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A Supplementary material for
Sections 3-4

A.1 Proof of Remark 1

Since f is monotone, f(x + kei) ≥ f(x) and f(kei) ≥
f(0) for any x ∈ Z, i ∈ [n], and k ∈ R+. Hence,

α(Z) ≤ 1. Moreover, infx∈Z
i∈[n]

limk→0+
f(x+kei)−f(x)
f(kei)−f(0) ≤

1, since the considered ratio equals 1 when x = 0.
Hence, α(Z) ≥ 0.

A.2 Proof of Remark 2

The proof is obtained simply noting that the curvar-
ture α(S̃) of γ is always upper bounded by 1.

A.3 Proof of Proposition 1

We first show that the budget allocation game of Ex-
ample 1 is a valid utility game with continuous strate-
gies. In fact, for any l ∈ [Nd]

[∇γ(s)]l =
∑

t∈T :m∈Γ(t)

− ln(1−pj(m, t))
N∏
i=1

(1−Pi(si, t)) ,

where j ∈ [N ] and m ∈ [d] are the indexes of
advertiser and channel corresponding to coordinate
l ∈ [Nd], respectively. Hence, γ is monotone since
[∇γ(s)]l ≥ 0 for any l ∈ [Nd] and s ∈ RNd+ . More-
over, γ is DR-submodular since γ(s) =

∑
t∈T γt(s)

where γt(s) = 1 −
∏N
i=1(1 − Pi(si, t)) is such that

for any j, l ∈ [N ],m, n ∈ [d], ∂2γt(s)
∂[sj ]m∂[sl]n

= − ln(1 −
pj(m, t) ln(1− pl(n, t))

∏N
i=1(1− Pi(si, t)) ≤ 0 for any

s ∈ RNd+ . Finally, condition ii) can be verified equiva-
lently as in [23, Proof of Proposition 5] and condition
iii) holds with equality.

The set S̃ := {x ∈ RNd+ | 0 ≤ x ≤ smax} with smax =
2(s̄1, . . . , s̄N ) is such that s + s′ ≤ smax for any pair
s, s′ ∈ S. Moreover, using the expression of ∇γ(s),
the curvature of γ with respect to S̃ is

1− α(S̃) = inf s∈S̃
l∈[Nd]

[∇γ(s)]l
[∇γ(0)]l

=

min
i∈[N ],r∈[d]

∑
t∈T :r∈Γ(t)

ln(1− pi(r, t))
∏

j∈[N ]

(1− Pj(2s̄j , t))∑
t∈T :r∈Γ(t)

ln(1− pi(r, t))

=: 1− α > 0.

Hence, using Theorem 1 we conclude that PoACCE ≤
1 + α.

A.4 Proof of Fact 1

Condition i) holds since γ is monotone DR-submodular
by definition. Also, condition ii) holds with equal-
ity. Moreover, defining (with abuse of notation) [s]i1 =
(s1, . . . , si,0, . . . ,0) for i ∈ [N ] with [s]01 = 0, con-
dition iii) holds since by DR-submodularity one can

verify that
∑N
i=1 π̂i(s) =

∑N
i=1 γ(s) − γ(0, s−i) ≤

γ([s]i1)− γ([s]i−1
1 ) = γ(x)− γ(0) = γ(x).

A.5 Proof of Corollary 1

By definition of α, and according to Theorem 1, Ĝ
is such that PoACCE ≤ (1 + α). In other words,
letting s? = arg maxs∈S γ(s), any CCE σ of Ĝ sat-
isfies Es∼σ[γ(s)] ≥ 1/(1 + α)γ(s?). Moreover, since
players simultaneously use no-regret algorithms D-
noRegret converges to one of such CCE [15, 28].
Hence, the statement of the remark follows.

A.6 Proof of Proposition 2

Consider the sensor coverage problem with continuous
assignments defined in Example 2. We first show that
γ is a monotone DR-submodular function. In fact,
for any i ∈ [Nd], [∇γ(x)]i = − ln(1 − pml )

∏
i∈[N ](1 −

pmi )[xi]m ≥ 0, where l and m and the indexes of sen-
sor and location corresponding to coordinate i, re-
spectively. Moreover, for any pair of sensors j, l ∈
[N ], ∂2γ(x)

∂[xj ]m∂[xl]n
= − ln(1− pmj ) ln(1− pnl )

∏
i∈[N ](1−

pmi )[xi]m ≤ 0 if m = n, and 0 otherwise. The problem

of maximizing γ subject to X =
∏N
i=1 Xi, hence, is

one of maximizing a monotone DR-submodular func-
tion subject to decoupled constraints discussed in Sec-
tion 3.2. Thus, as outlined in Section 3.2, we can set-
up a valid utility game Ĝ.

The vector xmax = 2x̄ = 2(x̄1, . . . , x̄N ) is such that
∀x,x′ ∈ X , x + x′ ≤ xmax. Moreover, defining X̃ :=
{x ∈ RNd+ | 0 ≤ x ≤ xmax}, the curvature of γ with

respect to X̃ , satisfies α(X̃ ) = 1− inf x∈X̃
l∈[Nd]

[∇γ(x)]l
[∇γ(0)]l

=

1 − minr∈[d]

∏
i∈[N ](1 − pri )2x̄i = maxr∈[d] P (r, 2x̄) =

α. Hence, by Corollary 1, any no-regret distributed
algorithm has expected approximation ratio of 1/(1 +
α). In addition, γ is also concave in each Xi, since
the (d × d) blocks on the diagonal of its Hessian are
diagonal and negative, hence online gradient ascent
ensures no-regret for each player [12] and can be run
in a distributed manner.

A.7 Equivalent characterizations of DR
properties

To prove the main results of the paper, the following
two propositions provide equivalent characterizations
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of weak DR and DR properties, respectively4.

Proposition 4. A function f : X ⊆ Rn → R is weakly
DR-submodular (Definition 4) if and only if for all x ≤
y ∈ X , ∀z ∈ Rn+ s.t. (x + z) and (y + z) are in X ,
with zi = 0 ∀i ∈ [n] : yi > xi,

f(x + z)− f(x) ≥ f(y + z)− f(y) .

Proof. (property of Proposition 4 → weak DR)
We want to prove that for all x ≤ y ∈ X , ∀i s.t.
xi = yi, ∀k ∈ R+ s.t. (x + kei) and (y + kei) are in
X ,

f(x + kei)− f(x) ≥ f(y + kei)− f(y) .

This is trivially done choosing z = kei. Note that z is
such that zi = 0,∀i ∈ {i|yi > xi}, so the property of
Proposition 4 can indeed be applied.

(weak DR → property of Proposition 4)
For all x ≤ y ∈ X , ∀z ∈ Rn+ s.t. (x + z) and (y + z)
are in X , with zi = 0 ∀i ∈ [n] : yi > xi, we have

f(x + z)− f(x) =

n∑
i=1

f(x + [z]i1)− f(x + [z]i−1
1 )

=
∑

i:xi=yi

f(x + [z]i−1
1 + ziei)− f(x + [z]i−1

1 )

≥
∑

i:xi=yi

f(y + [z]i−1
1 + ziei)− f(y + [z]i−1

1 )

=

n∑
i=1

f(y + [z]i1)− f(y + [z]i−1
1 )

= f(y + z)− f(y) .

The first equality is obtained from a telescoping sum,
the second equality follows since when yi > xi, zi = 0.
The inequality follows from weak DR property of f and
the last two equalities are similar to the first two.

Proposition 5. A function f : X ⊆ Rn → R is DR-
submodular (Definition 1) if and only if for all x ≤ y ∈
X , ∀z ∈ Rn+ s.t. (x + z) and (y + z) are in X ,

f(x + z)− f(x) ≥ f(y + z)− f(y) .

Proof. (property of Proposition 5 → DR)
We want to prove that for all x ≤ y ∈ X , ∀i ∈ [n],
∀k ∈ R+ s.t. (x + kei) and (y + kei) are in X ,

f(x + kei)− f(x) ≥ f(y + kei)− f(y) .

This is trivially done choosing z = kei and applying
the property of Proposition 5.

4The introduced properties are the continuous versions
of the ‘group DR property’[5] of submodular set functions.

(DR → property of Proposition 5)
For all x ≤ y ∈ X , ∀z ∈ Rn+ s.t. (x + z) and (y + z)
are in X , we have

f(x + z)− f(x) =

n∑
i=1

f(x + [z]i1)− f(x + [z]i−1
1 )

=

n∑
i=1

f(x + [z]i−1
1 + ziei)− f(x + [z]i−1

1 )

≥
n∑
i=1

f(y + [z]i−1
1 + ziei)− f(y + [z]i−1

1 )

=

n∑
i=1

f(y + [z]i1)− f(y + [z]i−1
1 )

= f(y + z)− f(y) .

The first and last equalities are telescoping sums and
the inequality follows from the DR property of f .

A.8 Properties of (twice) differentiable
submodular functions

As mentioned in Section 4, submodular continuous
functions are defined on subsets of Rn of the form
X =

∏n
i=1 Xi, where each Xi is a compact subset of

R. From the weak DR property (Definition 4) it fol-
lows that, when f is differentiable, it is submodular
iff

∀x,y ∈ X : x ≤ y,∀i s.t. xi = yi, ∇if(x) ≥ ∇if(y) .

That is, the gradient of f is a weak antitone mapping
from Rn to Rn.

Moreover, we saw that a function f : X → R is sub-
modular iff for all x ∈ X , ∀i 6= j and ai, aj > 0 s.t.
xi + ai ∈ Xi, xj + aj ∈ Xj , we have [1]

f(x +aiei)− f(x) ≥ f(x +aiei +ajej)− f(x +ajej) .

As visible from the latter condition, when f is twice-
differentiable, it is submodular iff all the off-diagonal
entries of its Hessian are non-positive [1]:

∀x ∈ X ,
∂2f(x)

∂xi∂xj
≤ 0, ∀i 6= j .

Hence, the class of submodular continuous functions
contains a subset of both convex and concave func-
tions.

Similarly, from the DR property (Definition 1) it fol-
lows that for a differentiable continuous function DR-
submodularity is equivalent to

∀x ≤ y,∇f(x) ≥ ∇f(y) .

That is, the gradient of f is an antitone mapping from
Rn to Rn. More precisely, [4, Proposition 2] showed
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that a function f is DR-submodular iff it is submodu-
lar (weakly DR-submodular) and coordinate-wise con-
cave. A function f : X → R is coordinate-wise concave
if, for all x ∈ X , ∀i ∈ [n],∀k, l ∈ R+ s.t. (x + kei),
(x + lei), and (x + (k + l)ei) are in X , we have

f(x + kei)− f(x) ≥ f(x + (k + l)ei)− f(x + lei) ,

or equivalently, if twice differentiable, ∂2f(x)
∂x2
i
≤ 0

∀i ∈ [n]. Hence, as stated in Section 3, a twice-
differentiable function is DR-submodular iff all the en-
tries of its Hessian are non-positive:

∀x ∈ X ,
∂2f(x)

∂xi∂xj
≤ 0, ∀i, j .

A.9 Proof of Proposition 3

By Definition 2, the curvature α(Z) of f w.r.t. Z
satisfies

f(x + kei)− f(x) ≥ (1− α(Z))[f(kei)− f(0)] , (1)

for any x ∈ Z, i ∈ [n] s.t. x + kei ∈ Z with k → 0+.
We firstly show that condition (1) indeed holds for any
x ∈ Z, i ∈ [n], and k ∈ R+ s.t. x + kei ∈ Z, by us-
ing monotonicity and coordinate-wise concavity of f .
As seen in Appendix A.8, DR-submodularity implies
coordinate-wise concavity. To this end, we define

αki (Z) = 1− inf
x∈Z:

x+kei∈Z

f(x + kei)− f(x)

f(kei)− f(0)
.

Hence, it sufficies to prove that, for any i ∈ [n],
αki (Z) is non-increasing in k. Note that by DR-
submodularity,

αki (Z) = 1− f(zmax)− f(zmax − kei)
f(kei)− f(0)

.

Hence, for any pair l,m ∈ R+ with l < m, αmi (Z) ≥
αli(Z) is true whenever

f(zmax)− f(zmax −mei)

f(mei)− f(0)
≥ f(zmax)− f(zmax − lei)

f(lei)− f(0)
.

The last inequality is satisfied since, by coordinate-
wise concavity, [f(zmax) − f(zmax − mei)]/m ≥
[f(zmax)− f(zmax − lei)]/l and [f(mei)− f(0)]/m ≤
[f(lei) − f(0)]/l. This is because, given a concave
function g : R → R, the quantity

R(x1, x2) :=
g(x2)− g(x1)

x2 − x1

is non-increasing in x1 for fixed x2, and vice versa.
Moreover, monotonicity ensures that all of the above
ratios are non-negative.

To conclude the proof of Proposition 3 we show that if
condition (1) holds for any x ∈ Z, i ∈ [n], and k ∈ R+

s.t. x + kei ∈ Z, then the result of the proposition
follows. Indeed, for any x,y s.t. x + y ∈ Z we have

f(x + y)− f(x) =

n∑
i=1

f(x + [y]i1)− f(x + [y]i−1
1 )

=

n∑
i=1

f(x + [y]i−1
1 + yiei)− f(x + [y]i−1

1 )

≥ (1− α(Z))

n∑
i=1

f(yiei)− f(0)

≥ (1− α(Z))

n∑
i=1

f([y]i1)− f([y]i−1
1 )

= (1− α(Z))(f(y)− f(0)) ,

where the first inequality follows by condition (1) and
the second one from f being weakly DR-submodular
(and using Proposition 4).
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B Supplementary material for
Section 5

In the first part of this appendix we generalize the
submodularity ratio defined in [11] for set functions to
continuous domains and discuss its main properties.
We compare it to the ratio by [16] and we relate it to
the generalized submodularity ratio defined in Defini-
tion 5. Then, we provide a class of social functions
with generalized submodularity ratio 0 < η < 1 and
we report the proof of Theorem 2. Finally, we analyze
the sensor coverage problem with the non-submodular
objective defined in Section 5.

B.1 Submodularity ratio of a monotone
function on continuous domains

We generalize the class of submodular continuous func-
tions, defining the submodularity ratio η ∈ [0, 1] of a
monotone function defined on a continuous domain.

Definition 7 (submodularity ratio). The submodu-
larity ratio of a monotone function f : X ⊆ Rn+ → R
is the largest scalar η such that for all x,y ∈ X such
that x + y ∈ X ,

n∑
i=1

[
f(x + yiei)− f(x)

]
≥ η

[
f(x + y)− f(x)

]
.

It is straightforward to show that η ∈ [0, 1] and, when
restricted to binary sets X = {0, 1}n, Definition 7 co-
incides with the submodularity ratio defined in [11]
for set functions. A set function is submodular iff it
has submodularity ratio η = 1 [11]. However, func-
tions with submodularity ratio 0 < η < 1 still preserve
‘nice’ properties in term of maximization guarantees.
Similarly to [11], we can affirm the following.

Proposition 6. A function f : X ⊆ Rn+ → R is
weakly DR-submodular (Definition 4) iff it has sub-
modularity ratio η = 1.

Proof. If f is weakly DR-submodular (Definition 4),
then for any x,y ∈ X ,

d∑
i=1

f(x + yiei)− f(x)

≥
d∑
i=1

f(x + [y]i1)− f(x + [y]i−1
1 ) = f(x + y)− f(x).

Assume now f has submodularity ratio η = 1. We
prove that f is weakly DR-submodular by proving that
it is submodular. Hence, we want to prove that for all
x ∈ X , ∀i 6= j and ai, aj > 0 s.t. xi + ai ∈ Xi,

xj + aj ∈ Xj ,

f(x + aiei)−f(x) ≥ (2)

f(x + aiei + ajej)− f(x + ajej) .

Consider y = aiei + ajej ∈ X . Since f has submodu-
larity ratio η = 1, we have

f(x + aiei)− f(x) + f(x + ajej)− f(x)

≥ f(x + aiei + ajej)− f(x) ,

which is equivalent to the submodularity condition (2).

An example of functions with submodularity ratio
η > 0 is the product between an affine and a weakly
DR-submodular function, as stated in the following
proposition.

Proposition 7. Let f, ρ : X ⊆ Rn+ → R+ be two
monotone functions, with f weakly DR-submodular,
and g affine such that ρ(x) = a>x + b with a ≥ 0
and b > 0. Then, provided that X is bounded, the
product g(x) := f(x)ρ(x) has submodularity ratio η =
infi∈[n],x∈X

b
b+

∑
j 6=i ajxj

> 0.

Proof. Note that since ρ is affine, for any x,y ∈ X
we have that g(x + y) − g(x) = f(x + y)ρ(x + y) −
f(x)ρ(x) = ρ(x + y)[f(x + y) − f(x)] + f(x) (a>y).
For any pair x,y ∈ X we have:

n∑
i=1

[
g(x + yiei)− g(x)

]
=

n∑
i=1

ρ(x + yiei)[f(x + yiei)− f(x)] + f(x) (yia
>ei)

≥ min
i∈[n]

ρ(x + yiei)

n∑
i=1

f(x + yiei)− f(x) + f(x) (a>y)

≥
mini∈[n] ρ(x + yiei)

ρ(x + y)︸ ︷︷ ︸
:=η(x,y)

(
ρ(x + y)[f(x + y)− f(x)]

+ f(x) (a>y)
)

= η(x,y) [g(x + y)− g(x)] .

The first inequality follows since ρ is affine non-
negative and f is non-negative. The second inequality
is due to f being weakly DR-submodular (f has sub-
modularity ratio η = 1) and 0 < η(x,y) ≤ 1, which
holds because b > 0 and a ≥ 0. Hence, it follows that
γ has submodularity ratio

η := inf
x,y∈X :
x+y∈X

η(x,y) = inf
i∈[n],y∈X

b

b+
∑
j 6=i ajyj

> 0 .
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B.1.1 Related notion by [16]

A generalization of submodular continuous functions
was also provided in [16] together with provable max-
imization guarantees. However, it has different impli-
cations than the submodularity ratio defined above.
In fact, [16] considered the class of differentiable func-
tions f : X ⊆ Rn+ → R with parameter η defined as

η = inf
x,y∈X ,x≤y

inf
i∈[n]

[∇f(x)]i
[∇f(y)]i

.

For monotone functions η ∈ [0, 1], and a differentiable
function is DR-submodular iff η = 1 [16]. Note that
the parameter η of [16] generalizes the DR property
of f , while our submodularity ratio η generalizes the
weak DR property.

B.2 Relations with the generalized
submodularity ratio of Definition 5

In Proposition 6 we saw that submodularity ratio
η = 1 is a necessary and sufficient condition for weak
DR-submodularity. In contrast, a generalized subm-
doularity ratio (Definition 5) η = 1 is only necessary
for the social function γ to be weakly DR-submodular.
This is stated in the following proposition. For non
submodular γ, no relation can be established between
submodularity ratio of Definition 7 and generalized
submodularity ratio of Definition 5.

Proposition 8. Given a game G =
(N, {Si}Ni=1, {πi}Ni=1, γ). If γ is weakly DR-
submodular, then γ has generalized submodularity
ratio η = 1.

Proof. Consider any pair of outcomes s, s′ ∈ S. For
i ∈ {0, . . . , N}, with abuse of notation we define
[s′]i1 := (s′1, . . . , s

′
i,0, . . . ,0) with [s′]01 = 0. We have,

N∑
i=1

γ(si + s′i, s−i)− γ(s)

≥
N∑
i=1

γ(s + [s′]i1)− γ(s + [s′]i−1
1 )

= γ(s + s′)− γ(s) ,

where the inequality follows since γ is weakly DR-
submodular and the equality is a telescoping sum.

Similarly to Proposition 7 in the previous section, in
the following proposition we show that social functions
γ defined as product of weakly DR-submodular func-
tions and affine functions have generalized submodu-
larity ratio η > 0.

Proposition 9. Given a game G =
(N, {Si}Ni=1, {πi}Ni=1, γ). Let γ be defined as
γ(s) := f(x)ρ(x) with f, ρ : RNd+ → R+ be
two monotone functions, with f weakly DR-
submodular, and g affine such that ρ(x) = a>x + b
with a = (a1, . . . ,aN ) ≥ 0 and b > 0.
Then, γ has generalized submodularity ratio
η = infi∈[N ],s∈S

b
b+

∑
j 6=i a

>
j sj

> 0.

Proof. The proof is equivalent to the proof of Propo-
sition 7, with the only difference that s′i belong to Rd+
instead of R+.

Note that for the game considered in the pre-
vious proposition, using Proposition 7 one could
also affirm that γ has submodularity ratio η =
infi∈[Nd],s∈S

b
b+

∑
j 6=i[a]j [s]j

> 0 which, unless d = 1,

is strictly smaller than its generalized submodularity
ratio.

B.3 Proof of Theorem 2

The proof is equivalent to the proof of Theorem 1,
with the only difference that here we prove that G is a
(η, η)-smooth game in the framework of [28]. Then, it
follows that PoACCE ≤ (1 + η)/η.

For the smoothness proof, consider any pair of out-
comes s, s? ∈ S. We have:

N∑
i=1

πi(s
?
i , s−i) ≥

N∑
i=1

γ(s?i , s−i)− γ(0, s−i)

≥
N∑
i=1

γ(s?i + si, s−i)− γ(s)

= η γ(s + s?)− η γ(s) .

The first inequality is due to condition ii) of Defini-
tion 3. The second inequality follows since γ is player-
wise DR-submodular (applying Proposition 5 for each
player i) and the second inequality from γ having gen-
eralized submodularity ratio η.

B.4 Analysis of the sensor coverage problem
with non-submodular objective

We analyze the sensor coverage problem with
non-submodular objective defined in Section 5,
where γ(x) =

∑
r∈[d] wr(x) P (r,x) with wr(x) =

ar
∑N
i=1[xi]r
N + br. Note that by Proposition 9, the

function γr(x) := wr(x) P (r,x) has generalized sub-
modularity ratio η > 0, hence it is not hard to show
that γ(x) =

∑
r∈[d] γr(x) shares the same property.

Moreover, there exist parameters ar, br for which γ is
not submodular. Interestingly, γ is convave in each Xi.
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In fact, γr’s are concave in each Xi since P (r,x)’s are
concave in each Xi and wr’s are positive affine func-
tions. Moreover, γ is playerwise DR-submodular since
the (d × d) blocks on the diagonal of its Hessian are
diagonal (and their entries are non-positive, by con-
cavity of γ in each Xi).

To maximize γ, as outlined in Section 3.2, we can set
up a game G = (N, {Si}Ni=1, {πi}Ni=1, γ) where for each
player i, Si = Xi, and πi(s) = γ(s) − γ(0, s−i) for
every outcome s ∈ S = X . Hence, condition ii) of
Definition 3 is satisfied with equality. Following the
proof of Theorem 2, we have that:

N∑
i=1

πi(s
?
i , s−i) ≥ η γ(s + s?)− η γ(s)

In order to bound PoACCE , the last proof steps of
Section 4.2 still ought to be used. Such steps rely
on condition iii), which in Section 3.2 was proved us-
ing submodularity of γ. Although γ is not submodu-
lar, we prove a weaker version of condition iii) as fol-
lows. By definition of γr and for every outcome x we
have

∑N
i=1 γr(s) − γr(0, s−i) =

∑N
i=1 wr(x)[P (r, s) −

P (r, (0, s−i))] + [wr(si,0) − wr(0)]P (r, (0, s−i)) ≤
wr(x)P (r, s) + P (r, s)

∑N
i=1[wr(si,0) − wr(0)] = (1 +

wr(x)−wr(0)
wr(x) )γr(x) ≤ 2γr(x). The equalities are due to

wr being affine, the first inequality is due to P (r, ·) be-
ing submodular and monotone, and the last inequal-
ity holds since wr is positive and monotone. Hence,
from the inequalities above we have

∑N
i=1 πi(x) =∑N

i=1 γ(x) − γ(0,x−i) ≤ 2γ(x). Note that a tighter
condition can also be derived depending on the func-

tions wr’s, using (1 + maxx∈X ,r∈[d]
wr(x)−wr(0)

wr(x) ) in

place of 2. We will now use such condition in the
same manner condition iii) was used in Section 4.2.
Let s? = arg maxs∈S γ(s). Then, for any CCE σ of G
we have

Es∼σ[γ(s)] ≥ 1

2

N∑
i=1

Es∼σ[πi(s)] ≥ 1

2

N∑
i=1

Es∼σ[πi(s
?
i , s−i)]

≥ η

2
γ(s?)− η

2
Es∼σ[γ(s)] .

Hence, PoACCE ≤ (1 + 0.5η)/0.5η.


