
Online learning with feedback graphs
and switching costs

A Proof of Theorem 1

Proof. Without loss of generality, let the independent sequence set I(G1:T ) formed of actions (or
“arms”) from 1 to β(G1:T ). Given the sequence of feedback graphs G1:T , let Ti be the number of
times the action i ∈ I(G1:T ) = [β(G1:T )] is selected by the player in T rounds. Let T∆ be the
total number of times the actions are selected from the set [K]\I(G1:T ). Let Ei denote expectation
conditioned on X = i, and Pi denote the probability conditioned on X = i. Additionally, we
define P0 as the probability conditioned on event ε1 = 0. Therefore, under P0 , all the actions in the
independent sequence set, i.e. i ∈ I(G1:T ), incur an expected regret of 1/2, whereas, the expected
regret of actions i ∈ [K]\I(G1:T ) is 1/2 + ε2. Let E0 be the corresponding conditional expectation.
For all i ∈ [K] and t ≤ T , `t(i) and `ct(i) denote the unclipped and clipped loss of the action i
respectively. Assuming the unclipped losses are observed by the player, then F is the sigma field
generated by the unclipped losses, and St(it) is the set of actions whose losses are observed at time
t, following the selection of it, according to the feedback graph Gt. The observed sequence of
unclipped losses will be referred as `o1:T . Additionally, F ′ is the sigma field generated by the clipped
losses, for all t ∈ [T ], `′t(i) where i ∈ St(it), and the observed sequence of clipped losses will be
referred as `′o1:T . By definition, F ′ ⊆ F .

Let i1, . . . , iT be the sequence of actions selected by a player over the time horizon T . Then, the
regret Rc of the player corresponding to clipped loses is

Rc =

T∑
t=1

`ct(it) + c ·Ms − min
i∈[K]

T∑
t=1

`ct(i), (1)

where Ms is the number of switches in the action selection sequence i1, . . . , iT , and c is the cost of
each switch in action. Now, we define the regret R which corresponds to the unclipped loss function
in Algorithm 1 as following

R =

T∑
t=1

`t(it) + c ·Ms − min
i∈[K]

T∑
t=1

`t(i). (2)

Using (Dekel et al., 2014, Lemma 4), we have

P
(

For all t ∈ [T ],
1

2
+Wt ∈

[
1

6
,

5

6

])
≥ 5

6
. (3)

Thus, for all T > max{β(G1:T ), 6}, we have ε1 = ε2 < 1/6. If B = {For all t ∈ [T ] : 1/2 +Wt ∈
[1/6, 5/6]} occurs and ε1 = ε2 < 1/6, then for all i ∈ [K], `ct(i) = `t(i) which implies Rc = R
(see (1) and (2)). Now, if the event B does not occur, then the losses at any time t satisfy

`t(i)− `ct(i) ≤ (ε1 + ε2).

Therefore, we have
c ·Ms ≤ Rc ≤ R ≤ c ·Ms + (ε1 + ε2)T.

Now, for T > max{β(G1:T ), 6}, we have

E[R]− E[Rc] = (1− P(B))E[R−Rc|B does not occur] ≤ (ε1 + ε2)T

6
. (4)



Thus, (4) lower bounds the actual regret Rc in terms of regret R. Now, we derive the lower bound on
regret R corresponding to the unclipped loses. Using the definition of R, we have

E[R] = max
i∈[K]

E[

T∑
t=1

`t(it)−
T∑
t=1

`t(i)] + E[Ms]

=
1

β(G1:T )

β(G1:T )∑
i=1

Ei[
T∑
t=1

`t(it)− min
i∈[K]

T∑
t=1

`t(i)] + E[Ms]

=
1

β(G1:T )

β(G1:T )∑
i=1

Ei
[ ∑
j∈I(G1:T )\{i}

1

2
Tj +

(
1

2
− ε1

)
Ti +

(
1

2
+ ε2

)
T∆ −

(
1

2
− ε1

)
T

]
+ E[Ms]

=
1

β(G1:T )

β(G1:T )∑
i=1

Ei

[
β(G1:T )∑
j=1

1

2
Tj +

(
1

2
+ ε2

)
T∆ − ε1Ti −

(
1

2
− ε1

)
T

]
+ E[Ms]

(a)
=

1

β(G1:T )

β(G1:T )∑
i=1

Ei

[
ε2T∆ + ε1(T − Ti)

]
+ E[Ms]

(b)

≥ ε1

(
T − 1

β(G1:T )

β(G1:T )∑
i=1

Ei
[
Ti
])

+ E[Ms],

(5)

where (a) follows from
∑β(G1:T )
j=1 Tj + T∆ = T , and (b) follows from ε2T∆ ≥ 0.

Now, we upper bound the Ei
[
Ti
]

in (5) to obtain the lower bound on the expected regret E[R]. Since
the player is deterministic, the event {it = i} is F ′ measurable. Therefore, we have

Pi(it = i)− P0(it = i) ≤ dF
′

TV (P0, Pi)
(a)

≤ dFTV (P0, Pi),

where dFTV (P0, Pi) = supA∈F |P0(A) − Pi(A)| is the total variational distance between the two
probability measures, and (a) follows from F ′ ⊆ F . Summing the above equation over t ∈ [T ] and
i ∈ I(G1:T ) yields

β(G1:T )∑
i=1

(
Ei[Ti]− E0[Ti]

)
≤ T ·

β(G1:T )∑
i=1

dFTV (P0, Pi).

Rearranging the above equation and using
∑β(G1:T )
i=1 E0[Ti] = E0[

∑β(G1:T )
i=1 Ti] = T , we get

β(G1:T )∑
i=1

Ei[Ti] ≤ T ·
β(G1:T )∑
i=1

dFTV (P0, Pi) + T.

Combining the above equation with (5), we get

E[R] ≥ ε1T −
ε1T

β(G1:T )
·
β(G1:T )∑
i=1

dFTV (P0, Pi)−
ε1T

β(G1:T )
+ E[Ms]

(a)

≥ ε1T

2
− ε1T

β(G1:T )
·
β(G1:T )∑
i=1

dFTV (P0, Pi) + E[Ms],

(6)

where (a) uses the fact that β(G1:T ) > 1. Next, we upper bound the second term in the right hand
side of (6). Using Pinsker’s inequality, we have

dFTV (P0, Pi) ≤
√

1

2
DKL(P0(`o1:T )||Pi(`o1:T )), (7)
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where `o1:T are the losses observed by the player over the time horizon T . Using the chain rule of
relative entropy to decompose DKL(P0(`o1:T )||P0(`o1:T )), we get

DKL(P0(`o1:T )||Pi(`o1:T )) =

T∑
t=1

DKL(P0(`ot |`o1:t−1)||Pi(`ot |`o1:t−1))

=

T∑
t=1

DKL(P0(`ot |`oρ∗(t))||Pi(`
o
t |`oρ∗(t))),

(8)

where ρ∗(t) is the set of time instances 0 ≤ k ≤ t encountered when operation ρ(.) in Algorithm
1 is applied recursively to t. Now, we deal with each term DKL(P0(`ot |`oρ∗(t))||Pi(`

o
t |`oρ∗(t))) in the

summation individually. For i ∈ I(G1:T ), we separate this computation into four cases: it is such
that loss of action i is observed at both time instances t and ρ(t) i.e. i ∈ St(it) and i ∈ St(iρ(t)); it
is such that loss of action i is observed at time instance t but not at time instance ρ(t) i.e. i ∈ St(it)
and i /∈ St(iρ(t)); it is such that loss of action i is not observed at time instance t but is observed at
time instance ρ(t) i.e. i /∈ St(it) and i ∈ St(iρ(t)); it is such that loss of action i is not observed at
both time instances t and ρ(t) i.e. i /∈ St(it) and i /∈ St(iρ(t)). Note that at a single time instance the
loss of only one single action can be observed from I(G1:T ) arms.

Case 1: Since the loss of action i is observed from the independent sequence set I(G1:T ) at both the
time instances, the loss distribution for the action i is `ot (i)|`oρ∗(t) ∼ N (`ρ(t)(i), σ

2) for both P0 and
Pi. For all j ∈ [K]\I(G1:T ), the loss distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(i) + ε1 + ε2, σ

2) under
both P0 and Pi.
Case 2: Since the loss of action i is observed from the independent sequence set I(G1:T ) at time
instance t but not at ρ(t), therefore, there exists an action k′ ∈ I(G1:T )\{i} from the independent
sequence set which was observed at time instance ρ(t). Then, the loss distribution for the action i is
`ot (i)|`oρ∗(t) ∼ N (`ρ(t)(k

′), σ2) under P0, and `ot (i)|`oρ∗(t) ∼ N (`ρ(t)(k
′)− ε1, σ2) under Pi. For all

j ∈ [K]\I(G1:T ), the loss distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(k
′) + ε2, σ

2) under both P0 and Pi.

Case 3:Since the action i is observed from the independent sequence set I(G1:T ) at time instance
ρ(t) but not at t, therefore, there exists an action k′ ∈ I(G1:T )\{i} from the independent se-
quence set which was observed at time instance t. Then, the loss distribution for the arm k′ is
`ot (k

′)|`oρ∗(t) ∼ N (`ρ(t)(i), σ
2) under P0, and `ot (k

′)|`oρ∗(t) ∼ N (`ρ(t)(i) + ε1, σ
2) under Pi. For all

j ∈ [K]\I(G1:T ), the loss distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(i) + ε1 + ε2, σ
2) under both P0

and Pi.
Case 4: Let k∗ be the arm from the independent sequence set observed at time instance ρ(t). Since
the arm i is not observed from the independent sequence set I(G1:T ) at the time instances t and ρ(t),
therefore the loss distribution for all arms k′ ∈ I(G1:T )\{i} is `ot (k

′)|`oρ∗(t) ∼ N (`ρ(t)(k
∗), σ2) for

both P0 and Pi. For all j ∈ [K]\I(G1:T ), the loss distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(k
∗)+ε2, σ

2)

under both P0 and Pi.
Therefore, we have

DKL(P0(`ot |`oρ∗(t))||Pi(`
o
t |`oρ∗(t))) = P0(i ∈ St(it), i /∈ Sρ(t)(iρ(t))) ·DKL(N (0, σ2)||N (−ε1, σ2))

+ P0(i /∈ St(it), i ∈ Sρ(t)(iρ(t))) ·DKL(N (0, σ2)||N (ε1, σ
2))

=
ε21

2σ2
P0(Bt),

(9)

where Bt = {i ∈ St(it), i /∈ Sρ(t)(iρ(t)) ∪ i /∈ St(it), i ∈ Sρ(t)(iρ(t))}. The event Bt implies that
the player has switched at least once between the feedback systems St(k1) and Sρ(t)(k2) such that
i ∈ St(k1) but i /∈ Sρ(t)(k2) or vice-versa. Let Ni be the number of times a player switches from the
feedback system which includes i to the feedback system which does not include i and vice-versa.
Then, using (8) and (9), we have

DKL(P0(`o1:T )||Pi(`o1:T )) ≤ ε21ω(ρ)

2σ2
E0[Ni], (10)

3



where ω(ρ) is the width of process ρ(.) (see Definition 2 in Dekel et al. (2014)) and is bounded above
by 2 log2(T ). Combining (7) and (10), we have

sup
A∈F

(P0(A)− Pi(A)) ≤ ε1
σ

√
log2(T )E0[Ni]. (11)

If Ms ≥ ε1T , then E[R′] > ε1T . Thus, the claimed lower bound follows. Now, let us assume
Ms ≤ ε1T . For all i ∈ I(G1:T ), we have

E0[Ms]− Ei[Ms] =

bε1Tc∑
m=1

P0(Ms ≥ m)− Pi(Ms ≥ m))

≤ ε1T · dFTV (P0,Pi).

(12)

Using the above equation, we have

E0[Ms]− E[Ms] =
1

β(G1:T )

β(G1:T )∑
i=1

(E0[Ms]− Ei[Ms])

≤ ε1T

β(G1:T )

β(G1:T )∑
i=1

dFTV (P0,Pi).

(13)

Now, combining (4), (6), (11)and (13), we obtain

E[R′] ≥ ε1T

6
− ε1T

β(G1:T )

β(G1:T )∑
i=1

ε1
σ

√
log2(T )E0[Ni] + c · E0[Ms]

(a)

≥ ε1T

6
− ε21T

σ
√
β(G1:T )

√
2 log2(T )E0[Ms] + c · E0[Ms]

(b)

≥ c1/3β(G1:T )1/3T 2/3

54 log2(T )
− c1/3β(G1:T )1/3T 2/3

162 log2(T )

=
c1/3β(G1:T )1/3T 2/3

81 log2(T )
,

(14)

where (a) follows from the concavity of
√
x and

∑β(G1:T )
i Ni ≤ 2Ms, (b) follows from the fact that

the right hand side is minimized for
√

E0[Ms] = ε2T
√

log2(T )/2cσ
√
β(G1:T ). The claim of the

theorem now follows.

B Proof of Lemma 2

β(G1:T ) is the cardinality of I(G1:T ). Let 1, 2, . . . β(G1:T ) actions belong to the set I(G1:T ). Then,
the adversary selects an action uniformly at random from the set I(G1:T ) say j, and assigns the loss
sequence to action j using independent Bernoulli random variable with parameter 0.5 − ε, where
ε =

√
β(G1:T )/T ). For all i ∈ I(G1:T )/{j}, losses are assigned using independent Bernoulli

random variable with parameter 0.5. For all i /∈ I(G1:T ), the losses are assigned using independent
Bernoulli random variable with parameter 1. The proof of the lemma follows along the same lines as
Theorem 5 in (Alon et al. (2017)).

C Proof of Theorem 3

Proof of this theorem uses the result from Theorem 1. Since the loss sequence is assigned indepen-
dently to each sub-sequence Um where m ∈ [M ]. Using Theorem 1, there exists a constant bm such
that

E

[
T∑
t=1

(`t(it)1(Gt ∈ Um) + cWm

]
− min
i∈Um

T∑
t=1

(`t(i)1(Gt ∈ Um)

≥ bmc1/3β(Um)1/3N(Um)2/3/ log(T ),

(15)
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where Wm is number of switches performed within the sequence Um. Since

∑
m∈[M ]

Wm ≤
T∑
t=1

1(it 6= it−1),

there exist a constant b such that the expected regret of any algorithm A is at least

b c1/3
∑

m∈[M ]

β(Um)1/3N(Um)2/3/ log T.

D Proof of Lemma 4

Proof. The proof follows from contradiction and is along the same lines as the proof of Theorem
4 in Dekel et al. (2014). Let A performs at most Õ((β(G1:T )1/2T )α) switches for any sequence
of loss function over T rounds with β + α/2 < 1. Then, there exists a real number γ such that
β < γ < 1− α/2. Then, assign c = (β(G1:T )1/2T )3γ−2. Thus, the expected regret, including the
switching cost, of the algorithm is

Õ((β(G1:T )1/2T )β + (β(G1:T )1/2T )3γ−2(β(G1:T )T )α) = õ(β(G1:T )1/2T )γ ,

over a sequence of losses assigned by the adversary because β < γ and α < 2 − 2γ. However,
according to Theorem 1, the expected regret is at least Ω̃(β(G1:T )1/3(β(G1:T )1/2T )(3γ−2)/3T 2/3) =

Ω̃((β(G1:T )T )γ). Hence, by contradiction, the proof of the lemma follows.

E Proof of Theorem 5

Proof. Let t1, t2 . . . , tσ(T ) be the sequence of time instances at which the event Et occurs during
the duration T of the game. We define {rj = tj+1 − tj}1≤j≤T as the sequence of inter-event times
between the events Et. Let mas(G(1)), . . . ,mas(G(T )) denote the sequence in the decreasing order
of size of maximal acyclic graphs, i.e. mas(G(1)) (or mas(G(T ))) is the maximum (or minimum)
size of maximal acyclic graph observed in sequence G1:T = {G1, . . . GT }. Using the definition of
Et, note that rj is a random variable bounded by T 1/3c2/3/mas(G(T ))

1/3. For all 1 ≤ j ≤ σ(T ),
the ratio of total weights of actions at round tj and tj+1 is

Wtj+1

Wtj

=
∑
i∈[K]

wi,tj+1

Wtj

=
∑
i∈[K]

wi,tj exp(−η`′tj+rj−1(i))

Wtj

=
∑
i∈[K]

pi,tj exp(−η`′tj+rj−1(i))

(a)

≤
∑
i∈[K]

pi,tj

(
1− η`′tj+rj−1(i) +

1

2
η2`′2tj+rj−1(i)

)

= 1− η
∑
i∈[K]

pi,tj · `′tj+rj−1(i) +
η2

2

∑
i∈[K]

pi,tj · `′2tj+rj−1(i),

(16)

where (a) follows from the fact that, for all x ≥ 0, e−x ≤ 1− x− x2/2. Now, taking logs on both
sides of (16), summing over t1, t2, . . . tσ(T ), and using log(1 + x) ≤ x for all x > −1, we get

log
Wtσ(T )+1

W1
≤ −η

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i) +
η2

2

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′2tj+rj−1(i). (17)
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For all actions k′ ∈ [K], we also have

log
Wtσ(T )+1

W1
≥ log

wk′,tσ(T )+1

W1
≥ −η

σ(T )∑
j=1

`′tj+rj−1(k′)− log(K). (18)

Combining (17) and (18), for all k′ ∈ [K], we obtain

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i)−
σ(T )∑
j=1

`′tj+rj−1(k′) ≤ log(K)

η
+
η

2

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′2tj+rj−1(i). (19)

Now, for all i ∈ [K], the conditional expectation of `′tj+rj−1(i) is

E
[
`′tj+rj−1(i)

∣∣∣ptj , rj] =

tj+rj−1∑
t=tj

∑
k′:i∈St(k′)

pk′,tj ·
`t(i)

qi,t
,

=

tj+rj−1∑
t=tj

`t(i)

qi,t
·

∑
k′:i∈St(k′)

pk′,tj ,

=

tj+rj−1∑
t=tj

`t(i).

(20)

Therefore, we have that for all i ∈ [K], the conditional expectation

E
[ σ(T )∑
j=1

`′tj+rj−1(i)
∣∣∣{ptj , rj}1≤j≤σ(T )]

]
=

σ(T )∑
j=1

tj+rj−1∑
t=tj

`t(i) =

T∑
t=1

`t(i). (21)

Now, the expectation of second term in right hand side of (19) is

E

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′2tj+rj−1(i)

 = E

[
σ(T )∑
j=1

E
[ ∑
i∈[K]

pi,tj `
′2
tj+rj−1(i)|{ptj , rj}1≤j≤σ(T )

]]

(a)

≤ E

[
σ(T )∑
j=1

mas(Gtj :tj+rj−1)r2
j

]
,

(22)

where mas(Gtj :tj+rj−1) = maxn∈[tj ,tj+rj−1] mas(Gn), and (a) follows from the fact that, for all
i ∈ [K] and t ≤ T , `t(i) ≤ 1, and

∑
i∈[K] pi,t/qi,t ≤ mas(Gt)(Alon et al., 2017, Lemma 10).

Now, we bound
∑σ(T )
j=1 mas(Gtj :tj+rj−1)r2

j . We write the following optimization problem:

max
{rj}1≤j≤T

T∑
j=1

mas(Gtj :tj+rj−1)r2
j , subject to (23)

T∑
j=1

rj = T,

0 ≤ rj ≤
T 1/3c2/3

mas1/3(G(T ))
.

Since the objective function is submodular and the constraints are linear, the ratio of the solution of
the greedy algorithm and the optimal solution is at most (1− 1/e) (Nemhauser and Wolsey (1978)).
Therefore, the optimal solution o∗ of the above optimization problem is

o∗ ≤
t∗∑
t=1

T 2/3mas(G(t))c
4/3

(1− 1/e)mas2/3(G(T ))
, (24)
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where t∗ = dT 2/3c−2/3mas1/3(G(T ))e. Using (19), (20), (21), (22) and (24), we have

E

[
σ(T )∑
j=1

∑
i∈[K]

pi,kj

kj+rj−1∑
t=kj

`t(i)−
T∑
j=1

`t(k
′)

]
≤ log(K)

η
+
η

2

t∗∑
t=1

T 2/3c4/3mas(G(t))

(1− 1/e)mas2/3(G(T ))
. (25)

Additionally, the player switches its action only if Et is true. Thus, using (25) and c(i, j) = c, for all
i, j ∈ [K], we have

RA(l1:T , C) ≤
log(K)

η
+
η

2

t∗∑
t=1

T 2/3c4/3mas(G(t))

(1− 1/e)mas2/3(G(T ))
+ c · E[

T∑
t=2

1(it 6= it−1)]. (26)

Now, we bound E[
∑T
t=2 1(it 6= it−1)]. Et1 occurs with probability 1, and does not contribute to any

SC. Et2 can lead to at most dT 2/3c−2/3mas1/3(G(T ))e switches. Now, let Et3 causes NT switches.
Then, we have

E[NT ] = E

σ(T )∑
j=1

1(itj+1
6= itj , E

tj
3 is true)


= E

[
σ(T )∑
j=1

E
[

1(itj+1
6= itj , E

tj
3 is true)

∣∣∣∣{ptj , rj}1≤j≤σ(T )

]]

≤ E

[
σ(T )∑
j=1

E
[ ∑
i∈[K],k′∈[K]\{i}

P(itj = i
∣∣Etj3 is true)P(itj+1

= k′
∣∣itj = i)

∣∣∣∣{ptj , rj}1≤j≤σ(T )

]]

= E
[ σ(T )∑
j=1

∑
i∈[K],k′∈[K]\{i}

pi,tjpk′,tj+1

]
(a)

≤
T∑
t=1

c−2/3mas1/3(G(T ))t
−1/3 = c−2/3mas1/3(G(T ))T

2/3,

(27)

where (a) follows from Lemma 1 in this section. Thus, the number of switches are
2c−2/3mas1/3(G(T ))T

2/3, and the SC is 2c1/3mas1/3(G(T ))T
2/3.

Part (iii) of the theorem follows by combining the results from (i) and (ii). Part (iv) follows from
the fact that if Gt is undirected, mas(Gt) = α(Gt).

Lemma 1. Given i ∈ [K] is chosen at time instance tj , for all k′ ∈ [K]\{i}, we have

pi,tj · pk′,tj+1 ≤ (tj+1)−1/3.

Proof. Given i is chosen at time instance tj , for all k′ ∈ [K]\{i}, we have

pk′,tj+1

pi,tj+1

=
pk′,1 exp(−η ˆ̀

tj+1
(k′))

pi,tj exp(−η`′tj+rj−1(i))

(a)
=

pk′,1 exp(−η(ˆ̀
tj (k

′) + `′tj+rj−1(k′)))

pi,tj exp(−η`′tj+rj−1(i))

(b)

≤
exp

(
− η(ˆ̀

tj (k
′) + `′tj+rj−1(k′)− `′tj+rj−1(i))

)
pi,tj

(c)

≤
exp

(
− η(εtj+1

/η)
)

Kpi,tj

=
exp

(
− εtj+1

)
pi,tj

,

(28)
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where (a) follows from the fact that ˆ̀
tj+1(k′) = ˆ̀

tj (k
′) + `′tj+rj−1(k′); (b) follows from pk′,1 =

1/K; (c) follows from the fact that for all k ∈ [K]\{i}, ˆ̀
k,t−1 − `′i,t−1 > εt/η as the increment in

`′i,t−1 is bounded by 1/qi,t−1. Now, replacing εt ≥ log(tc2/mas(G(T )))/3 in (28), we have

pi,tj · pk′,tj+1
≤ c−2/3mas1/3(G(T ))t

−1/3
j+1 . (29)

F Proof of Theorem 6

Proof. We borrow the notations from the proof of Theorem 5. Using the fact that ηt is decreasing in
t and (19), we have
σ(T )∑
j=1

∑
i∈[K]

pi,tj ·`′tj+rj−1(i)− min
k′∈[K]

σ(T )∑
j=1

`′tj+rj−1(k′) ≤ log(K)

ηT
+

σ(T )∑
j=1

ηtj
2

∑
i∈[K]

pi,tj ·`′2tj+rj−1(i).

(30)
Now, taking expectation on both the sides and using the fact that expectation of the min(.) is smaller
than the min(.) of the expectation, we have

E

[
σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i)

]
− min
k′∈[K]

E

[
σ(T )∑
j=1

`′tj+rj−1(k′)

]

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2
εtjE

[ ∑
i∈[K]

pi,tj · `′2tj+rj−1(i)|ptj , rj ,1(it is selected using pt)

]]
,

(a)

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2
εtjE[mas(Gtj :tj+rj−1)r2

j |1(it is selected using pt)]

]
,

(b)

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2
εtj

2 ·mas(Gtj :tj+rj−1)

ε2tj

]
,

=
log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2

2 ·mas(Gtj :tj+rj−1)

εtj

]
,

(c)

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

2 log(K)

mas2/3(G(T ))
mas(G(j))

]
,

(d)

≤ log(K)

ηT
+

E[σ(T )]∑
j=1

2 log(K)

mas2/3(G(T ))
mas(G(j))

(31)
where (a) follows from (22), (b) follows from the fact that since the probability of selecting a new
action is at most εtj , the mean and the variance of the geometric random variable rj is bounded
by 1/ε2tj and (1 − εtj )/ε2tj respectively, (c) follows from the value of ηt and εt, and (d) follows
from the fact that mas(G(j))/mas(G(T )) is a monotonic non increasing sequence in j, therefore the
summation is a concave function and the inequality follows from the Jensen’s inequality.

Now, we bound the E[σ(T )] in (31). This also gives a bound on the number of switches performed
by the algorithm. We have

E[σ(T )] =

T∑
t=1

E[1(it 6= it−1)],

≤
T∑
t=1

εt,

≤ 0.5mas1/3(G(T ))T
2/3c1/3

(32)
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