
Supplementary material for the paper:
Optimal Transport for Multi-source Domain Adaptation under Target

Shift

In this Supplementary material we present proofs of the main theoretical results given in the main paper and
provide additional empirical evaluations of the proposed method that were not included into the main paper due
to the lack of space.

1 Proofs of theoretical results

1.1 Proof of Proposition 2

Proposition 2. Let H denote the hypothesis space of predictors h : Ω→ {0, 1} and l be a convex loss function.
Let discl(PS , PT ) = maxh,h′∈H |εS(l(h, h′))− εT (l(h, h′))| be the discrepancy distance [1] between two probability
distributions PS and PT . Then, for any fixed α the following holds for any h ∈ H:

εT (h) ≤ εαS (h) + |πT −
N∑
j=1

αjπ
j
S |discl(P0, P1) + λ,

where λ = min
h∈H

εαS (h) + εT (h) represents the joint error between the combined source error and the target one.

Proof.

εT (h) ≤ εT (h∗, fT ) + εT (h, h∗)
≤ εT (h∗, fT ) + εαS (h, h∗) + |εT (h, h∗)− εαS (h, h∗)| (1)
≤ εT (h∗, fT ) + εαS (h, h∗) + max

h,h′∈H
|εT (h, h′)− εαS (h, h′)|

= εT (h∗, fT ) + εαS (h, h∗) + discl(Pα
S , PT ) (2)

≤ εαS (h, fα
S ) + εαS (h∗, fα

S ) + εT (h∗, fT ) + discl(Pα
S , PT )

= εαS (h, fα
S ) + discl(Pα

S , PT ) + λ. (3)

Here lines (1) and (2) are obtained due to the validity of the triangle inequality for the classification error function
[2]. Regarding the discl discrepancy term, we obtain:

discl(Pα
S , PT ) = max

h,h′∈H
|εT (h, h′)− εαS (h, h′)|

= max
h,h′∈H

|EPT
(h, h′)− EPα

S
(h, h′)|

= max
h,h′∈H

∣∣∣∣∣
 N∑
j=1

αj(1− πjS)− (1− πT )

EP0(h, h′) +

 N∑
j=1

αjπ
j
S − πT

EP1(h, h′)

∣∣∣∣∣
= max
h,h′∈H

∣∣∣∣∣
πT − N∑

j=1
αjπ

j
S

 (EP0(h, h′)− EP1(h, h′))

∣∣∣∣∣
= |πT −

N∑
j=1

αjπ
j
S |discl(P0, P1).
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The final result is obtained by combining the last expression with (3) from the proof.

We further note that this result can be made data dependent for predefined families of loss functions l such as 0-1
loss and `q loss often used in classification and regression, respectively. To this end, one may apply [1, Corollary
6 and 7] in order to replace the true distributions P0 and P1 by their empirical counterparts.

1.2 Proof of Proposition 3

Proposition 3. Assume that ∀i,@α ∈ {∆C |αi = 0, Pi =
∑
j αjPj}. Then, for any distribution PT , the unique

solution π∗ minimizing

π? = arg min
π∈∆C

W (PπS , PT ). (4)

is given by πT .

Proof. We first note that for any two probability distributions P1 and P2, W (P1, P2) ≥ 0 and W (P1, P2) = 0 if
and only if P1 = P2 as Wasserstein distance is a valid metric on the space of probability measures. In this case,
when π∗ = πT , W (Pπ∗S , PT ) = 0 and thus π∗ = πT is a feasible solution of the optimization problem given in (4).
On the other hand, for a given solution π̃ such that ∃i ∈ {1, . . . , C} : π̃∗i 6= πTi , we have due to the assumption
made in the statement of the proposition that @α ∈ ∆C and @j ∈ {1, . . . , i−1, i+1, . . . , C} : Pj =

∑
k∈A:i∈A αkPk

and thus W (P π̃∗S , PT ) > 0. This last condition roughly means that none of the class distributions for classes
{1, . . . , i− 1, i+ 1, . . . , C} can be expressed as a weighted sum involving class distribution Pi. Hence, π? = πT is
the unique solution of the optimization problem (4).

1.3 Proof of Proposition 4

For the sake of completeness, we recall that the considered optimization problem has the following form:

arg min
h

K∑
k=1

λkWε,C(k)

(
(D(k)

2 h)T δX(k) , µ
)
, (5)

where the regularized Wasserstein distances can be expressed as

Wε,C(k)(µ(k), µ) def= min
γ(k)∈Π(µ(k),µ)

KL(γ(k), ζ(k)),

provided that ζ(k) = exp
(
−C

(k)

ε

)
and with λk being convex coefficients (

∑
k λk = 1) accounting for the relative

importance of each domain.

In order to solve it for K constraints related to the unknown proportions h, we formulate the problem as a
Bregman projection with prescribed row sum (∀k D(k)

1 γ(k)1n = h), i.e.,

h? = arg min
h,Γ

K∑
k=1

λk KL(γ(k), γ̄(k)) s.t. ∀k D(k)
1 γ(k)1n = h. (6)

This problem admits a closed form solution that we establish in the following result.
Proposition 4. The solution of the projection defined in Equation 6 is given by:

∀k, γ(k) = diag
(

D(k)
2 h

γ̄(k)1n

)
γ̄(k),h = ΠK

k=1(D(k)
1 (γ̄(k)1n))λk .

Proof. We follow a similar line of reasoning as [3, Proposition (2)]. We write the following optimization problem
with a collection of Lagrange multipliers denoted as (uk ∈ RC)k=1,...,K in vector form.

L(Γ, (uk)k=1,...,K ,h) =
K∑
k=1

λk < γ(k), log γ
(k)

γ̄(k) − 1 > +
K∑
k=1

uTk (D(k)
1 γ(k)1n − h). (7)



We now compute the derivative w.r.t. γ(k), uk and h:

∂L(.)
∂γ(k) = λk log γ

(k)

γ̄(k) + D(k)
1 uk1Tn , ∀k (8)

∂L(.)
∂uk

= D(k)
1 γ(k)1n − h, ∀k (9)

∂L(.)
∂h =

K∑
k=1

uk. (10)

Setting the first equation to zero leads to

λk log γ(k)

γ̄(k) + D(k)
1 uk1Tn = 0, (11)

log γ(k)

γ̄(k) = −D(k)
1 uk1T

n

λk
, (12)

γ(k) = exp
(
−D(k)

1 uk1T
n

λk

)
� γ̄(k), (13)

with � the Hadamard product. Finally, by multiplying the two terms by 1n, we get:

γ(k)1n =
(

exp
(
−uk1Tn

λk

)
� γ̄(k)

)
1n. (14)

Using the optimality condition of equation two of the previous system, we know that D(k)
1 γ(k)1n = h or

γ(k)1n = D(k)
2 h and subsequently

exp
(
−uk1Tn

λk

)
= diag

(
D(k)

2 h
γ̄(k)1n

)
. (15)

Plugging this expression into the first equation, we obtain:

γk = diag
(

D(k)
2 h

γ̄(k)1n

)
γ̄(k), (16)

that is the first element of the solution of the projection. We sum over k the first optimality equation, and we get:

K∑
k=1

λk log γ
(k)

γ̄(k) +
∑
k

D(k)
1 uk1Tn = 0. (17)

Setting the third question to zero leads to
∑K
k=1 uk = 0. Because of the specific structure of D(k)

1 , we also have∑K
k=1 D(k)

1 uk = 0. Therefore, we obtain:

K∑
k=1

λk log γ
(k)

γ̄(k) = 0, (18)

(19)

or equivalently

K∏
k=1

(
γ(k)

γ̄(k)

)λk

= 1C . (20)

From Equation 16 we get

K∏
k=1

(
D(k)

2 h
γ̄(k)1n

)λk

= 1n (21)



(22)

which is equivalent to

K∏
k=1

hλk =
K∏
k=1

(D(k)
1 γ̄(k))λk (23)

and finally, since
∑K
k=1 λk = 1, we get

h =
K∏
k=1

(D(k)
1 γ̄(k))λk (24)

which concludes the proof.

3 Experimental results

In this section, we provide the details on the generative process of the synthetic data used in the main paper and
present results of several other experiments that we could not include into the main paper due to lack of space.

3.1 Data set generation

In the main paper, we considered the multi-source scenario for which we generated a binary classification

problem with the instances of each class were drawn from the Gaussian distributions N
((
−1
0

)
, 0.3I

)
and

N
((

1
0

)
, 0.3I

)
, respectively.

3.2 Running time comparison

In Table 1, we give the running times of all the algorithms considered in the empirical evaluation of the main
paper for the simulated data. From the results, we can see that betaEM is the less computationally demanding
method. MDAC Causal, JCPOT method and OTDA share performances with the same order of magnitude. We note
also that betaKMM is the most computationally heavy method.

Number of source domains
2 5 8 11 14 17 20

betaEM 0.179 0.174 0.241 0.314 0.394 0.458 0.524
betaKMM 16.057 193.331 119.859 117.982 190.623 172.903 209.53

MDAC Causal 1.4130 1.5466 1.8402 2.1484 2.5962 3.2463 3.7972
OTDA 0.515 1.04 1.622 2.276 2.978 3.824 4.488
JCPOT 0.31 1.079 1.766 2.285 3.296 4.38 4.722

Table 1: Running times (in seconds) of all baselines considered in the main paper.

3.3 Sensitivity to hyper-parameters

Figures 1a and 1b illustrate the classification results obtained by JCPOT when varying the regularization parameter
λ and the overall size of source samples in source domains, respectively in a setting with 4 source and 1 target
domains. In the latter scenario, we vary the sample size by increasing it by 500 for the source domains (125
instances per domain) and by 200 for the target domain. From these figures, we observe that higher values of
λ can lead to a decrease in the performance of our algorithm, while the source domains’ sample size does not
appear to have a high influence on the results.



(a) (b)

Figure 1: Performances of JCPOT obtained when varying (a) the regularization parameter λ; (b) the size of
source and target domains samples.
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