Online learning with feedback graphs and switching costs

A Proof of Theorem 1

Proof. Without loss of generality, let the independent sequence set $\mathcal{I}(G_{1:T})$ formed of actions (or "arms") from 1 to $\beta(G_{1:T})$. Given the sequence of feedback graphs $G_{1:T}$, let T_i be the number of times the action $i \in \mathcal{I}(G_{1:T}) = [\beta(G_{1:T})]$ is selected by the player in T rounds. Let T_{Δ} be the total number of times the actions are selected from the set $[K] \setminus \mathcal{I}(G_{1:T})$. Let \mathbb{E}_i denote expectation conditioned on X = i, and \mathbb{P}_i denote the probability conditioned on X = i. Additionally, we define \mathbb{P}_0 as the probability conditioned on event $\epsilon_1 = 0$. Therefore, under \mathbb{P}_0 , all the actions in the independent sequence set, i.e. $i \in \mathcal{I}(G_{1:T})$, incur an expected regret of 1/2, whereas, the expected regret of actions $i \in [K] \setminus \mathcal{I}(G_{1:T})$ is $1/2 + \epsilon_2$. Let \mathbb{E}_0 be the corresponding conditional expectation. For all $i \in [K]$ and $t \leq T$, $\ell_t(i)$ and $\ell_t^c(i)$ denote the unclipped and clipped loss of the action i respectively. Assuming the unclipped losses are observed by the player, then \mathcal{F} is the sigma field generated by the unclipped losses, and $S_t(i_t)$ is the set of actions whose losses are observed at time t, following the selection of i_t , according to the feedback graph G_t . The observed sequence of unclipped losses will be referred as $\ell_{1:T}^o$. Additionally, \mathcal{F}' is the sigma field generated by the clipped losses will be referred as $\ell_{1:T}^o$. Additionally, \mathcal{F}' is the sigma field generated by the clipped losses will be referred as $\ell_{1:T}^o$. By definition, $\mathcal{F}' \subseteq \mathcal{F}$.

Let i_1, \ldots, i_T be the sequence of actions selected by a player over the time horizon T. Then, the regret R^c of the player corresponding to clipped loses is

$$R^{c} = \sum_{t=1}^{T} \ell_{t}^{c}(i_{t}) + c \cdot M_{s} - \min_{i \in [K]} \sum_{t=1}^{T} \ell_{t}^{c}(i),$$
(1)

where M_s is the number of switches in the action selection sequence i_1, \ldots, i_T , and c is the cost of each switch in action. Now, we define the regret R which corresponds to the unclipped loss function in Algorithm 1 as following

$$R = \sum_{t=1}^{T} \ell_t(i_t) + c \cdot M_s - \min_{i \in [K]} \sum_{t=1}^{T} \ell_t(i).$$
(2)

Using (Dekel et al., 2014, Lemma 4), we have

$$\mathbb{P}\left(\text{For all } t \in [T], \frac{1}{2} + W_t \in \left[\frac{1}{6}, \frac{5}{6}\right]\right) \ge \frac{5}{6}.$$
(3)

Thus, for all $T > \max\{\beta(G_{1:T}), 6\}$, we have $\epsilon_1 = \epsilon_2 < 1/6$. If $B = \{\text{For all } t \in [T] : 1/2 + W_t \in [1/6, 5/6]\}$ occurs and $\epsilon_1 = \epsilon_2 < 1/6$, then for all $i \in [K]$, $\ell_t^c(i) = \ell_t(i)$ which implies $R^c = R$ (see (1) and (2)). Now, if the event B does not occur, then the losses at any time t satisfy

$$\ell_t(i) - \ell_t^c(i) \le (\epsilon_1 + \epsilon_2)$$

Therefore, we have

$$c \cdot M_s \le R^c \le R \le c \cdot M_s + (\epsilon_1 + \epsilon_2)T$$

Now, for $T > \max\{\beta(G_{1:T}), 6\}$, we have

$$\mathbb{E}[R] - \mathbb{E}[R^c] = (1 - \mathbb{P}(B))\mathbb{E}[R - R^c|B \text{ does not occur}] \le \frac{(\epsilon_1 + \epsilon_2)T}{6}.$$
 (4)

Thus, (4) lower bounds the actual regret R^c in terms of regret R. Now, we derive the lower bound on regret R corresponding to the unclipped loses. Using the definition of R, we have

$$\begin{split} \mathbb{E}[R] &= \max_{i \in [K]} \mathbb{E}[\sum_{t=1}^{T} \ell_{t}(i_{t}) - \sum_{t=1}^{T} \ell_{t}(i)] + \mathbb{E}[M_{s}] \\ &= \frac{1}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_{i}[\sum_{t=1}^{T} \ell_{t}(i_{t}) - \min_{i \in [K]} \sum_{t=1}^{T} \ell_{t}(i)] + \mathbb{E}[M_{s}] \\ &= \frac{1}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_{i}\left[\sum_{j \in \mathcal{I}(G_{1:T}) \setminus \{i\}} \frac{1}{2}T_{j} + \left(\frac{1}{2} - \epsilon_{1}\right)T_{i} + \left(\frac{1}{2} + \epsilon_{2}\right)T_{\Delta} - \left(\frac{1}{2} - \epsilon_{1}\right)T\right] + \mathbb{E}[M_{s}] \\ &= \frac{1}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_{i}\left[\sum_{j=1}^{\beta(G_{1:T})} \frac{1}{2}T_{j} + \left(\frac{1}{2} + \epsilon_{2}\right)T_{\Delta} - \epsilon_{1}T_{i} - \left(\frac{1}{2} - \epsilon_{1}\right)T\right] + \mathbb{E}[M_{s}] \\ \stackrel{(a)}{=} \frac{1}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_{i}\left[\epsilon_{2}T_{\Delta} + \epsilon_{1}(T - T_{i})\right] + \mathbb{E}[M_{s}] \\ \stackrel{(b)}{\geq} \epsilon_{1}\left(T - \frac{1}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_{i}[T_{i}]\right) + \mathbb{E}[M_{s}], \end{split}$$

$$(5)$$

where (a) follows from $\sum_{j=1}^{\beta(G_{1:T})} T_j + T_{\Delta} = T$, and (b) follows from $\epsilon_2 T_{\Delta} \ge 0$.

Now, we upper bound the $\mathbb{E}_i[T_i]$ in (5) to obtain the lower bound on the expected regret $\mathbb{E}[R]$. Since the player is deterministic, the event $\{i_t = i\}$ is \mathcal{F}' measurable. Therefore, we have

$$\mathbb{P}_i(i_t = i) - \mathbb{P}_0(i_t = i) \le d_{TV}^{\mathcal{F}'}(P_0, P_i) \stackrel{(a)}{\le} d_{TV}^{\mathcal{F}}(P_0, P_i),$$

where $d_{TV}^{\mathcal{F}}(P_0, P_i) = \sup_{A \in \mathcal{F}} |\mathbb{P}_0(A) - \mathbb{P}_i(A)|$ is the total variational distance between the two probability measures, and (a) follows from $\mathcal{F}' \subseteq \mathcal{F}$. Summing the above equation over $t \in [T]$ and $i \in \mathcal{I}(G_{1:T})$ yields

$$\sum_{i=1}^{\beta(G_{1:T})} \left(\mathbb{E}_i[T_i] - \mathbb{E}_0[T_i] \right) \le T \cdot \sum_{i=1}^{\beta(G_{1:T})} d_{TV}^{\mathcal{F}}(P_0, P_i).$$

Rearranging the above equation and using $\sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_0[T_i] = \mathbb{E}_0[\sum_{i=1}^{\beta(G_{1:T})} T_i] = T$, we get

$$\sum_{i=1}^{\beta(G_{1:T})} \mathbb{E}_i[T_i] \le T \cdot \sum_{i=1}^{\beta(G_{1:T})} d_{TV}^{\mathcal{F}}(P_0, P_i) + T.$$

Combining the above equation with (5), we get

$$\mathbb{E}[R] \geq \epsilon_1 T - \frac{\epsilon_1 T}{\beta(G_{1:T})} \cdot \sum_{i=1}^{\beta(G_{1:T})} d_{TV}^{\mathcal{F}}(P_0, P_i) - \frac{\epsilon_1 T}{\beta(G_{1:T})} + \mathbb{E}[M_s]$$

$$\stackrel{(a)}{\geq} \frac{\epsilon_1 T}{2} - \frac{\epsilon_1 T}{\beta(G_{1:T})} \cdot \sum_{i=1}^{\beta(G_{1:T})} d_{TV}^{\mathcal{F}}(P_0, P_i) + \mathbb{E}[M_s],$$
(6)

where (a) uses the fact that $\beta(G_{1:T}) > 1$. Next, we upper bound the second term in the right hand side of (6). Using Pinsker's inequality, we have

$$d_{TV}^{\mathcal{F}}(P_0, P_i) \le \sqrt{\frac{1}{2} D_{KL}(\mathbb{P}_0(\ell_{1:T}^o) || \mathbb{P}_i(\ell_{1:T}^o))},$$
(7)

where $\ell_{1:T}^o$ are the losses observed by the player over the time horizon T. Using the chain rule of relative entropy to decompose $D_{KL}(\mathbb{P}_0(\ell_{1:T}^o)||\mathbb{P}_0(\ell_{1:T}^o))$, we get

$$D_{KL}(\mathbb{P}_{0}(\ell_{1:T}^{o})||\mathbb{P}_{i}(\ell_{1:T}^{o})) = \sum_{t=1}^{T} D_{KL}(\mathbb{P}_{0}(\ell_{t}^{o}|\ell_{1:t-1}^{o})||\mathbb{P}_{i}(\ell_{t}^{o}|\ell_{1:t-1}^{o}))$$

$$= \sum_{t=1}^{T} D_{KL}(\mathbb{P}_{0}(\ell_{t}^{o}|\ell_{\rho^{*}(t)}^{o})||\mathbb{P}_{i}(\ell_{t}^{o}|\ell_{\rho^{*}(t)}^{o})),$$
(8)

where $\rho^*(t)$ is the set of time instances $0 \le k \le t$ encountered when operation $\rho(.)$ in Algorithm 1 is applied recursively to t. Now, we deal with each term $D_{KL}(\mathbb{P}_0(\ell_t^o|\ell_{\rho^*(t)}^o)||\mathbb{P}_i(\ell_t^o|\ell_{\rho^*(t)}^o))$ in the summation individually. For $i \in \mathcal{I}(G_{1:T})$, we separate this computation into four cases: i_t is such that loss of action i is observed at both time instances t and $\rho(t)$ i.e. $i \in S_t(i_t)$ and $i \in S_t(i_{\rho(t)})$; i_t is such that loss of action i is observed at time instance t but not at time instance $\rho(t)$ i.e. $i \in S_t(i_t)$ and $i \in S_t(i_t)$; i_t is not observed at time instance $\rho(t)$ i.e. $i \in S_t(i_t)$ and $i \in S_t(i_t)$. Note that loss of action i is not observed at time instance $\rho(t)$ i.e. $i \notin S_t(i_t)$ and $i \notin S_t(i_{\rho(t)})$; i_t is such that loss of action $i \in S_t(i_t)$ and $i \in S_t(i_{\rho(t)})$. Note that at a single time instance the loss of only one single action can be observed from $\mathcal{I}(G_{1:T})$ arms.

Case 1: Since the loss of action *i* is observed from the independent sequence set $\mathcal{I}(G_{1:T})$ at both the time instances, the loss distribution for the action *i* is $\ell_t^o(i)|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(i), \sigma^2)$ for both \mathbb{P}_0 and \mathbb{P}_i . For all $j \in [K] \setminus \mathcal{I}(G_{1:T})$, the loss distribution is $\ell_t^o(j)|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(i) + \epsilon_1 + \epsilon_2, \sigma^2)$ under both \mathbb{P}_0 and \mathbb{P}_i .

Case 2: Since the loss of action *i* is observed from the independent sequence set $\mathcal{I}(G_{1:T})$ at time instance *t* but not at $\rho(t)$, therefore, there exists an action $k' \in \mathcal{I}(G_{1:T}) \setminus \{i\}$ from the independent sequence set which was observed at time instance $\rho(t)$. Then, the loss distribution for the action *i* is $\ell_t^o(i)|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(k'), \sigma^2)$ under \mathbb{P}_0 , and $\ell_t^o(i)|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(k') - \epsilon_1, \sigma^2)$ under \mathbb{P}_i . For all $j \in [K] \setminus \mathcal{I}(G_{1:T})$, the loss distribution is $\ell_t^o(j)|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(k') + \epsilon_2, \sigma^2)$ under \mathbb{P}_0 and \mathbb{P}_i .

Case 3:Since the action *i* is observed from the independent sequence set $\mathcal{I}(G_{1:T})$ at time instance $\rho(t)$ but not at *t*, therefore, there exists an action $k' \in \mathcal{I}(G_{1:T}) \setminus \{i\}$ from the independent sequence set which was observed at time instance *t*. Then, the loss distribution for the arm k' is $\ell_t^o(k')|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(i), \sigma^2)$ under \mathbb{P}_0 , and $\ell_t^o(k')|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(i) + \epsilon_1, \sigma^2)$ under \mathbb{P}_i . For all $j \in [K] \setminus \mathcal{I}(G_{1:T})$, the loss distribution is $\ell_t^o(j)|\ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(i) + \epsilon_1 + \epsilon_2, \sigma^2)$ under both \mathbb{P}_0 and \mathbb{P}_i .

Case 4: Let k^* be the arm from the independent sequence set observed at time instance $\rho(t)$. Since the arm *i* is not observed from the independent sequence set $\mathcal{I}(G_{1:T})$ at the time instances *t* and $\rho(t)$, therefore the loss distribution for all arms $k' \in \mathcal{I}(G_{1:T}) \setminus \{i\}$ is $\ell_t^o(k') | \ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(k^*), \sigma^2)$ for both \mathbb{P}_0 and \mathbb{P}_i . For all $j \in [K] \setminus \mathcal{I}(G_{1:T})$, the loss distribution is $\ell_t^o(j) | \ell_{\rho^*(t)}^o \sim \mathcal{N}(\ell_{\rho(t)}(k^*) + \epsilon_2, \sigma^2)$ under both \mathbb{P}_0 and \mathbb{P}_i .

Therefore, we have

$$D_{KL}(\mathbb{P}_{0}(\ell_{t}^{o}|\ell_{\rho^{*}(t)}^{o})||\mathbb{P}_{i}(\ell_{t}^{o}|\ell_{\rho^{*}(t)}^{o})) = \mathbb{P}_{0}(i \in S_{t}(i_{t}), i \notin S_{\rho(t)}(i_{\rho(t)})) \cdot D_{KL}(\mathcal{N}(0,\sigma^{2})||\mathcal{N}(-\epsilon_{1},\sigma^{2})) + \mathbb{P}_{0}(i \notin S_{t}(i_{t}), i \in S_{\rho(t)}(i_{\rho(t)})) \cdot D_{KL}(\mathcal{N}(0,\sigma^{2})||\mathcal{N}(\epsilon_{1},\sigma^{2})) = \frac{\epsilon_{1}^{2}}{2\sigma^{2}}\mathbb{P}_{0}(B_{t}),$$
(9)

where $B_t = \{i \in S_t(i_t), i \notin S_{\rho(t)}(i_{\rho(t)}) \cup i \notin S_t(i_t), i \in S_{\rho(t)}(i_{\rho(t)})\}$. The event B_t implies that the player has switched at least once between the feedback systems $S_t(k_1)$ and $S_{\rho(t)}(k_2)$ such that $i \in S_t(k_1)$ but $i \notin S_{\rho(t)}(k_2)$ or vice-versa. Let N_i be the number of times a player switches from the feedback system which includes i to the feedback system which does not include i and vice-versa. Then, using (8) and (9), we have

$$D_{KL}(\mathbb{P}_0(\ell_{1:T}^o)||\mathbb{P}_i(\ell_{1:T}^o)) \le \frac{\epsilon_1^2 \omega(\rho)}{2\sigma^2} \mathbb{E}_0[N_i],\tag{10}$$

where $\omega(\rho)$ is the width of process $\rho(.)$ (see Definition 2 in Dekel et al. (2014)) and is bounded above by $2\log_2(T)$. Combining (7) and (10), we have

$$\sup_{A \in \mathcal{F}} (\mathbb{P}_0(A) - \mathbb{P}_i(A)) \le \frac{\epsilon_1}{\sigma} \sqrt{\log_2(T)\mathbb{E}_0[N_i]}.$$
(11)

If $M_s \ge \epsilon_1 T$, then $\mathbb{E}[R'] > \epsilon_1 T$. Thus, the claimed lower bound follows. Now, let us assume $M_s \le \epsilon_1 T$. For all $i \in \mathcal{I}(G_{1:T})$, we have

$$\mathbb{E}_{0}[M_{s}] - \mathbb{E}_{i}[M_{s}] = \sum_{m=1}^{\lfloor \epsilon_{1}T \rfloor} \mathbb{P}_{0}(M_{s} \ge m) - \mathbb{P}_{i}(M_{s} \ge m))$$

$$\leq \epsilon_{1}T \cdot d_{TV}^{\mathcal{F}}(\mathbb{P}_{0}, \mathbb{P}_{i}).$$
(12)

Using the above equation, we have

$$\mathbb{E}_{0}[M_{s}] - \mathbb{E}[M_{s}] = \frac{1}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} (\mathbb{E}_{0}[M_{s}] - \mathbb{E}_{i}[M_{s}])$$

$$\leq \frac{\epsilon_{1}T}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} d_{TV}^{\mathcal{F}}(\mathbb{P}_{0}, \mathbb{P}_{i}).$$
(13)

Now, combining (4), (6), (11) and (13), we obtain

$$\mathbb{E}[R'] \geq \frac{\epsilon_1 T}{6} - \frac{\epsilon_1 T}{\beta(G_{1:T})} \sum_{i=1}^{\beta(G_{1:T})} \frac{\epsilon_1}{\sigma} \sqrt{\log_2(T) \mathbb{E}_0[N_i]} + c \cdot \mathbb{E}_0[M_s]$$

$$\stackrel{(a)}{\geq} \frac{\epsilon_1 T}{6} - \frac{\epsilon_1^2 T}{\sigma \sqrt{\beta(G_{1:T})}} \sqrt{2 \log_2(T) \mathbb{E}_0[M_s]} + c \cdot \mathbb{E}_0[M_s]$$

$$\stackrel{(b)}{\geq} \frac{c^{1/3} \beta(G_{1:T})^{1/3} T^{2/3}}{54 \log_2(T)} - \frac{c^{1/3} \beta(G_{1:T})^{1/3} T^{2/3}}{162 \log_2(T)}$$

$$= \frac{c^{1/3} \beta(G_{1:T})^{1/3} T^{2/3}}{81 \log_2(T)},$$
(14)

where (a) follows from the concavity of \sqrt{x} and $\sum_{i}^{\beta(G_{1:T})} N_i \leq 2M_s$, (b) follows from the fact that the right hand side is minimized for $\sqrt{\mathbb{E}_0[M_s]} = \epsilon^2 T \sqrt{\log_2(T)}/2c\sigma \sqrt{\beta(G_{1:T})}$. The claim of the theorem now follows.

B Proof of Lemma 2

 $\beta(G_{1:T})$ is the cardinality of $\mathcal{I}(G_{1:T})$. Let $1, 2, \ldots \beta(G_{1:T})$ actions belong to the set $\mathcal{I}(G_{1:T})$. Then, the adversary selects an action uniformly at random from the set $\mathcal{I}(G_{1:T})$ say j, and assigns the loss sequence to action j using independent Bernoulli random variable with parameter $0.5 - \epsilon$, where $\epsilon = \sqrt{\beta(G_{1:T})/T}$. For all $i \in \mathcal{I}(G_{1:T})/\{j\}$, losses are assigned using independent Bernoulli random variable with parameter 0.5. For all $i \notin \mathcal{I}(G_{1:T})$, the losses are assigned using independent Bernoulli random variable with parameter 1. The proof of the lemma follows along the same lines as Theorem 5 in (Alon et al. (2017)).

C Proof of Theorem 3

Proof of this theorem uses the result from Theorem 1. Since the loss sequence is assigned independently to each sub-sequence U_m where $m \in [M]$. Using Theorem 1, there exists a constant b_m such that

$$\mathbf{E}\left[\sum_{t=1}^{T} (\ell_t(i_t)\mathbf{1}(G_t \in U_m) + cW_m\right] - \min_{i \in U_m} \sum_{t=1}^{T} (\ell_t(i)\mathbf{1}(G_t \in U_m))$$

$$\geq b_m c^{1/3} \beta(U_m)^{1/3} N(U_m)^{2/3} / \log(T),$$
(15)

where W_m is number of switches performed within the sequence U_m . Since

$$\sum_{m \in [M]} W_m \le \sum_{t=1}^T \mathbf{1}(i_t \neq i_{t-1}),$$

there exist a constant b such that the expected regret of any algorithm A is at least

$$b c^{1/3} \sum_{m \in [M]} \beta(U_m)^{1/3} N(U_m)^{2/3} / \log T.$$

D Proof of Lemma 4

Proof. The proof follows from contradiction and is along the same lines as the proof of Theorem 4 in Dekel et al. (2014). Let \mathcal{A} performs at most $\tilde{O}((\beta(G_{1:T})^{1/2}T)^{\alpha})$ switches for any sequence of loss function over T rounds with $\beta + \alpha/2 < 1$. Then, there exists a real number γ such that $\beta < \gamma < 1 - \alpha/2$. Then, assign $c = (\beta(G_{1:T})^{1/2}T)^{3\gamma-2}$. Thus, the expected regret, including the switching cost, of the algorithm is

$$\tilde{O}((\beta(G_{1:T})^{1/2}T)^{\beta} + (\beta(G_{1:T})^{1/2}T)^{3\gamma-2}(\beta(G_{1:T})T)^{\alpha}) = \tilde{o}(\beta(G_{1:T})^{1/2}T)^{\gamma},$$

over a sequence of losses assigned by the adversary because $\beta < \gamma$ and $\alpha < 2 - 2\gamma$. However, according to Theorem 1, the expected regret is at least $\tilde{\Omega}(\beta(G_{1:T})^{1/3}(\beta(G_{1:T})^{1/2}T)^{(3\gamma-2)/3}T^{2/3}) = \tilde{\Omega}((\beta(G_{1:T})T)^{\gamma})$. Hence, by contradiction, the proof of the lemma follows.

E Proof of Theorem 5

Proof. Let $t_1, t_2 \ldots, t_{\sigma(T)}$ be the sequence of time instances at which the event E^t occurs during the duration T of the game. We define $\{r_j = t_{j+1} - t_j\}_{1 \le j \le T}$ as the sequence of inter-event times between the events E^t . Let $\max(G_{(1)}), \ldots, \max(G_{(T)})$ denote the sequence in the decreasing order of size of maximal acyclic graphs, i.e. $\max(G_{(1)})$ (or $\max(G_{(T)})$) is the maximum (or minimum) size of maximal acyclic graph observed in sequence $G_{1:T} = \{G_1, \ldots, G_T\}$. Using the definition of E^t , note that r_j is a random variable bounded by $T^{1/3}c^{2/3}/\max(G_{(T)})^{1/3}$. For all $1 \le j \le \sigma(T)$, the ratio of total weights of actions at round t_j and t_{j+1} is

$$\frac{W_{t_{j+1}}}{W_{t_j}} = \sum_{i \in [K]} \frac{w_{i,t_{j+1}}}{W_{t_j}}
= \sum_{i \in [K]} \frac{w_{i,t_j} \exp(-\eta \ell'_{t_j+r_j-1}(i))}{W_{t_j}}
= \sum_{i \in [K]} p_{i,t_j} \exp(-\eta \ell'_{t_j+r_j-1}(i))
\stackrel{(a)}{\leq} \sum_{i \in [K]} p_{i,t_j} \left(1 - \eta \ell'_{t_j+r_j-1}(i) + \frac{1}{2} \eta^2 \ell'^2_{t_j+r_j-1}(i)\right)
= 1 - \eta \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i) + \frac{\eta^2}{2} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'^2_{t_j+r_j-1}(i),$$
(16)

where (a) follows from the fact that, for all $x \ge 0$, $e^{-x} \le 1 - x - x^2/2$. Now, taking logs on both sides of (16), summing over $t_1, t_2, \ldots t_{\sigma(T)}$, and using $\log(1+x) \le x$ for all x > -1, we get

$$\log \frac{W_{t_{\sigma(T)+1}}}{W_1} \le -\eta \sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i) + \frac{\eta^2}{2} \sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i).$$
(17)

For all actions $k' \in [K]$, we also have

$$\log \frac{W_{t_{\sigma(T)+1}}}{W_1} \ge \log \frac{w_{k',t_{\sigma(T)+1}}}{W_1} \ge -\eta \sum_{j=1}^{\sigma(T)} \ell'_{t_j+r_j-1}(k') - \log(K).$$
(18)

Combining (17) and (18), for all $k' \in [K]$, we obtain

$$\sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i) - \sum_{j=1}^{\sigma(T)} \ell'_{t_j+r_j-1}(k') \le \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'^2_{t_j+r_j-1}(i).$$
(19)

Now, for all $i \in [K]$, the conditional expectation of $\ell'_{t_j+r_j-1}(i)$ is

$$\mathbb{E}\left[\ell_{t_{j}+r_{j}-1}^{\prime}(i)\Big|p_{t_{j}},r_{j}\right] = \sum_{t=t_{j}}^{t_{j}+r_{j}-1} \sum_{k':i\in S_{t}(k')} p_{k',t_{j}} \cdot \frac{\ell_{t}(i)}{q_{i,t}},$$
$$= \sum_{t=t_{j}}^{t_{j}+r_{j}-1} \frac{\ell_{t}(i)}{q_{i,t}} \cdot \sum_{k':i\in S_{t}(k')} p_{k',t_{j}},$$
$$= \sum_{t=t_{j}}^{t_{j}+r_{j}-1} \ell_{t}(i).$$
(20)

Therefore, we have that for all $i \in [K]$, the conditional expectation

$$\mathbb{E}\bigg[\sum_{j=1}^{\sigma(T)} \ell'_{t_j+r_j-1}(i) \Big| \{p_{t_j}, r_j\}_{1 \le j \le \sigma(T)}] \bigg] = \sum_{j=1}^{\sigma(T)} \sum_{t=t_j}^{t_j+r_j-1} \ell_t(i) = \sum_{t=1}^T \ell_t(i).$$
(21)

Now, the expectation of second term in right hand side of (19) is

$$\mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell_{t_j+r_j-1}^{\prime 2}(i)\right] = \mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \mathbb{E}\left[\sum_{i \in [K]} p_{i,t_j} \ell_{t_j+r_j-1}^{\prime 2}(i) |\{p_{t_j}, r_j\}_{1 \le j \le \sigma(T)}\right]\right]$$

$$\stackrel{(a)}{\le} \mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \max(G_{t_j:t_j+r_j-1}) r_j^2\right],$$
(22)

where $\max(G_{t_j:t_j+r_j-1}) = \max_{n \in [t_j, t_j+r_j-1]} \max(G_n)$, and (a) follows from the fact that, for all $i \in [K]$ and $t \leq T$, $\ell_t(i) \leq 1$, and $\sum_{i \in [K]} p_{i,t}/q_{i,t} \leq \max(G_t)$ (Alon et al., 2017, Lemma 10).

Now, we bound $\sum_{j=1}^{\sigma(T)} \max(G_{t_j:t_j+r_j-1})r_j^2$. We write the following optimization problem:

$$\max_{\{r_j\}_{1 \le j \le T}} \sum_{j=1}^{T} \max(G_{t_j:t_j+r_j-1}) r_j^2, \text{ subject to}$$

$$\sum_{j=1}^{T} r_j = T,$$

$$0 \le r_j \le \frac{T^{1/3} c^{2/3}}{\max^{1/3}(G_{(T)})}.$$
(23)

Since the objective function is submodular and the constraints are linear, the ratio of the solution of the greedy algorithm and the optimal solution is at most (1 - 1/e) (Nemhauser and Wolsey (1978)). Therefore, the optimal solution o^* of the above optimization problem is

$$o^* \le \sum_{t=1}^{t^*} \frac{T^{2/3} \max(G_{(t)}) c^{4/3}}{(1-1/e) \max^{2/3}(G_{(T)})},$$
(24)

where $t^* = [T^{2/3}c^{-2/3}\max^{1/3}(G_{(T)})]$. Using (19), (20), (21), (22) and (24), we have

$$\mathbb{E}\left[\sum_{j=1}^{\sigma(T)}\sum_{i\in[K]}p_{i,k_j}\sum_{t=k_j}^{k_j+r_j-1}\ell_t(i) - \sum_{j=1}^{T}\ell_t(k')\right] \le \frac{\log(K)}{\eta} + \frac{\eta}{2}\sum_{t=1}^{t^*}\frac{T^{2/3}c^{4/3}\mathrm{mas}(G_{(t)})}{(1-1/e)\mathrm{mas}^{2/3}(G_{(T)})}.$$
 (25)

Additionally, the player switches its action only if E^t is true. Thus, using (25) and c(i, j) = c, for all $i, j \in [K]$, we have

$$R^{\mathcal{A}}(l_{1:T}, \mathcal{C}) \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{t^*} \frac{T^{2/3} c^{4/3} \max(G_{(t)})}{(1-1/e) \max^{2/3}(G_{(T)})} + c \cdot \mathbb{E}[\sum_{t=2}^T \mathbf{1}(i_t \neq i_{t-1})].$$
(26)

Now, we bound $\mathbb{E}[\sum_{t=2}^{T} \mathbf{1}(i_t \neq i_{t-1})]$. E_1^t occurs with probability 1, and does not contribute to any SC. E_2^t can lead to at most $\lceil T^{2/3}c^{-2/3}\max^{1/3}(G_{(T)})\rceil$ switches. Now, let E_3^t causes N_T switches. Then, we have

$$\mathbb{E}[N_{T}] = \mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \mathbf{1}(i_{t_{j+1}} \neq i_{t_{j}}, E_{3}^{t_{j}} \text{ is true})\right]$$

$$= \mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \mathbb{E}\left[\mathbf{1}(i_{t_{j+1}} \neq i_{t_{j}}, E_{3}^{t_{j}} \text{ is true}) \middle| \{p_{t_{j}}, r_{j}\}_{1 \leq j \leq \sigma(T)}\right]\right]$$

$$\leq \mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \mathbb{E}\left[\sum_{i \in [K], k' \in [K] \setminus \{i\}} \mathbb{P}(i_{t_{j}} = i \middle| E_{3}^{t_{j}} \text{ is true}) \mathbb{P}(i_{t_{j+1}} = k' \middle| i_{t_{j}} = i) \middle| \{p_{t_{j}}, r_{j}\}_{1 \leq j \leq \sigma(T)}\right]\right]$$

$$= \mathbb{E}\left[\sum_{j=1}^{\sigma(T)} \sum_{i \in [K], k' \in [K] \setminus \{i\}} p_{i,t_{j}} p_{k',t_{j+1}}\right]$$

$$\stackrel{(a)}{\leq} \sum_{t=1}^{T} c^{-2/3} \operatorname{mas}^{1/3}(G_{(T)}) t^{-1/3} = c^{-2/3} \operatorname{mas}^{1/3}(G_{(T)}) T^{2/3},$$
(27)

where (a) follows from Lemma 1 in this section. Thus, the number of switches are $2c^{-2/3} \max^{1/3}(G_{(T)})T^{2/3}$, and the SC is $2c^{1/3} \max^{1/3}(G_{(T)})T^{2/3}$.

Part (*iii*) of the theorem follows by combining the results from (*i*) and (*ii*). Part (*iv*) follows from the fact that if G_t is undirected, $\max(G_t) = \alpha(G_t)$.

Lemma 1. Given $i \in [K]$ is chosen at time instance t_j , for all $k' \in [K] \setminus \{i\}$, we have

$$p_{i,t_j} \cdot p_{k',t_{j+1}} \le (t_{j+1})^{-1/3}.$$

Proof. Given i is chosen at time instance t_j , for all $k' \in [K] \setminus \{i\}$, we have

$$\frac{p_{k',t_{j+1}}}{p_{i,t_{j+1}}} = \frac{p_{k',1} \exp(-\eta \hat{\ell}_{t_{j+1}}(k'))}{p_{i,t_{j}} \exp(-\eta \ell'_{t_{j}+r_{j}-1}(i))} \\
\stackrel{(a)}{=} \frac{p_{k',1} \exp(-\eta (\hat{\ell}_{t_{j}}(k') + \ell'_{t_{j}+r_{j}-1}(k')))}{p_{i,t_{j}} \exp(-\eta \ell'_{t_{j}+r_{j}-1}(i))} \\
\stackrel{(b)}{\leq} \frac{\exp\left(-\eta (\hat{\ell}_{t_{j}}(k') + \ell'_{t_{j}+r_{j}-1}(k') - \ell'_{t_{j}+r_{j}-1}(i))\right)}{p_{i,t_{j}}} \\
\stackrel{(c)}{\leq} \frac{\exp\left(-\eta (\epsilon_{t_{j+1}}/\eta)\right)}{Kp_{i,t_{j}}} \\
= \frac{\exp\left(-\epsilon_{t_{j+1}}\right)}{p_{i,t_{j}}},$$
(28)

where (a) follows from the fact that $\hat{\ell}_{t_{j+1}}(k') = \hat{\ell}_{t_j}(k') + \ell'_{t_j+r_j-1}(k')$; (b) follows from $p_{k',1} = 1/K$; (c) follows from the fact that for all $k \in [K] \setminus \{i\}, \hat{\ell}_{k,t-1} - \ell'_{i,t-1} > \epsilon_t/\eta$ as the increment in $\ell'_{i,t-1}$ is bounded by $1/q_{i,t-1}$. Now, replacing $\epsilon_t \geq \log(tc^2/\max(G_{(T)}))/3$ in (28), we have

$$p_{i,t_j} \cdot p_{k',t_{j+1}} \le c^{-2/3} \operatorname{mas}^{1/3}(G_{(T)}) t_{j+1}^{-1/3}.$$
(29)

F Proof of Theorem 6

Proof. We borrow the notations from the proof of Theorem 5. Using the fact that η_t is decreasing in t and (19), we have

$$\sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i) - \min_{k' \in [K]} \sum_{j=1}^{\sigma(T)} \ell'_{t_j+r_j-1}(k') \le \frac{\log(K)}{\eta_T} + \sum_{j=1}^{\sigma(T)} \frac{\eta_{t_j}}{2} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i).$$
(30)

Now, taking expectation on both the sides and using the fact that expectation of the min(.) is smaller than the min(.) of the expectation, we have

$$\mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \sum_{i \in [K]} p_{i,t_j} \cdot \ell'_{t_j+r_j-1}(i)\right] - \min_{k' \in [K]} \mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \ell'_{t_j+r_j-1}(k')\right] \\
\leq \frac{\log(K)}{\eta_T} + \mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \frac{\eta_{t_j}}{2} \epsilon_{t_j} \mathbf{E}\left[\sum_{i \in [K]} p_{i,t_j} \cdot \ell'^2_{t_j+r_j-1}(i)|p_{t_j}, r_j, \mathbf{1}(i_t \text{ is selected using } p_t)\right]\right], \\
\overset{(a)}{\leq} \frac{\log(K)}{\eta_T} + \mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \frac{\eta_{t_j}}{2} \epsilon_{t_j} \mathbf{E}[\max(G_{t_j:t_j+r_j-1})r_j^2|\mathbf{1}(i_t \text{ is selected using } p_t)]\right], \\
\overset{(b)}{\leq} \frac{\log(K)}{\eta_T} + \mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \frac{\eta_{t_j}}{2} \epsilon_{t_j} \frac{2 \cdot \max(G_{t_j:t_j+r_j-1})}{\epsilon_{t_j}^2}\right], \\
= \frac{\log(K)}{\eta_T} + \mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \frac{\eta_{t_j}}{2} \frac{2 \cdot \max(G_{t_j:t_j+r_j-1})}{\epsilon_{t_j}}\right], \\
\overset{(c)}{\leq} \frac{\log(K)}{\eta_T} + \mathbf{E}\left[\sum_{j=1}^{\sigma(T)} \frac{2\log(K)}{\max^{2/3}(G_{(T)})} \max(G_{(j)})\right], \\
\overset{(d)}{\leq} \frac{\log(K)}{\eta_T} + \sum_{j=1}^{\mathbf{E}[\sigma(T)]} \frac{2\log(K)}{\max^{2/3}(G_{(T)})} \max(G_{(j)})$$
(31)

where (a) follows from (22), (b) follows from the fact that since the probability of selecting a new action is at most ϵ_{t_j} , the mean and the variance of the geometric random variable r_j is bounded by $1/\epsilon_{t_j}^2$ and $(1 - \epsilon_{t_j})/\epsilon_{t_j}^2$ respectively, (c) follows from the value of η_t and ϵ_t , and (d) follows from the fact that $\max(G_{(j)})/\max(G_{(T)})$ is a monotonic non increasing sequence in j, therefore the summation is a concave function and the inequality follows from the Jensen's inequality.

Now, we bound the $\mathbf{E}[\sigma(T)]$ in (31). This also gives a bound on the number of switches performed by the algorithm. We have

$$\mathbf{E}[\sigma(T)] = \sum_{t=1}^{T} \mathbf{E}[\mathbf{1}(i_t \neq i_{t-1})],$$

$$\leq \sum_{t=1}^{T} \epsilon_t,$$

$$\leq 0.5 \text{mas}^{1/3}(G_{(T)})T^{2/3}c^{1/3}$$
(32)

References

- Alon, N., Cesa-Bianchi, N., Gentile, C., Mannor, S., Mansour, Y., and Shamir, O. (2017). Nonstochastic multi-armed bandits with graph-structured feedback. *SIAM Journal on Computing*, 46(6):1785–1826.
- Dekel, O., Ding, J., Koren, T., and Peres, Y. (2014). Bandits with switching costs: T 2/3 regret. In *Proceedings of the forty-sixth annual ACM symposium on Theory of computing*, pages 459–467. ACM.
- Nemhauser, G. L. and Wolsey, L. A. (1978). Best algorithms for approximating the maximum of a submodular set function. *Mathematics of operations research*, 3(3):177–188.