bioinformatics, 2007.

[7] J. Chung, K. Kastner, L. Dinh, K. Goel,
A. Courville, and Y. Bengio. A recurrent latent
variable model for sequential data. In Advances
in Neural Information Processing Systems, 2015.

[8] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchi-
son. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge
University Press, 1998.

[9] M. Fraccaro, S. K. Sønderby, U. Paquet, and
O. Winther. Sequential Neural Models with
Stochastic Layers. CoRR, 2016.

[10] M. Gales and S. Young. The application of hid-
den markov models in speech recognition. Found.
Trends Signal Process., 1(3):195–304, Jan. 2007.

[11] Z. Gan, C. Li, R. Henao, D. Carlson, and
L. Carin. Deep Temporal Sigmoid Belief Networks
for Sequence Modeling. In Proceedings of the 28th
International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, 2015.

[12] A. Goyal, A. Sordoni, M. Côté, N. R. Ke, and
Y. Bengio. Z-Forcing: Training Stochastic Recur-
rent Networks. NIPS, 2017.

[13] A. Graves. Generating sequences with recurrent
neural networks. CoRR, 2013.

[14] A. Graves, S. Fernández, F. Gomez, and
J. Schmidhuber. Connectionist temporal classi-
fication: Labelling unsegmented sequence data
with recurrent neural networks. ICML ’06. ACM,
2006.

[15] S. Gu, Z. Ghahramani, and R. E. Turner. Neu-
ral adaptive sequential monte carlo. In Pro-
ceedings of the 28th International Conference on
Neural Information Processing Systems - Volume
2, NIPS’15, pages 2629–2637, Cambridge, MA,
USA, 2015. MIT Press.

[16] H. R. Hassanzadeh and M. D. Wang. DeeperBind:
Enhancing prediction of sequence specificities
of DNA binding proteins. In 2016 IEEE In-
ternational Conference on Bioinformatics and
Biomedicine (BIBM), 2016.

[17] T. Holsclaw, A. M. Greene, A. W. Robertson, and
P. Smyth. Bayesian non-homogeneous markov
models via polya-gamma data augmentation with
applications to rainfall modeling. The Annals of
Applied Statistics, 2017.

[18] M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P.
Adams, and S. R. Datta. Composing graphical
models with neural networks for structured rep-
resentations and fast inference. In Advances in
Neural Information Processing Systems 29. 2016.

[19] R. G. Krishnan, U. Shalit, and D. Sontag. Struc-
tured inference networks for nonlinear state space
models. CoRR, 2016.

[20] Martha L. Bulyk. Protein binding microar-
rays for the characterization of DNA-protein in-
teractions. Advances in biochemical engineer-
ing/biotechnology, 2007.

A recurrent Markov state-space generative model for sequences

[21] L. Meligkotsidou and P. Dellaportas. Forecast-
ing with non-homogeneous hidden markov mod-
els. Statistics and Computing, 2011.

[22] X. Min, W. Zeng, S. Chen, N. Chen, T. Chen, and
R. Jiang. Predicting enhancers with deep convo-
lutional neural networks. BMC Bioinformatics,
2017.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python . Journal of Machine
Learning Research, 12:2825–2830, 2011.

[24] D. Quang and X. Xie. Danq: a hybrid convo-
lutional and recurrent deep neural network for
quantifying the function of dna sequences. Nu-
cleic Acids Research, 44(11):e107, 2016.

[25] L. R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recogni-
tion. Proceedings of the IEEE, 1989.

[26] J. Schreiber. Pomegranate: fast and flexible prob-
abilistic modeling in python. Journal of Machine
Learning Research, 18(164):1–6, 2018.

[27] G. Schwarz. Estimating the dimension of a model.
The Annals of Statistics, 6(2):461–464, 1978.

[28] S. Sinha, E. van Nimwegen, and E. D. Siggia. A
probabilistic method to detect regulatory mod-
ules. Bioinformatics, 2003.

[29] S. Srinivasan, T. Ma, D. May, G. Lazarou, and
J. Picone. Nonlinear mixture autoregressive hid-
den markov models for speech recognition. Pro-
ceedings of the Annual Conference of the Inter-
national Speech Communication Association, IN-
TERSPEECH, 2008.

[30] I. Sutskever and G. Hinton. Learning multilevel
distributed representations for high-dimensional
sequences. In Proceedings of the Eleventh Inter-
national Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Re-
search, 2007.

[31] I. Sutskever, G. E. Hinton, and G. W. Taylor.
The recurrent temporal restricted boltzmann ma-
chine. In Advances in Neural Information Pro-
cessing Systems. 2009.

[32] K. Tran, Y. Bisk, A. Vaswani, D. Marcu, and
K. Knight. Unsupervised neural hidden markov
models. CoRR, 2016.

[33] K.-C. Wong, T.-M. Chan, C. Peng, Y. Li, and
Z. Zhang. Dna motif elucidation using belief prop-
agation. Nucleic Acids Research, 2013.

[34] Y. Zhao and G. D. Stormo. Quantitative analysis
demonstrates most transcription factors require
only simple models of specificity. Nature Biotech-
nology, 2011.

[35] J. Zhou and O. G. Troyanskay. Predicting effects
of noncoding variants with deep learning-based
sequence model. Nature Methods, 2015.

