
Adaptive MCMC via Combining Local Samplers

Kiarash Shaloudegi1 András György2,1

1Imperial College London 2DeepMind

Abstract

Markov chain Monte Carlo (MCMC) meth-
ods are widely used in machine learning. One
of the major problems with MCMC is the
question of how to design chains that mix
fast over the whole state space; in particular,
how to select the parameters of an MCMC
algorithm. Here we take a different approach
and, similarly to parallel MCMC methods,
instead of trying to find a single chain that
samples from the whole distribution, we com-
bine samples from several chains run in par-
allel, each exploring only parts of the state
space (e.g., a few modes only). The chains
are prioritized based on the kernel Stein dis-
crepancy, which provides a good measure of
performance locally. The samples from the in-
dependent chains are combined using a novel
technique for estimating the probability of
different regions of the sample space. Experi-
mental results demonstrate that the proposed
algorithm may provide significant speedups
in different sampling problems. Most im-
portantly, when combined with the state-of-
the-art NUTS algorithm as the base MCMC
sampler, our method remained competitive
with NUTS on sampling from unimodal dis-
tributions, while significantly outperformed
state-of-the-art competitors on synthetic mul-
timodal problems as well as on a challenging
sensor localization task.

1 Introduction

We consider the problem of computing expectations
EP [f(X)] =

∫
X f(x)p(x)dx for some complicated tar-

get distribution P with density p over a set X ⊂ Rd and
a target function f : X → R. Such expectations often

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

arise in Bayesian inference and maximum likelihood
estimation (Andrieu et al., 2003; Brooks et al., 2011).
Oftentimes, p has a closed form, but it is only known up
to a normalization constant, making the computation
of the integral especially challenging (Andrieu et al.,
2003). Markov chain Monte Carlo (MCMC) methods
are a family of numerical estimation methods, which
are successfully applied to estimate the aforementioned
expectations, especially in high-dimensional problems.
MCMC algorithms take random samples from an er-
godic Markov chain with stationary distribution P ,
and approximate the expectation via averaging over
the produced sample.

The challenging problem in designing MCMC meth-
ods is to ensure that the distribution of the samples
converge to P fast, and, in practice, some domain spe-
cific knowledge has to be used in the design of their
proposal distributions to achieve fast convergence (An-
drieu et al., 2003). This need for specialized design led
to the development of dozens of methods for each prob-
lem, each of which has their own tunable parameters
(Neufeld et al., 2014). Consequently, choosing the right
method with corresponding parameters to achieve fast
convergence is quite difficult and requires considerable
time and effort.

A large body of work has been devoted in the literature
to address this difficulty and to find ways to set the
algorithms’ parameters optimally; for instance, optimal
tuning of the Metropolis-Hasting algorithm Roberts &
Rosenthal, 2001; Bédard, 2008; Roberts et al., 1997;
Atchadé et al., 2011; Brooks et al., 2011, Chapter
4). The problem with this line of research is that the
solutions rely on some Markov chain parameters that
are typically unknown (Łatuszyński et al., 2013).

A more promising line of research to address the param-
eter setting issue is based on adaptive MCMC methods.
In this framework, the MCMC samples are used to
learn about the target distribution, and the algorithms
adjust their parameters as they progresses (Łatuszyński
et al., 2013). To do so, they rely on optimizing some
objective functions such as expected squared jumping
distance (Pasarica & Gelman, 2010; Wang et al., 2013),
the area under the autocorrelation function up to some

Adaptive MCMC via Combining Local Samplers

specific lag (Mahendran et al., 2012), the difference
between the proposal covariance matrix and its empir-
ical estimation (Haario et al., 2001, 2006; Sejdinovic
et al., 2014; Mbalawata et al., 2015), or the difference
between the optimal acceptance rate (in practice, a
recommendation thereof) and its empirical estimate
(Yang & Rosenthal, 2017). Perhaps the most success-
ful adaptive method for finding the optimal step size
in Hamiltonian Monte Carlo (HMC), called no-U-turn
sampler (NUTS), is based on monitoring when the sam-
ple trajectories “turn back”, and the resulting algorithm
provides state-of-the-art performance in a number of
problems Hoffman & Gelman (2014). For more details
about adaptive MCMC methods, the reader is referred
to the tutorial paper of Andrieu & Thoms (2008).

In practice, making sure that a sampler can move
between distant modes cannot be guaranteed by the
aforementioned adaptive methods (in general, we are
interested in “high-probability” regions not modes, but,
for simplicity and following the standard language of
MCMC literature, we will often refer to modes through-
out the paper). There are two main approaches to deal
with distant modes: (i) running parallel chains and
combining their final samples; and (ii) sampling from
powers of the target function (the inverse power is re-
ferred to as temperature), known as annealing. Indeed,
in the literature, there are several successful methods
based on combining these two ideas, such as parallel
tempering (Earl & Deem, 2005) and (annealed) sequen-
tial Monte Carlo samplers, also known as particle filters
(Doucet et al., 2001; Moral et al., 2006). The core idea
of these methods and their variants is to run several
chains with different temperatures and periodically ex-
change information between them. An alternative to
parallelization is the idea of regeneration (Mykland
et al., 1995; Ahn et al., 2013). Regeneration partitions
a long Markov chain into smaller independent segments
such that the samples are unbiased in each segment,
hence can be combined together without any further
consideration. The process allows to combine sam-
ples from different samplers and tune the parameters
of a Markov chain after each regeneration. Although
theoretically elegant, the application of regeneration
methods is limited in practice since they require a
properly tuned distribution for detecting regenerations.

In this paper we combine the strengths of adaptive and
parallel MCMC methods. Instead of trying to find a
single sampler that approximates the target distribu-
tion well on its whole domain, we run several samplers
and select which sampler to use at any given time in a
sequential manner, based on all the samples obtained
before. Our main contributions are (i) adapting the
bandit-based adaptive Monte Carlo (MC)1 method of

1Throughout the paper, we refer to samplers taking

Neufeld et al. (2014) to MCMC; and (ii) a novel method
for combining samples from multiple chains. The result-
ing algorithm is suitable for sampling from challenging
multimodal distributions and is fairly insensitive to the
choice of its parameters. The next subsection gives a
more detailed overview of our approach and the corre-
sponding challenges.

1.1 Approach and challenges

In the simple case when all MCMC samplers mix well
over the whole domain, our goal is to use the best sam-
pler (which mixes the fastest) most of the time. This is
very similar to the case of choosing from several unbi-
ased MC samplers. For the latter, Neufeld et al. (2014)
showed that scheduling which samplers to use at any
point in time is equivalent to a stochastic multi-armed
bandit problem (Bubeck & Cesa-Bianchi, 2012). This
allows the straightforward application of bandit algo-
rithms to select which sampler to use to get the next
sample, and the decision depends on the overall perfor-
mance of the samplers so far, measured by the variance
for each sampler. Extending the same idea to the
MCMC case is not trivial, since measuring the quality
of MCMC samplers is a much harder task. In fact, until
recently, there has not been any empirical measure that
can monitor the sample convergence. Common MCMC
diagnostics such as effective sample size, trace and
mean plots, or asymptotic variance assume the chain
asymptotically converges to the target distribution, so
they cannot detect asymptotic bias (Gorham & Mackey,
2015). To address this issue, Gorham & Mackey (2015)
developed an empirical sample-quality measure that
can detect non-convergence (or bias) based on Stein’s
method. A kernelized version of this measure, called
kernel Stein discrepancy (KSD) was subsequently de-
veloped by Liu et al. (2016); Chwialkowski et al. (2016);
Gorham & Mackey (2017), which can be used to com-
pare the quality of different samplers. As our first
contribution, we extend the bandit-based racing method
of Neufeld et al. (2014) to MCMC samplers by using
the KSD as the loss function in the bandit algorithms.
This is described in detail in Section 3.1 while the
background on KSD is given in Section 2.

On the negative side, KSD is not able to detect un-
derfitting if the target distribution has well-separated
modes, so it cannot distinguish between two samplers
such that one samples only one mode while the other
samples both modes, and the samples are equally good
locally (Liu et al., 2016; Chwialkowski et al., 2016;
Gorham & Mackey, 2017). This brings us to the next
problem: namely, MCMC methods using a single chain
usually fail to explore the whole domain if the support
has reasonably high-probability regions separated by

unbiased, independent samples as MC methods.

Kiarash Shaloudegi, András György

low-probability regions (of course, such notion of sep-
aration depends on the actual sampler used). Setting
the parameters of the samplers to deal with this issue,
or simply detecting its presence, is hard, and to our
knowledge no practical solutions thereof are available.
To alleviate this problem, following the parallel MCMC
framework, we run several chains in parallel only ex-
pecting that they provide good samples locally. The
hope is that the multiple instances will explore the
space sufficiently, finding all the important regions of
the support. Then, in the end, we combine all the
samples (from all the samplers) to approximate the
target distribution. This is again challenging due to
two reasons: (i) it is not straightforward how the sam-
ples from different samplers should be weighted, and
(ii) we do not want to waste resources to run several
samplers exploring the same region of the domain. For
(ii), we apply our bandit-based racing method locally
(Section 3.2), while to address (i), we develop a method
to estimate the probability of the region a set of sam-
ples cover based on Rényi-entropy estimates (Pál et al.,
2010), and use these to weight the samples, which is
our second main contribution. This is described in
Section 3.3.

Our final sampling algorithm is put together in Sec-
tion 4. Lastly, in Section 5 we demonstrate through a
number of experiments that our method is competitive
with state-of-the-art adaptive MCMC methods, such
as the no-U-turn sampler NUTS (Hoffman & Gelman,
2014) or the recent sample reweighting method of Liu
& Lee (2016) on simpler cases when the distribution
is concentrated on a single “connected” region, while
significantly outperforming the competitors, includ-
ing parallel tampering and sequential MC, on more
challenging cases where high-probability regions are
separated with areas of low-probability, as well as on a
challenging sensor-localization problem.

Due to space constraints, some details are omitted,
and are only available in the long version of the paper
(Shaloudegi & György, 2018).

2 Measuring sample quality

As mentioned in Section 1.1, measuring the quality of
samples produced by an MCMC algorithm is crucial
in our approach. To this end we are going to use the
recently introduced kernel Stein discrepancy (KSD)
(Liu et al., 2016; Chwialkowski et al., 2016; Gorham &
Mackey, 2017).

Assume that the probability distribution Qn over Rd
is given by a weighted sample {(xi, qi)}i∈[n], where [n]

denotes {1, . . . , n}, xi ∈ Rd and Qn(xi) = qi ≥ 0 with∑
i∈[n] qi = 1. Let k : Rd × Rd → R be a positive

definite kernel and K its associated reproducing kernel

Hilbert space (RKHS) with inner product 〈·, ·〉. Then,
for x ∈ Rd, f ∈ K, and k(x, ·) ∈ K, we have f(x) =
〈f, k(x, ·)〉. Defining sp(x) , ∇ log p(x) and

kp(x, x
′) , sp(x)>k(x, x′)sp(x

′) + sp(x)>∇x′k(x, x′)

+ sp(x
′)>∇xk(x, x′) + trace(∇x∇x′k(x, x′)),

the kernel Stein discrepancy (Gorham & Mackey, 2015,
2017), which measures how well Qn approximates P ,
is defined as

S(Qn) =
√
EQn×Qn

[kp(Z,Z ′)] =
√
q>Kp,nq, (1)

where q = (q1, . . . , qn) and Kp,n = [kp(xi, xj)]i,j∈[n],
provided k(x, y) is twice differentiable and ∇x∇yk(x, y)
are continuous, both are uniformly bounded, and
EP [‖∇x log p(X)‖2] < ∞. Note that S(Qn) can be
computed with our information about p, since it only
depends on p through sp(x) = ∇ log p(x), which can-
cels the effect of the unknown normalization constant.
Also note that S(Qn) is a convex function of Qn.

It is known that under some conditions, such as for
unimodal distributions P with log-concave densities,
the KSD measure goes to 0 if and only if Qn con-
verges weakly to P . However, the discriminative power
of KSD weakens for multimodal distributions, partic-
ularly when the modes are well-separated: Gorham
et al. (2016) demonstrated that for a one-dimensional
Gaussian mixture target distribution (with two com-
ponents), for practical sample sizes, the KSD measure
fails to distinguish between two sets of samples, one
drawn independently from one mode and the other
drawn independently from the whole target distribu-
tion. Furthermore, KSD requires even more samples
to distinguish between the two cases as the modes’ dis-
tance increases (see Section 6.1 of Gorham et al., 2016
for more details). Another issue is that the complexity
of computing the KSD for an empirical distribution is
quadratic in the sample size, which quickly becomes
infeasible as the sample size grows.

3 Sequential selection of samplers

In this section we present several strategies to select
from a pool of MCMC samplers in a sequential manner.
In all of our algorithms, the selection of the sampler to
be used next depends on the quality of the samples gen-
erated by the different samplers, where the quality will
be measured by the KSD measure (or its approxima-
tions). Formally, assume we have access to M MCMC
samplers (e.g., multiple sampling methods and/or mul-
tiple instances of the same sampling algorithm with
different parameters, such as starting point or step
size), and denote the set of samplers by [M]. At every
step of the algorithm, we select one of the samplers
and use it to produce the next batch of samples.

Adaptive MCMC via Combining Local Samplers

3.1 Mixing samplers

First we consider the case when each sampler is asymp-
totically unbiased, that is, generates samples with an
empirical distribution converging weakly to the target
distribution P (this is usually satisfied for any stan-
dard MCMC sampler when P is unimodal). Our task
is to sequentially allocate calls among the M samplers
to minimize the KSD measure of the set of samples
we collect. The goal is to design an algorithm which
gives preference to samplers where the convergence is
faster. This setup is similar to the one considered by
Neufeld et al. (2014), who designed sequential sam-
pling strategies for MC samplers generating indepen-
dent and identically distributed (i.i.d.) samples, based
on multi-armed bandit algorithms (Bubeck & Cesa-
Bianchi, 2012). In this section we generalize their
method to MCMC samplers. Our overall goal is to
produce samples such that the total KSD measure (cf.
Eq. 1) of the samples is small. However, computing
the KSD measure is quadratic in the sample size, and
so it becomes computationally infeasible even for rela-
tively small sample sizes—note that any computation
we spend on selecting samplers could also be used for
sampling. Therefore, we are going to approximate the
KSD measure as the average KSD over smaller blocks
of samples.

For a sampler with total sampling budget n, we break
the sampling process into T rounds: At each round
the sampler takes a batch of samples of size nb. Let
St be the KSD measure of samples from the tth round;
we approximate S̃n, the KSD of the full sample of
size n with the average (1/T)

∑T
t=1 St. We call this

the block-diagonal approximation, as it corresponds
to a block-diagonal approximation of the kernel ma-
trix Kp,n in computing (1). To quantify the accuracy
of the approximation, we assume that there exists a
function g(t, nb) such that limnb

t →∞
g(t, nb) = 0 and

1
t

∑t
b=1 E[Sb] − E[S̃tnb

] ≤ g(t, nb). Using the block-
diagonal approximation, our goal is to compete with a
sampler with the smallest average approximate block-
KSD measure (1/T)

∑T
t=1 Si,t, where Si,t is the KSD

measure of the nb samples generated by sampler i
when it is called the tth time. Experimental results
(presented in Section 5.1 of Shaloudegi & György, 2018)
indicate that the block-diagonal approximation mostly
preserves the ranking of the samplers (as defined by
the true KSD measure), hence we pay very little price
for the computational advantage we get.

Furthermore, solving this problem is well-suited for any
bandit algorithm; here we adapt the UCB1 method
of Auer et al. (2002). The resulting algorithm, which
we call KSD-UCB1, keeps track of an optimistic esti-
mate of the average approximate KSD value for each
sampler, and every time selects a sampler whose perfor-

mance is estimated to be the best possible (with high
probability). More precisely, every time a sampler is
selected, it is used to generate nb samples. For each
block of such samples the algorithm computes the KSD
measure, and for each sampler i ∈ [M] keeps track of
the average KSD measure µ̄i,t = (1/Ti(t))

∑Ti(t)
s=1 Si,s

where Ti(t) denotes the number of times sampler i is
selected during the first t− 1 choices. In the first M
steps, each sampler is selected once to produce nb sam-
ples. Then, in the (t + 1)st step (with t + 1 > M),
the sampler minimizing µ̄i,t −

√
2 log t/Ti(t) (a high-

probability lower bound on the KSD approximation)
is selected to produce the next block of samples.2

If the KSD values Si,1, . . . , Si,T were i.i.d., the stan-
dard bandit regret bound (Bubeck & Cesa-Bianchi,
2012) would yield

∑T
t=1 E[St]−mini∈[M]

∑T
t=1 E[Si,t] =

O(log T). In this case the convexity of the KSD mea-
sure would imply that after T rounds of sampling,

E[S̃Tnb
]−min

i
E[S̃i,Tnb

]

≤ 1

T

T∑
t=1

E[St]− min
i∈[M]

T∑
t=1

E[Si,t] + g(T, nb)

≈ O(log T)

T
+ g(T, nb) .

This shows that increasing T and nb, the performance of
KSD-UCB1 would be close to that of the best sampler.
However, in our case, the Si,t are not i.i.d. Assuming
that the samplers mix (which is reasonable for a single
mode distribution), the Si,t are getting closer and closer
to be sampled i.i.d. as nb increases. Also, as mentioned
above, the effect of the block-diagonal approximation
(and hence that of g(T, nb)) is small in practice.

3.2 Locally mixing samplers

In practice, if the target distribution is multimodal and
the modes are far from each other, MCMC methods
often get stuck in some of the modes and fail to explore
all the regions where P is supported; while eventually
all asymptotically consistent methods reach each mode,
this may not happen after any practically reasonable
time. To model this situation, we assume that the
support of P is partitioned into sets A1, . . . , AK with
P (Aj) > 0 for all j ∈ [K] (the Aj are pairwise dis-
joint and their union is the support of P) such that
the empirical distribution of the samples generated by
sampler i ∈ [M] converges weakly to P (·|Aj) for some
j ∈ [K], where P (·|A) is the conditional distribution
of P over A. We refer to the sets Aj as regions, and a

2The algorithm assumes that Si,t ∈ [0, 1], which can be
achieved by rescaling the KSD measures. In practice, a
reasonable estimate for the range can be obtained from Si,1

for each sampler i.

Kiarash Shaloudegi, András György

sampler satisfying the above condition a locally mixing
sampler.

For simplicity we first consider the case where there
is one sampler in each region (consequently M = K).
This setup is similar to stratified sampling: The idea is
to partition the domain into non-overlapping regions
(a.k.a. strata), draw samples from each region, and com-
bine the final samples to estimate EP [f(X)] (Owen,
2013). The problem in stratified sampling is to find the
optimal number of samples that need to be taken from
each stratum in order to minimize the Monte Carlo inte-
gration error. Given the total number of samples n, the
optimal strategy for minimizing the mean squared error
(MSE) is to sample each stratum ni = σiP (Ai)∑K

i=1 σiP (Ai)
n

times (relaxing the integrality constraints), where σi is
the conditional standard deviation of f(X) given that
X falls into the ith region (Carpentier et al., 2015).

One can immediately see that the problem we consider
in this subsection is very similar to stratified sampling,
with the important differences that our samplers are
not i.i.d., and we do not minimize the squared error
but the KSD measure. Denoting the distribution of
samples from region Ai by Qn,i after taking n samples
in total, let wi denote the weight of sampler i generating
these samples (recall that here, by assumption, we have
one sampler in each region). Then our total weighted
sample distribution becomes

Qn =
∑M
i=1 wiQn,i. (2)

Since according to our assumptions, Qn,i converges
weakly to PAi

for every i, we need to have wi → P (Ai)
for all i ∈ [M] to ensure that Qn converges to P weakly
(we will refer to this as the wi being asymptotically
consistent). A procedure for estimating wi this way will
be given in the next section. Assuming for a moment
that wi = P (Ai), using the convexity of the KSD
measure, we have

S̃n = S(Qn) ≤
M∑
i=1

wiS(Qn,i) =

M∑
i=1

wiS̃i,ni
, (3)

where, as before, S̃n and S̃i,ni
denote the KSD mea-

sures of the whole sample and, resp., that of sampler
i (with number of samples ni obtained by sampler i).
Based on this inequality, we could aim for minimizing∑M
i=1 wiS̃i,ni and use the ideas from adaptive stratified

sampling (Carpentier et al., 2015); however, multiple
challenges preclude us to do it: (i) wi is not known in
advance; (ii) the stratified sampling algorithm is based
on the known convergence rate of the sample average,
but we do not know how fast S̃i,ni

approaches zero (as a
function of ni); and (iii) the computational complexity
of calculating S̃i,ni is O(n2i). To handle (i), we address
the problem of estimating wi in Section 3.3. For (ii), a

conservative approach is to uniformly minimize wiS̃i,ni ,
hence selecting sampler i for which this quantity is the
largest. For (iii), we again use a block-diagonal ap-
proximation to S̃i,ni

, which causes problems with (ii),
since the estimate does not converge to 0 for a fixed
block size. We tested experimentally several meth-
ods to alleviate these problems (Shaloudegi & György,
2018, Section 5.3): The simplest strategy considered
was to select regions uniformly at random. Another
approach was to minimize the maximum S̃i,ni

, that
is, choosing i = argmax S̃i,ni , which does not require
the knowledge of the weights wi, while we also tested
strategies selecting regions based on their estimated
weights or, similarly to stratified sampling, based on
their estimated variance. Although quite different, the
strategies considered seemed to perform rather similarly
under different circumstances.

Unfortunately, we cannot guarantee that we start sam-
plers in such a way that we have a single sampler for
each region. If we know which sampler belongs to which
region (recall that we assume that the samplers are
locally mixing and hence belong to a region Ai), we can
combine any of the region selection strategies described
above with the bandit method described in Section 3.1
in a straightforward way: in each region Ai, run an
instance of KSD-UCB1 over the samplers exploring
this region, and use this KSD-UCB1 instance as a sin-
gle locally mixing sampler in any of the above region
selection methods. Finally, when the sampling budget
is exhausted (n samples are generated), estimate the
weights wi, and reweight the samples corresponding
to region Ai according to (2). We refer to this proce-
dure as KSD-UCB1-M (M stands for Multiple regions).
Clearly, since the bandit algorithms sample each sam-
pler infinitely often, we have the following consistency
result:

Under the local mixing assumption made at the be-
ginning of this section, the final weighted sample (2)
obtained by KSD-UCB1-M is asymptotically unbiased
as long as the weight estimates wi are asymptotically
unbiased.

Thus, we need to find some asymptotically unbiased
estimates of the probabilities of the regions Ai.

3.3 Weight estimation

In this section we consider the problem of finding the
weights wi in (2). As discussed after the equation,
this amounts to finding the probability of the region
the samples cover, which is again challenging since we
have access only to an unnormalized density. This
problem is faced by every algorithm which tries to
speed up MCMC methods by running parallel chains.
As an example, in big-data scenarios it is common to

Adaptive MCMC via Combining Local Samplers

split the data into subsets, run an MCMC sampler on
each subset, and combine the resulting samples in the
end. To our knowledge, most work in the literature
solves this problem by estimating the density of each
batch of samples separately (Angelino et al., 2016;
Nemeth & Sherlock, 2018), using typically either a
Gaussian approximation (Scott et al., 2016) or some
kernel-density estimation method (Neiswanger et al.,
2014). According to Nemeth & Sherlock (2018), the
first approach works well in practice, in spite of not
being supported by any theory, while the second, kernel-
based estimation scales poorly with the dimension d.

Here we take a different approach and rather than esti-
mating the density of the sample batches, we directly
estimate the probabilities P (Ai) via Rényi entropy.

Formally, suppose the domain of P is partitioned
into non-overlapping regions A1, . . . , AK , and from
each region Ai we have a set of samples X(Ai). The
Rényi entropy of order α 6= 1 for a density p is
defined as Rα(p) = 1

1−α log
∫
Rd p

α(x)dx. The con-
ditional density of P restricted to a set A is de-
noted as p(x|A) = p(x)

P (A) I{x∈A}, and its Rényi en-

tropy is Rα(p|A) = 1
1−α log

∫
A

(
p(x)
P (A)

)α
dx. From

this definition it trivially follows that logP (A) =
Rα(p|A) − 1

1−α logE
[
p(X)α−1

∣∣X ∈ A]. In our case,
instead of p we only have access to p̂ = cp for some
c > 0. Replacing p with p̂ in the integral, we obtain
log(P (A)c) = Rα(p|A) − 1

1−α logE
[
p̂(X)α−1

∣∣X ∈ A].
Thus, we can estimate P (A) by estimating the two
terms above.

Given a sample X(A) taken i.i.d. from p(·|A), the
second term can be estimated by the empirical aver-
age B̂α(X(A)) = 1

|X(A)|
∑
x∈X(A) p̂(x)α−1, while for the

first term we can use a graph-based estimate (Hero &
Michel, 1999). In particular, we are going to use the
estimator R̂α(X(A)) of Pál et al. (2010), which is based
on generalized k-nearest neighbor graphs of the sample
X(A), and it converges to Rα(p|A) for any α ∈ (0, 1) as
the sample size grows to infinity. Thus, we obtain that
β(X(A)) = R̂α(X(A))− B̂α(X(A)) is an asymptotically
unbiased estimate of log(P (A)c). Therefore, given a
fixed partition A1, . . . , AK ,

P (Ai) ≈ wi = eβ(Ai)/
∑
j∈[K] e

β(Aj) . (4)

More precisely, if the minimum number of samples in
the partitions is m, then P (Ai) = limm→∞ wi.

It is also possible to determine the rate of conver-
gence in the above: Theorem 2 of Pál et al. (2010)
shows that with a proper parametrization of the esti-
mator R̂α(X(A)), its (additive) error after m = |X(A)|
samples is of order m−1/(d+γ) with high probabil-
ity for an arbitrary choice of γ > 0. On the other

hand, the error of B̂α(X(A)) is of order O(m−1/2) by
standard concentration inequalities if p is bounded
(see, e.g., Boucheron et al., 2013). This implies that
|β(X(A)) − log(P (A)c)| = O(m−1/(d+γ)). Therefore,
P (Ai) can be estimated with a multiplicative error of
O(exp(const ·m−1/(d+γ))) where m now denotes the
minimum number of samples over the partition cells
A1, . . . , AK ; in other words, | logP (Ai) − logwi| =
O(m−1/(d+γ)). Note that although the error of our
estimator scales quite unfavorably in the dimension d,
in practice it seems to work well even for moderately
large dimensions (around 20); see Section 5 for details.

4 The final algorithm

So far we have discussed how to solve our problem if we
have either local mixing or all the samplers mix globally.
While the latter is the case asymptotically for all the
MCMC samplers used in practice, the mixing may be
too slow to be observed for any practical number of
samples. On the other hand, the problem does not
simplify to the local mixing scenario, since–even if
well-separated regions are actually present–, the chains
often jump from one region to another even if they do
not cover the whole domain.

To be able to adapt our KSD-UCB1-M algorithm, we
need to group together the samplers covering the same
region (even though what a region is is not clearly de-
fined in this scenario). The problem is especially hard
since the grouping of the samplers is non-stationary,
and we should also be able to track when a sampler
leaves or joins a region (equivalently, group). Further-
more, if the groups are too large, we do not explore the
whole domain, while if they are too small, we waste
resources by running multiple samplers for the same
region.

To solve this issue, we propose a simple heuristic to
identify samplers that are close together: In each round
of the sampling, we take all the samples from the last
batch of each sampler, and for each sample point we
look at its N nearest neighbors. Then we find the
grouping where any two samplers are grouped together
that have points which are nearest neighbors of each
other (this can easily be done recursively). By this
simple heuristic, in each round we can group together
the samplers that are close to each other. Note that
here we do not make any assumption regarding the
number of the regions (e.g., well-separated modes) of
the distribution. By having all the samples, the algo-
rithm can easily identify multiple regions by running a
clustering algorithm. The final step of the algorithm is
to determine the correct weight for each sample point.
Recall that in the locally mixing case we weighted the
empirical distribution of each region by their estimated
probability (cf. Eq. 2). Here, since we do not have

Kiarash Shaloudegi, András György

Algorithm 1 KSD-MCMC-WR
Given: Distribution p(x); M samplers; total number of
rounds T ; batch size nb; number N of nearest neighbors
for clustering; the order α of the Rényi entropy.
Initialize: For each i ∈ [M], draw nb samples from the
ith sampler with random initialization; compute Si,1 and
set µ̄i,1 = Si,1 and Ti(1) = 1.
for t ∈ {M + 1, . . . , T} do

- Cluster the samplers by clustering the samples from
their last batches:

- Initially, the last batch of samples from each
sampler forms a cluster.

- Merge two clusters if any point of one cluster
has a point from the other cluster among its N nearest
neighbors.

- Find the number of clusters nc.
- Define Ai ⊂ [M] for i ∈ [nc] as the set of

samplers belonging to cluster i (Ai ∩Aj = ∅ for i 6= j).
- Choose a cluster It (e.g., uniformly at random).
- Draw a batch of samples of size nb from sampler
it = arg mini∈AIt

(
µ̄i,Ti(t−1) −

√
8 log t

Ti(t−1)

)
.

- Set Ti(t) = Ti(t − 1) + 1 and Tj(t) = Tj(t − 1) for
j 6= i.
- Observe Si,Ti(t), and compute
µ̄i,Ti(t) = (1− 1

Ti(t)
)µ̄i,Ti(t−1) +

Si,Ti(t)

Ti(t)
.

end for
- Cluster all the samples into M clusters by k-means clus-
tering; for each cluster calculate its estimated probability
wi using (4) and output the reweighted samples with
weight wi/ni where ni is the total number of samples in
cluster i ∈ [M].

these regions, in the end we assign the samples into
M clusters using k-means clustering, and weight the
empirical measure within each cluster by the estimated
probability of the cluster (using Eq. 4). Algorithm 1
shows the whole procedure, called KSD-MCMC with
reweighting (KSD-MCMC-WR).

5 Experiments

We conducted a large number of experiments to empir-
ically evaluate the choices in our design process. Due
to space limitations, these are omitted from the paper,
together with some details of the experiments presented
in this section (all of these details are available in Sec-
tion 5 of Shaloudegi & György 2018).

One of the conclusions of the aforementioned exper-
iments is that our final algorithm KSD-MCMC-WR
should be used with NUTS as its base sampler (re-
call that NUTS is a state-of-the-art MCMC method
for unimodal problems). The left figure in Figure 1
shows that in a typical multimodal scenario (where
the modes of the target distribution are relatively far),
different versions of our method can significantly out-
perform both individual instances and a vanilla uni-
formly averaged parallel version of NUTS in estimating
the mean of the target distribution (Uniform: each

NUTS sampler is used equally; UCB1 and ε-greedy are
the bandit algorithms used by KSD-MCMC-WR; equal
probability means the regions are selected uniformly,
otherwise proportionally to wiS̃i,ni

). The right figure
demonstrates that KSD-MCMC-WR remains competi-
tive with NUTS for unimodal problems even for larger
dimensions.

The next experiment compares KSD-MCMC-WR with
two popular parallel MCMC samplers, annealed se-
quential Monte Carlo with resampling (SMC) (Moral
et al., 2006) and parallel tempering (PT) (Earl & Deem,
2005). Since SMC and PT are problematic to use with
NUTS, we apply MALA as the base sampler for these
methods, while we keep NUTS for KSD-MCMC-WR
(other omitted experiments confirm that our method
with a MALA base sampler is usually superior to SMC
and PT). Figure 3 shows how the relative performance
of the algorithms change for estimating the mean of
random Gaussian mixtures with 5 isotropic modes as
the dimension increases (note that for each d the param-
eters of the distributions were selected independently).
The results show that KSD-MCMC-WR provides con-
sistently much better results than SMC and PT.

The two novel components of our final algorithm, KSD-
MCMC-WR, are (i) using bandit algorithms with clus-
tering and KSD-approximations as rewards; and (ii)
clustering and reweigthing in the end via estimating
Rényi entropy. While (i) requires (ii) to combine the
parallel chains, perhaps surprisingly, when the modes
of the target distribution are close enough for the base
samplers to easily move from one to another, but they
are far enough so that the KSD measure cannot dis-
tinguish if a chain explores a single mode or multiple
modes clustered together, (ii) often leads to equal or su-
perior performance (shown as “uniform+clustering” in
the figures), since typically several chains are clustered
together which do not fully explore all the modes corre-
sponding to their cluster. This phenomenon is demon-
strated in Figure 2, where the left figure shows a case
when the modes are relatively far and KSD-MCMC-
WR is better, while the right figure shows a situation
where the modes are close, and “uniform+clustering”
is better (the effect is amplified as the number of base
samplers increases).

Our last experiment considers a realistic (yet still syn-
thetic) problem of Ihler et al. (2005), where the task
is to determine the location of several sensors ran-
domly placed in a planar region from noisy pairwise
distance measurements, where the probability of re-
ceiving a measurement decreases with the distance of
the corresponding two sensors. This setup results in a
multimodal posterior distribution. Figure 4 shows that
KSD-MCMC-WR also excels in this problem, signifi-
cantly outperforming both SMC and PT.

Adaptive MCMC via Combining Local Samplers

2000 5000 10000
Number of samples

−2.0

−1.5

−1.0

lo
g1
0
M
S
E

Uniform + clustering

Uniform

ǫ-greedy

UCB1

Equal prob., ǫ-greedy

Equal prob., UCB1

2 5 10 15 20 22
Dimension

−3.8

−3.6

−3.4

−3.2

−3.0

lo
g1
0
M
S
E

ǫ-greedy

UCB1

Equal prob., ǫ-greedy

Equal prob., UCB1

Figure 1: MSE for different sample sizes and dimensions with separated modes for variants of KSD-MCMC-WR. Left:
The target distribution is a 2-dimensional Gaussian mixture with 5 isotropic modes (with parameters selected randomly).
The dashed green lines show the results for the individual NUTS samplers. Right: Unimodal multivariate Gaussian target
distribution with random parameters. The total number of samples is 10000.

10 20 30 40 50 60 70 80 90 100
Number of samplers

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g1
0
M
S
E

ǫ-greedy

UCB1

Uniform

Unif.+clustering

10 20 30 40 50 60 70 80 90 100
Number of samplers

−1.5

−1.0

−0.5

0.0

0.5

1.0

lo
g1
0
M
S
E

ǫ-greedy

UCB1

Uniform

Unif.+clustering

Figure 2: MSE for different number of NUTS samplers as a function of number of samplers for a 2-dimensional Gaussian
mixture model with 20 isotropic modes. Two representative cases are shown: (left) the modes are far from each other,
(right) some modes are close to each other. The total number of samples is 20000.

4 6 8 12 16 20 24
4× 100 6× 100 2× 101

Dimension

0.0

0.5

1.0

1.5

2.0

2.5

lo
g1
0
M
S
E

ǫ-greedy

UCB1

Unif.+clustering

SMC-ave.

PT-ave.

SMC-best

SMC-worst

PT-best

PT-worst

Figure 3: MSE for different dimensions when using KSD-
MCMC-WR with 10 randomly initialized NUTS samplers
and batch size nb = 10, for Gaussian mixture targets with
5 isotropic modes. SMC and PT were run separately for
every parameter setting of MALA (10 different parameters)
with the best, worst and average values reported.

In summary, in all experiments KSD-MCMC-WR using
NUTS as base sampler provided excellent performance,
always being competitive with, but usually significantly
better than the state-of-the-art.

6 Conclusion
Selecting the best MCMC method and its best pa-
rameter setting for a given problem is a hard task.
Even if the parameters are selected correctly, in case
of multimodal distribution, MCMC chains can easily
get trapped in different modes for a long time, which
may lead to biased results. To solve these issues, in
this paper we proposed an adaptive MCMC method,

2000 3000 4000 6000 10000
2× 103 3× 103 4× 103 6× 103

Number of samples

1.4

1.6

1.8

2.0

2.2

2.4

lo
g1
0
M
S
E

ǫ-greedy

UCB1

Uniform

Unif.+clustering

SMC

PT

Figure 4: Running KSD-MCMC-WR for a sensor network
localization problem with 10 NUTS instances started with
different (random) initialization. The dashed green lines
show the results for the individual NUTS samplers.

KSD-MCMC-WR, that runs several chains in parallel,
measures the quality of samples from each mode locally
via kernel Stein discrepancy, and decides sequentially
how to allocate the sampling budget among the differ-
ent samplers using multi-armed bandit algorithms. The
final step of our method is to combine the samples ob-
tained by the different samplers: for this we developed a
novel weighting scheme based on Rényi-entropy estima-
tion, which might be of independent interest. Extensive
experiments on several setups demonstrated that in
typical scenarios, KSD-MCMC-WR with NUTS base
samplers usually provides significant improvements for
multimodal distributions while remains a safe choice
for the easier, unimodal cases.

Kiarash Shaloudegi, András György

Acknowledgement

The authors would like to thank Firas Hamze for in-
sightful discussions about different sampling methods
and Tor Lattimore for his comments on an earlier ver-
sion of the manuscript.

References

Ahn, Sungjin, Chen, Yutian, and Welling, Max. Dis-
tributed and adaptive darting monte carlo through
regenerations. volume 31 of Proceedings of Machine
Learning Research, pp. 108–116, 2013.

Andrieu, Christophe and Thoms, Johannes. A tutorial
on adaptive MCMC. Statistics and Computing, 18(4):
343–373, December 2008. ISSN 0960-3174, 1573-1375.
doi: 10.1007/s11222-008-9110-y.

Andrieu, Christophe, De Freitas, Nando, Doucet, Ar-
naud, and Jordan, Michael I. An introduction to
MCMC for machine learning. Machine learning, 50
(1-2):5–43, 2003.

Angelino, E., Johnson, M. J., and Adams, R. P. Pat-
terns of Scalable Bayesian Inference. Now Publishers
Inc., Hanover, MA, USA, 2016.

Atchadé, Yves F., Roberts, Gareth O., and Rosenthal,
Jeffrey S. Towards optimal scaling of metropolis-
coupled Markov chain Monte Carlo. Statistics and
Computing, 21(4):555–568, October 2011. ISSN 0960-
3174, 1573-1375. doi: 10.1007/s11222-010-9192-1.

Auer, Peter, Cesa-Bianchi, Nicolo, and Fischer, Paul.
Finite-time analysis of the multiarmed bandit prob-
lem. Machine learning, 47(2-3):235–256, 2002.

Boucheron, Stéphane, Lugosi, Gábor, and Massart,
Pascal. Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford University Press,
2013.

Brooks, Steve, Gelman, Andrew, Jones, Galin L., and
Meng, Xiao-Li. Handbook of markov chain monte
carlo. Chapman and Hall/CRC, 2011.

Bubeck, Sébastien and Cesa-Bianchi, Nicolò. Re-
gret Analysis of Stochastic and Nonstochastic Multi-
armed Bandit Problems. Foundations and Trends R©
in Machine Learning, 5(1):1–122, 2012. ISSN 1935-
8237, 1935-8245. doi: 10.1561/2200000024.

Bédard, Mylène. Optimal acceptance rates for Metropo-
lis algorithms: Moving beyond 0.234. Stochastic
Processes and their Applications, 118(12):2198–2222,
December 2008. ISSN 03044149. doi: 10.1016/j.spa.
2007.12.005.

Carpentier, Alexandra, Munos, Remi, and Antos, An-
drás. Adaptive strategy for stratified Monte Carlo
sampling. Journal of Machine Learning Research,
16:2231–2271, 2015.

Chwialkowski, Kacper, Strathmann, Heiko, and Gret-
ton, Arthur. A Kernel Test of Goodness of Fit.
arXiv:1602.02964 [stat], February 2016. arXiv:
1602.02964.

Doucet, Arnaud, Defreitas, Nando, and Gordon, Neil.
An Introduction to Sequential Monte Carlo Methods.
Springer-Verlag„ New York, 2001.

Earl, David J. and Deem, Michael W. Parallel tem-
pering: theory, applications, and new perspectives.
Physical Chemistry Chemical Physics (PCCP), 7 23:
3910–6, 2005.

Gorham, Jack, Duncan, Andrew B., Vollmer, Sebas-
tian J., and Mackey, Lester. Measuring sample qual-
ity with diffusions. arXiv preprint arXiv:1611.06972,
2016.

Gorham, Jackson and Mackey, Lester. Measuring sam-
ple quality with Stein’s method. In Advances in
Neural Information Processing Systems, pp. 226–234,
2015.

Gorham, Jackson and Mackey, Lester. Measuring sam-
ple quality with kernels. In ICML, pp. 1292–1301,
2017.

Haario, Heikki, Saksman, Eero, and Tamminen,
Johanna. An Adaptive Metropolis Algorithm.
Bernoulli, 7(2):223, April 2001. ISSN 13507265. doi:
10.2307/3318737.

Haario, Heikki, Laine, Marko, Mira, Antonietta, and
Saksman, Eero. DRAM: Efficient adaptive MCMC.
Statistics and Computing, 16(4):339–354, December
2006. ISSN 0960-3174, 1573-1375. doi: 10.1007/
s11222-006-9438-0.

Hero, A. O. and Michel, O. J. J. Asymptotic theory of
greedy approximations to minimal k-point random
graphs. IEEE Transactions on Information Theory,
45(6):1921–1938, 1999.

Hoffman, Matthew D. and Gelman, Andrew. The
No-U-turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine
Learning Research, 15(1):1593–1623, 2014.

Ihler, A. T., Fisher, J. W., Moses, R. L., and Willsky,
A. S. Nonparametric belief propagation for self-
localization of sensor networks. IEEE Journal on
Selected Areas in Communications, 23(4):809–819,
2005.

Liu, Qiang and Lee, Jason D. Black-box importance
sampling. arXiv preprint arXiv:1610.05247, 2016.
URL https://arxiv.org/abs/1610.05247.

Liu, Qiang, Lee, Jason D., and Jordan, Michael I. A
kernelized Stein discrepancy for goodness-of-fit tests.
In Proceedings of the International Conference on
Machine Learning (ICML), 2016.

https://arxiv.org/abs/1610.05247

Adaptive MCMC via Combining Local Samplers

Mahendran, Nimalan, Wang, Ziyu, Hamze, Firas, and
De Freitas, Nando. Adaptive MCMC with Bayesian
Optimization. In AISTATS, volume 22, pp. 751–760,
2012.

Mbalawata, Isambi S., Särkkä, Simo, Vihola, Matti,
and Haario, Heikki. Adaptive Metropolis algorithm
using variational Bayesian adaptive Kalman filter.
Computational Statistics & Data Analysis, 83:101–
115, March 2015. ISSN 01679473. doi: 10.1016/j.
csda.2014.10.006.

Moral, Pierre Del, Doucet, Arnaud, and Jasra, Ajay. Se-
quential monte carlo samplers. Journal of the Royal
Statistical Society. Series B (Statistical Methodology),
68(3):411–436, 2006.

Mykland, Per, Tierney, Luke, and Yu, Bin. Regen-
eration in markov chain samplers. Journal of the
American Statistical Association, 90(429):233–241,
1995. ISSN 01621459.

Neiswanger, W., Wang, C., and Xing, E. P. Asymp-
totically exact, embarrassingly parallel mcmc. In
Proceedings of the Thirtieth Conference on Uncer-
tainty in Artificial Intelligence, UAI, pp. 623–632,
Arlington, Virginia, United States, 2014. AUAI Press.
ISBN 978-0-9749039-1-0.

Nemeth, Christopher and Sherlock, Christopher Ger-
rard. Merging mcmc subposteriors through gaussian-
process approximations. Bayesian Analysis, 13(2):
507–530, 3 2018. ISSN 1936-0975.

Neufeld, James, György, András, Schuurmans, Dale,
and Szepesvári, Csaba. Adaptive Monte Carlo via
bandit allocation. In ICML, pp. 1944–1952, 2014.

Owen, Art B. Monte Carlo theory, methods and exam-
ples. 2013. URL http://statweb.stanford.edu/
~owen/mc/.

Pál, Dávid, Póczos, Barnabás, and Szepesvári, Csaba.
Estimation of rényi entropy and mutual information
based on generalized nearest-neighbor graphs. NIPS,
pp. 1849–1857, 2010.

Pasarica, Cristian and Gelman, Andrew. Adaptively
scaling the Metropolis algorithm using expected

squared jumped distance. Statistica Sinica, pp. 343–
364, 2010.

Roberts, Gareth O. and Rosenthal, Jeffrey S. Optimal
Scaling for Various Metropolis-Hastings Algorithms.
Statistical Science, 16(4):351–367, 2001. ISSN 0883-
4237.

Roberts, Gareth O., Gelman, Andrew, Gilks, Walter R.,
and others. Weak convergence and optimal scaling
of random walk Metropolis algorithms. The Annals
of Applied Probability, 7(1):110–120, 1997.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman,
H. A., George, E. I., and McCulloch, R. E. Bayes
and big data: The consensus monte carlo algorithm.
International Journal of Management Science and
Engineering Management, 11:78–88, 2016.

Sejdinovic, Dino, Strathmann, Heiko, Garcia,
Maria Lomeli, Andrieu, Christophe, and Gretton,
Arthur. Kernel Adaptive Metropolis-Hastings. In
ICML, pp. 1665–1673, 2014.

Shaloudegi, Kiarash and György, András. Adap-
tive MCMC via combining local samplers. CoRR,
abs/1806.03816, 2018. URL http://arxiv.org/
abs/1806.03816.

Wang, Ziyu, Mohamed, Shakir, and De Freitas, Nando.
Adaptive Hamiltonian and Riemann manifold Monte
Carlo samplers. In International Conference on Ma-
chine Learning (ICML), pp. 1462–1470, 2013.

Yang, Jinyoung and Rosenthal, Jeffrey S. Automati-
cally tuned general-purpose mcmc via new adaptive
diagnostics. Computational Statistics, 32(1):315–348,
March 2017.

Łatuszyński, Krzysztof, Roberts, Gareth O., and Rosen-
thal, Jeffrey S. Adaptive Gibbs samplers and related
MCMC methods. The Annals of Applied Probability,
23(1):66–98, February 2013. ISSN 1050-5164. doi:
10.1214/11-AAP806.

http://statweb.stanford.edu/~owen/mc/
http://statweb.stanford.edu/~owen/mc/
http://arxiv.org/abs/1806.03816
http://arxiv.org/abs/1806.03816

	Introduction
	Approach and challenges

	Measuring sample quality
	Sequential selection of samplers
	Mixing samplers
	Locally mixing samplers
	Weight estimation

	The final algorithm
	Experiments
	Conclusion

