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Abstract

We present a polynomial time algorithm
for online maximization of k-submodular
maximization. For online (nonmonotone)
k-submodular maximization, our algorithm
achieves a tight approximate factor in the
approximate regret. For online monotone k-
submodular maximization, our approximate-
regret matches to the best-known approxima-
tion ratio, which is tight asymptotically as k
tends to infinity. Our approach is based on
the Blackwell approachability theorem and
online linear optimization, and provides sim-
pler and clearner analysis.

1 Introduction

Submodular functions have a wide veriety of applica-
tions in combinatorial optimization, economics, com-
munication, and machine learning (Fujishige, 2005;
Krause and Golovin, 2014). A set function f : 2V → R
on a ground set V is called a submodular function if it
satisfies f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for all
X,Y ⊆ V . Equivalently, f is submodular if it satisfies
the diminishing return property : f(X ∪{j})−f(X) ≥
f(Y ∪ {j}) − f(Y ) for all X ⊆ Y and j ∈ V \ Y .
In the last two decades, submodular maximization has
been studied extensively in theoretical computer sci-
ence (Calinescu et al., 2011; Buchbinder et al., 2015),
machine learning (Krause and Golovin, 2014), and vi-
ral marketing (Kempe et al., 2003). Although submod-
ular maximization is NP-hard in general, constant-
factor approximation algorithms have been devised for
various constraints (Calinescu et al., 2011; Buchbinder
et al., 2015).

Recently, the paradigm of “optimization as a process”
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has been proposed in the context of online learn-
ing (Hazan, 2016; Cesa-Bianchi and Lugosi, 2006).
The goal of online learning is making a better de-
cision in the face of uncertainty. Formally, let us
consider the following repeated two-player game be-
tween a player and an adversary. At each tth round
(t ∈ [T ] := {1, . . . , T}), the player must select an ac-
tion xt ∈ K (possibly in a randomized manner). After
the choice of xt, the adversary reveals a reward func-
tion ft : K → [0, 1] in the round, and the player gains
ft(xt). The performance metric of the player’s algo-
rithm is the regret :

regret(f1, . . . , fT ) = max
x∈K

∑
t∈[T ]

ft(x)−
∑
t∈[T ]

ft(xt).

That is, the regret is the difference between the
player’s total gain and the gain of the best fixed ac-
tion in hindsight. A player’s algorithm is said to be
no regret if the expectation of the regret is sublinear:
E[regret(f1, . . . , fT )] = o(T ), where the expectation is
taken under the randomness in the player.

Online submodular maximization is an online learn-
ing problem in which the action set is a set family
C ⊆ 2V and the reward functions ft are submodular
functions on V . Since submodular maximization is
NP-hard even in the offline setting, it is reasonable to
relax the definition of the regret to the α-regret :

regretα(f1, . . . , fT ) = αmax
X∈C

∑
t∈[T ]

ft(X)−
∑
t∈[T ]

ft(Xt),

where α > 0 is a constant. Intuitively, α cor-
responds to the offline approximation ratio. A
player’s algorithm is said to be no α-regret if
E[regretα(f1, . . . , fT )] = o(T ). Streeter and Golovin
(2009) presented the first no (1 − 1/e)-regret algo-
rithm for online monotone submodular maximization
under a cardinality constraint (C is the set of subsets
satisfying the cardinality constraint and ft are mono-
tone submodular functions). Golovin et al. (2014) ex-
tended this algorithm to a matroid constraint, general-
izing a well-known continuous greedy algorithm (Cali-
nescu et al., 2011). Recently, Roughgarden and Wang
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for t = 1, . . . , T do
- A player (randomly) plays xt ∈ (k+ 1)V .

- An adversary reveals a k-submodular
function ft : (k+ 1)V → [0, 1] to the player
as a value oracle.
- The player gains reward ft(xt).

end for

Figure 1: The online k-submodular maximization pro-
tocol.

(2018) proposed a no 1/2-regret algorithm for (uncon-
strained) online nonmonotone submodular maximiza-
tion. Their algorithm is based on the double greedy
algorithm (Buchbinder et al., 2015); at its core, they
designed an online learning algorithm with two actions
with a stronger regret guarantee.

1.1 Our contribution

This paper examines online maximization of k-
submodular functions. k-submodular functions are
generalizations of submodularity and bisubmodular-
ity, introduced by Huber and Kolmogolov (Huber and
Kolmogorov, 2012). Formally, k-submodular functions
are defined on (k + 1)V = {0, 1, . . . , k}V . A func-
tion f : (k + 1)V → R is k-submodular if for any
x,y ∈ (k + 1)V , f(x) + f(y) ≥ f(x t y) + f(x u y),
where t and u are generalized “union” and “intersec-
tion” in (k+1)V , respectively (see Section 2 for the for-
mal definition). Indeed, if k = 1, 2, k-submodularity
is equivalent to submodularity and bisubmodularity,
respectively. The concepts of bisubmodularity and
k-submodularity have numerous applications in val-
ued CSP, delta matroids, generalized influence max-
imization, and image segmentation (Huber and Kol-
mogorov, 2012; Fujishige, 2005; Fujishige and Iwata,
2005; Ohsaka and Yoshida, 2015; Hirai and Oki, 2017).

For offline k-submodular maximization, Iwata et al.
(2016) gave a 1/2-approximation algorithm. The ap-
proximation ratio is tight even for k = 1, i.e., sub-
modular maximization (Feige et al., 2011). They also
devised a k

2k−1 -approximation algorithm for monotone
k-submodular maximzation and the approximation ra-
tio is asymptotically tight.

The main results of this paper are as follows:

• For online k-submodular maximization, we devise
a polynomial-time algorithm whose expected 1/2-
regret is bounded by O(nk

√
T ), where n = |V |.

This result generalizes the previous algorithm of
Roughgarden and Wang (2018) for online sub-

modular maximization.

• For online monotone k-submodular maximization,
we present a polynomial-time algorithm whose ex-
pected k

2k−1 -regret is O(nk
√
T ).

See Table 1 for comparison of our results and previous
results.

Technical Ideas To extend the algorithm of Iwata
et al. (2016) to the online setting, we must con-
sider an auxiliary online learning problem, which we
call a k-submodular selection game. We show that
it is sufficient to design an online algorithm for k-
submodular selection games with a stronger regret
guarantee, which is not obtained by using a standard
online learning algorithm such as multiplicative weight
update (Arora et al., 2012). To this end, we exploit
Blackwell’s approachability theorem1 (Blackwell, 1956)
and online linear optimization (OLO). The Blackwell
approachability theorem is a powerful generalization of
von Neumann’s minimax theorem for finite two-player
games. In the online learning literature, the Blackwell
approachability theory has been exploited to demon-
strate the existence of no-regret algorithms for vari-
ous problems, such as online learning with the inter-
nal and generalized regret, and well-calibrated fore-
casters (see Cesa-Bianchi and Lugosi (2006) and ref-
erences therein). We exploit the Blackwell approacha-
bility theorem to design an algorithm with the desired
stronger regret guarantee. To obtain a concrete regret
bound, we use a beautiful duality result between ap-
proachability and OLO (Abernethy et al., 2011). More
precisely, we use their framework to obtain an online
algorithm for k-submodular selection games by con-
verting an OLO algorithm.

To demonstrate the flexibility of our approach based
on Blackwell’s theorem, we show that the algorithm
for the nonmonotone case can be easily modified for
the monotone case with a stronger approximation ratio
k

2k−1 . Furthermore, our algorithm and analysis work
even for an adaptive adversary. An oblivious adver-
sary fixes ft (t ∈ [T ]) before the first round, whereas
an adaptive adversary can select ft after seeing xt.
Since our approach is conceptually simpler than pre-
vious work (Roughgarden and Wang, 2018), it almost
immediately extends to an adaptive adversary.

1The possibility of using of Blackwell’s approachability
theorem was mentioned in Roughgarden and Wang (2018)
without detail in a footnote. They designed an alternative
algorithm for a similar problem without using Blackwell’s
theorem.
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Table 1: Summary of previous results and our results.

offline online

k = 1
1
2 -approx
Buchbinder et al. (2015)

1
2 -regret O(n

√
T )

Roughgarden and Wang (2018)

k = 2
1
2 -approx
Ward and Živný (2016)

1
2
-regret O(n

√
T ) [this work]

general k
1
2 -approx
Iwata et al. (2016)

1
2
-regret O(nk

√
T ) [this work]

general k (monotone)
k

2k−1 -approx
Iwata et al. (2016)

k
2k−1

-regret O(nk
√
T ) [this work]

1.2 Related work

An important special case of k-submodular functions
is the bisubmodular function. Singh et al. (2012) stud-
ied maximizing a bisubmodular function2. General k-
submodular maximization was first studied by Ward
and Živný (2016). They devised a 1/(1 +

√
k/2)-

approximation algorithm for k-submodular maximiza-
tion. Iwata et al. (2016) presented a randomized algo-
rithm with an improved and tight approximation fac-
tor of 1/2 for k-submodular maximization. A deran-
domized version of their algorithm (for the monotone
case) was developed by Oshima (2017). Ohsaka and
Yoshida (2015) studied monotone k-submodular maxi-
mization under a cardinality constraint. Later, Sakaue
(2017) generalized it to a matroid constraint. A sim-
ilar but different setting, namely streaming submodu-
lar optimization, also has been actively studied, e.g.,
see Feldman et al. (2018); Mirzasoleiman et al. (2018).
Recenetly, there has been a series of work consider-
ing continous submodular maximization (Bian et al.,
2017a,b; Chen et al., 2018a,b; Niazadeh et al., 2018).
To the best of our knowledge, a similar continous ana-
logue of k-submodular functions is unknown.

Online learning of discrete structure is called on-
line structured learning. Efficient online algorithms
were developed for various discrete structures, such
as shortest paths and matroid basis (Takimoto and
Warmuth, 2003; Suehiro et al., 2012). Most of these
studies focused on optimizing linear reward/loss func-
tions (under a constraint), whereas our paper studies
nonlinear functions (without a constraint).

1.3 Organization

The reminder of this paper is organized as follows.
Section 2 introduces k-submodularity, Blackwell’s ap-
proachability theorem, and OLO. Section 3 describes

2Note that they used different terminology, directed
bisubmodular functions, to describe such functions.

our algorithm for online k-submodular maximiza-
tion along with k-submodular selection games. Sec-
tion 4 presents our algorithm for online monotone k-
submodular maximization. Section 5 provides several
examples of online k-submodular maximization in ma-
chine learning. We conclude the paper in Section 6.

2 Preliminaries

2.1 Notation

For a positive integer n, we denote the set {1, . . . , n}
by [n]. The probability simplex in Rk is denoted by
∆k. The sets of nonnegative and nonpositive reals are
denoted by R+ and R−, respectively. The Euclidian
norm is denoted by ‖·‖. The jth standard unit vector
is denoted by ej . The distance between a point x
and a set S is defined as dist(x, S) := infy∈S‖x− y‖.
The orthogonal projection of a point x onto a set S is
denoted by projS(x).

2.2 k-submodular functions

Let k be a positive integer. Throughout the paper,
let V = [n] be a ground set. Define (k + 1)V =
{0, 1, . . . , k}V . For x ∈ (k+ 1)V , we denote supp(x) =
{j ∈ V : x(j) 6= 0}. For a function f : (k + 1)V → R,
x ∈ (k + 1)V , and j /∈ supp(x), we define

∆j,if(x) := f(x + iej)− f(x),

where x + iej is a vector obtained by setting the jth
entry of x to i. Since x(j) = 0, this is the standard
addition in RV . Let us define binary operators t and
u on {0, 1, . . . , k} as

i t i′ =

{
max{i, i′} if either i = 0, i′ = 0 or i = i′

0 otherwise

i u i′ =

{
min{i, i′} if either i = 0, i′ = 0 or i = i′

0 otherwise
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We extend these binary operations to (k+ 1)V so that
the operations are applied entry-wise: for x,y ∈ (k +
1)V , define x t y,x u y ∈ (k + 1)V as

(x t y)(j) = x(j) t y(j) (j ∈ V )

(x u y)(j) = x(j) u y(j) (j ∈ V ).

A function f : (k + 1)V → R is k-submodular if

f(x) + f(y) ≥ f(x t y) + f(x u y) (1)

for arbitrary x,y ∈ (k + 1)V .

Define a partial order on (k+1)V by x ≤ y if xuy = x.
We say that f : (k + 1)V → R is monotone if f(x) ≤
f(y) for arbitrary x ≤ y.

Lemma 2.1 (Ward and Živný (2016)). The k-
submodularity is equivalent to the following two con-
ditions:

Pairwise monotonicity ∆j,if(x) + ∆j,i′f(x) ≥ 0
for i 6= i′, x ∈ (k + 1)V , and j /∈ supp(x).

Orthant submodularity ∆j,if(x) ≥ ∆j,if(y) for i,
x ≤ y, and j /∈ supp(y).

A vector x ∈ (k + 1)V can be regarded as a k-
subpartition of V . That is, (k + 1)V can be regarded
as the set of (X1, . . . , Xk) (Xi ⊆ V , Xi ∩ Xi′ = ∅
if i 6= i′). The correspondence is given by x(j) = i
if and only if j ∈ Xi (we conventionally regard that
x(j) = 0 if and only if j is in none of Xi). For k = 1,
k-submodularity (1) is equivalent to submodularity,
f(X)+f(Y ) ≥ f(X∪Y )+f(X∩Y ) for X,Y ∈ 2V . For
k = 2, it is equivalent to bisubmodularity (Fujishige,
2005),

f(X1, X2) + f(Y1, Y2)

≥ f((X1 ∪ Y1) \ (X1 ∩ Y1), (X2 ∪ Y2) \ (X2 ∩ Y2))

+ f(X1 ∩ Y1, X2 ∩ Y2),

for (X1, X2), (Y1, Y2) ∈ 3V . Ward and Živný (2016)
showed that a submodular function g : 2V → R+ can
be embedded into a bisubmodular function f : 3V →
R+ as

f(S, T ) = g(S) + g(V \ T )− g(T ) (2)

preserving the approximation ratio. That is, an α-
approximate maximizer of f corresponds to an α-
approximate maximizer of g, for arbitrary α > 0. This
embedding demonstrates that our algorithm for online
k-submodular maximization corresponds to the algo-
rithm of Roughgarden and Wang (2018) for online sub-
modular maximization.

A useful fact of k-submodular maximization is that
there always exists a maximizer corresponding to a
partition of V .

Lemma 2.2 (Ward and Živný (2016)). Let k ≥ 2.
For any k-submodular function f , there exists o ∈
argmaxx∈(k+1)V f(x) such that supp(o) = V .

2.3 Blackwell’s approachability theorem

The celebrated Blackwell approachability theo-
rem (Blackwell, 1956) is a powerful generalization of
the von Neumann minimax theorem for two-player
zero-sum games. Our presentation mostly follows
Abernethy et al. (2011). Let X ⊆ Rm and Y ⊆ Rn
be convex sets. Let ` : X × Y → Rk be a biaffine
function, i.e, `(·,y) is affine for any y ∈ Y and vice
versa. Let S ⊆ Rk be a closed convex set. We call a
tuple (X,Y, `, S) a Blackwell instance. We say that:

• S is satisfiable if ∃x ∈ X∀y ∈ Y : `(x,y) ∈ S.

• S is response-satisfiable if ∀y ∈ Y ∃x ∈ X :
`(x,y) ∈ S.

• S is halfspace-satisfiable if an arbitrary halfspace
H containing S is satisfiable.

• S is approachable if there exists an algo-
rithm A which outputs an element in X,
such that for any sequence (yt)t∈[T ] ⊆ Y ,

dist
(

1
T

∑
t∈[T ] `(xt,yt), S

)
→ 0 as T → ∞,

where xt := A(y1, . . . ,yt−1) (t ∈ [T ]).

Theorem 2.3 (The Blackwell approachability the-
orem (Blackwell, 1956)). For a Blackwell instance
(X,Y, `, S), the following conditions are equivalent:

1. S is approachable.

2. S is halfspace-satisfiable.

3. S is response-satisfiable.

A halfspace oracle O is an oracle that takes a halfspace
H with S ⊆ H as input and returns O(H) = xH ∈ X.
A halfspace oracle is said to be valid if `(xH ,y) ∈ H
for any y ∈ Y . Note that the existence of a valid halfs-
pace oracle is equivalent to the halfspace-satisfiability
of S. Even if a valid halfspace oracle exists, its ef-
ficient computation depends on the geometry of the
feasible regions X and Y . If X and Y are polytopes,
then a halfspace oracle can be constructed by linear
programming (LP) as follows.

Let H := {z : θ>z ≥ β} be a halfspace. Since ` is
biaffine, θ>`(x,y) = x>Py+b>y+c for some matrix
P , a vector b, and a constant c. For computing a valid
halfspace oracle, we can assume that c = 0 without loss
of generality. Then, finding xH is a responce of a valid
halfspace oracle if

min
y∈Y

(x>HPy + b>y) ≥ β.
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Algorithm 1 Online Gradient Descent for
OLO (Zinkevich, 2003)

Input: a compact convex set K ⊆ Rk and learning
rate η > 0.

1: Let x0 ∈ K be an arbitrary point.
2: for t ∈ [T ] do
3: Play xt and observe ft.
4: Let yt+1 = xt − ηft and xt+1 = projK(yt+1).
5: end for

Let Y = {y : Ay ≥ c}. By the LP duality, the inner
minimization miny∈Y (P>x+b)>y is equivalent to the
following dual:

max c>q s.t. A>q = P>x + b, q ≥ 0.

Since X is also a polytope, after adding a constraint
x ∈ X, we still have an LP, and therefore we can find
xH by solving single maximization LP.

2.3.1 Online linear optimization and
approachability

The beauty of Blackwell’s approachability theory is
that it provides an algorithm for finding an approach-
ing sequence, given a valid halfspace oracle. Aber-
nethy et al. (2011) connected the approachability and
OLO. In OLO, we are given a fixed compact convex
set K ⊆ Rk. In each tth round of OLO, a player se-
lects xt ∈ K. Then an adversary reveals a vector ft.
The goal of the player is to minimize the regret:

regret(f1, . . . , fT ) =
∑
t∈[T ]

f>t xt − min
x∈K

∑
t∈[T ]

f>t x (3)

They devised an elegant algorithm for approachability,
given a valid halfspace oracle O and an algorithm A
for OLO, under the assumption that S is a cone.

Theorem 2.4 (Abernethy et al. (2011)). Given a
valid halfspace oracle O, a value oracle of `, a cone S,
and an OLO algorithm A on the polar cone S◦, there
exists an algorithm B that given a sequence (yt)t∈[T ],
computes a sequence (xt)t∈[T ] satisfying

dist

 1

T

∑
t∈[T ]

`(xt,yt), S

 ≤ 1

T
regretA(f1, . . . , fT ),

where xt = B(y1, . . . ,yt−1) and ft = −`(xt,yt) (t ∈
[T ]).

We use online gradient descent (Zinkevich, 2003) as
a standard OLO algorithm. See Algorihm 1 for the
detail.

Theorem 2.5 (Zinkevich (2003)). Online gradient de-
scent with learning rate η > 0 satisfies

regret(f1, . . . , fT ) ≤ 1

η
D2 + η

∑
t∈[T ]

‖ft‖2,

where D is the diameter of K.

3 No 1/2-regret algorithm for
k-submodular maximization

In this section, we present our algorithm for online
k-submodular maximization. In the following, we as-
sume that k ≥ 2 and ft is nonnegative and bounded,
i.e., ft : (k + 1)V → [0, 1] for t ∈ [T ].

3.1 k-submodular selection game

Let us consider the following online learning problem,
which we call a k-submodular selection game. In the
tth round of the game, a player predicts a probability
vector pt ∈ ∆k. An adversary’s play is yt = (at,bt) ∈
Y , where Y is the set of (a,b) ∈ [−1, 1]k × [−1, 1]k

such that

a(i) + a(i′) ≥ 0 (i 6= i′)

b(i) + b(i′) ≥ 0 (i 6= i′)

b(i) ≥ a(i) (i ∈ [k]).

The feedback to the player is only bt. For a fixed b,
we denote Y (b) = {a ∈ [−1, 1]k : (a,b) ∈ Y }.
Definition 3.1. Let α > 0. An online algorithm A is
an α-selection algorithm for a k-submodular selection
game with rate g(k, T ) if it satisfies

max
i∗∈[k]

∑
t∈[T ]

at(i
∗)−

∑
t∈[T ]

∑
i∈[k]

(α · bt(i) + at(i))pt(i)

≤ g(k, T ),

where g(k, T ) is sublinear in T .

Our main result is as follows.

Theorem 3.2. There exists a 1-selection algorithm
for a k-submodular selection game with rate g(k, T ) =
O(k
√
T ).

To prove this theorem, we appeal to the Blackwell ap-
proachability theorem. First, we define a biaffine vec-
tor reward function `: For p ∈ ∆k and y = (a,b) ∈ Y ,
let

`(p,y)(i) = a(i)−
∑
i′∈[k]

(b(i′) + a(i′))p(i′).

Then, S = Rk− is approachable in a Blackwell instance
(∆k, Y, `, S) if and only if a 1-selection algorithm ex-
ists for a k-submodular selection game. We now show
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Algorithm 2 A 1-selection algorithm for a k-
submodular selection game

Input: An OLO algorithm A with feasible region
K := {θ ∈ Rk+ : ‖θ‖ ≤ 1}.

1: Set up A.
2: for t ∈ [T ] do

3: θt ← A(f1, . . . , ft−1), where fs := − ˆ̀
s (s ∈ [t −

1]).
4: Solve LP

pt ∈ argmin
p∈∆k

max
y∈Y

θ>`(p,y) (4)

to obtain pt.
5: Play pt and observe bt.
6: For i ∈ [k], let ˆ̀

t be a vector such that ˆ̀
t(i) :=

maxat∈Y (bt) `(pt, (at,bt))(i).
7: end for

that S is approachable. By the Blackwell approacha-
bility theorem, it suffices to show that S is response-
satisfiable. Indeed, this fact is already observed in
Iwata et al. (2016).

Lemma 3.3 (Iwata et al. (2016, Theorem 2.1)). For a
fixed adversary’s play (a,b), there exists p ∈ ∆k that
only depends on b and satisfies

max
i∗∈[k]

a(i∗)−
∑
i∈[k]

(b(i) + a(i))p(i) ≤ 0.

Therefore, the Blackwell approachability theorem im-
plies the existence of a no-regret algorithm for a k-
submodular selection game. In particular, exploiting
the result of Abernethy et al. (2011), we obtain Algo-
rithm 2 for a k-submodular selection game.

Lemma 3.4. Algorithm 2 satisfies

max
i∗∈[k]

∑
t∈[T ]

at(i
∗)−

∑
t∈[T ]

∑
i∈[k]

(bt(i) + at(i))pt(i)

≤ regretA(f1, . . . , fT ),

for any (at,bt) ∈ Y (t ∈ [T ]), where
regretA(f1, . . . , fT ) =

∑
t∈[T ] f

>
t θt −

minθ∈K
∑
t∈[T ] f

>
t θ is the regret of the OLO al-

gorithm A.

Proof. The proof mostly follows from Abernethy et al.
(2011), but we provide the full proof for the sake of
completeness. Since S is halfspace-satisfiable, LP (4)
has a solution. Indeed, solving LP (4) simply computes
an output of a valid halfspace oracle for a halfspace
Ht = {x ∈ Rk : θ>t x ≤ 0}. Let us fix arbitrary yt =
(at,bt) ∈ Y (t ∈ [T ]). Then,

dist

 1

T

∑
t∈[T ]

`(pt,yt), S



= max

max
θ∈K

1

T

∑
t∈[T ]

`(pt,yt)
>θ, 0


≤ max
θ∈K

 1

T

∑
t∈[T ]

ˆ̀>
t θ


= max
θ∈K

− 1

T

∑
t∈[T ]

f>t θ


≤ 1

T
max
θ∈K

∑
t∈[T ]

f>t θt −
∑
t∈[T ]

f>t θ


=

regretA(f1, . . . , fT )

T
,

where the second inequality follows since f>t θt =

−θ>t ˆ̀
t ≥ 0 by the valid halfspace oracle property. Now

the claim of the lemma is immediate from the follow-
ing:

1

T

max
i∗∈[k]

∑
t∈[T ]

at(i
∗)−

∑
t∈[T ]

∑
i∈[k]

(bt(i) + at(i))pt(i)


≤ dist

 1

T

∑
t∈[T ]

`(pt,yt), S


Proof of Theorem 3.2. We can use online gradient de-
scent as an internal OLO algorithm A, which satisfies

regretA(f1, . . . , fT ) ≤ 1

η
D2 + η

∑
t∈[T ]

‖ft‖2

≤ 1

η
O(k) + ηO(kT )

where we used that D = O(
√
k) is the diameter of

∆k and ‖ft‖2 = O(k) for t ∈ [T ] in the second in-
equality. Setting η = O(1/

√
T ), we obtain the regret

bound O(k
√
T ). Combined with Lemma 3.4, we see

that Algorithm 2 is a 1-selection algorithm with rate
O(k
√
T ).

Remark 3.5. Since Algorithm 2 is deterministic if we
use online gradient descent as an internal OLO algo-
rithm, the guarantee in Theorem 3.2 holds even for an
adaptive adversary.

3.2 Main algorithm

Now we present our main algorithm for online k-
submodular maximization.

Theorem 3.6. Given α-selection algorithms Aj
(j ∈ [n]) for k-submodular selection games with rate
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Algorithm 3 No 1/(α + 1)-regret algorithm for k-
submodular maximziation
Input: α-selection algorithms Aj for a k-submodular

selection game (j ∈ [n]).
1: Set up Aj (j ∈ [n]).
2: for t = 1, . . . , T do

3: Set x
(0)
t := 0.

4: for j ∈ [n] do

5: Receive p
(j)
t ∈ ∆k from Aj .

6: Sample i ∈ [k] from the probability distribu-

tion p
(j)
t , and set x

(j)
t := x

(j−1)
t + iej .

7: end for
8: Play xt = x

(n)
t and receive ft.

9: for j ∈ [n] do

10: Feedback b
(j)
t (i) := ∆j,ift(x

(j−1)) (i ∈ [k]) to
Aj .

11: end for
12: end for

g(k, T ), Algorithm 3 achieves

E

 1

α+ 1
max

o∈(k+1)V

∑
t∈[T ]

ft(o)−
∑
t∈[T ]

ft(xt)

 ≤ ng(k, T )

α+ 1
,

(5)

where the expectation is taken under the randomness
in Algorithm 3.

Proof. Let o ∈ (k + 1)V be an optimal solution such
that supp(o) = [n] (such an optimal solution exists
by Lemma 2.2). For each t ∈ [T ] and j = 0, 1, . . . , n,

let o
(j)
t := (o t x

(j)
t ) t x

(j)
t . Note that o

(0)
t = o and

o
(n)
t = x

(n)
t . Let s

(j−1)
t be a vector obtained by setting

the jth element of o
(j−1)
t to 0 for j ∈ [n]. Define

a
(j)
t (i) := ∆j,ift(s

(j−1)
t ) and b

(j)
t (i) := ∆j,ift(x

(j−1)
t ).

By orthant submodularity and pairwise monotonicity,
we have

a
(j)
t (i) + a

(j)
t (i′) ≥ 0 (i 6= i′)

b
(j)
t (i) + b

(j)
t (i′) ≥ 0 (i 6= i′)

b
(j)
t (i) ≥ a(j)

t (i) (i ∈ [k]).

Therefore, b
(j)
t is valid feedback to Aj (j ∈ [n]). Let us

fix j ∈ [n] and let i∗ := o(j). Note that i∗ ∈ [k], since
supp(o) = [n]. Since Aj is an α-selection algorithm,
we have ∑

t∈[T ]

∑
i∈[k]

(a
(j)
t (i∗)− a(j)

t (i))p
(j)
t (i)

≤ α
∑
t∈[T ]

∑
i∈[k]

b
(j)
t (i)p

(j)
t (i) + g(k, T ), (6)

conditioned on xt and ft (t ∈ [T ]). We note that (6)
is valid for an adaptive adversary, since Algorithm 2 is
deterministic (if we use OGD). Taking the expectation
of both sides over these fixed random variables, we
obtain

E

∑
t∈[T ]

(ft(o
(j−1)
t )− ft(o(j)

t ))


≤ αE

∑
t∈[T ]

(ft(x
(j)
t )− ft(x(j−1)

t ))

+ g(k, T ).

Summing these inequalities for j ∈ [n], we arrive at

E

∑
t∈[T ]

(ft(o)− ft(xt))


≤ αE

∑
t∈[T ]

(ft(xt)− ft(0))

+ ng(k, T )

≤ αE

∑
t∈[T ]

ft(xt)

+ ng(k, T ),

(since ft(0) ≥ 0 (t ∈ [T ]))

which proves the theorem.

Combining this theorem with Lemma 3.4, we obtain
the main result.

Corollary 3.7. There exists a polynomial-time al-
gorithm for online k-submodular maximization whose
1/2-regret is bounded by O(kn

√
T ).

4 Online monotone k-submodular
maximization

To demonstrate the flexibility of our method with
the Blackwell approachability theory, we present a
no k

2k−1 -regret algorithm for online monotone k-
submodular maximization. To this end, we define a
modified version of a k-submodular selection game,
which we call a monotone k-submodular selection
game. The only difference in the monotone case is that
the set of the adversary’s play is further restricted to
Y+ := Y ∩ (Rk+ × Rk+), which means that yt ≥ 0.

Lemma 4.1. There exists a (1 − 1/k)-selection al-
gorithm for a monotone k-submodular selection game
with rate g(k, T ) = O(k

√
T ).

Proof. Again, we use the Blackwell approachability
theorem. We define a slightly modified vector reward
function `′ as follows:

`′(p,y)(i) = a(i)−
∑
i′∈[k]

(α · b(i′) + a(i′))p(i′),
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where α = 1 − 1/k. It suffices to show that S =
Rk− is response-satisfiable for a Blackwell instance
(X,Y+, `

′, S). In Iwata et al. (2016, Theorem 2.2),
it is shown that for fixed y = (a,b) ∈ Y+, there ex-
ists p ∈ ∆k such that `′(p,y) ≤ 0. Therefore, by the
Blackwell approchability theorem, there exists an on-
line algorithm for producing an approaching sequence.
Indeed, such an algorithm can be constructed by a
slight modification of Algorithm 2: instead of ` and
Y , we use `′ and Y+, respectively. It is easy to see
that the modified algorithm produces a sequence pt
(t ∈ [T ]) with the same guarantee as in Lemma 3.4:

max
i∗∈[k]

∑
t∈[T ]

at(i
∗)−

∑
t∈[T ]

∑
i∈[k]

(α · bt(i) + at(i))pt(i)

≤ regretA(f1, . . . , fT ),

for any (at,bt) ∈ Y (t ∈ [T ]), where A is an internal
OLO algorithm. Again, using online gradient descent
as A, we obtain the same bound as before, which com-
pletes the proof.

Combining this result with Theorem 3.6, we obtain the
following.

Theorem 4.2. There exists a polynomial-time algo-
rithm for online monotone k-submodular maximiza-
tion whose k

2k−1 -regret is bounded by O(kn
√
T ).

Proof. We use the same notation as in the proof of
Theorem 3.6. Since ft is monotone (t ∈ [T ]), we have

a
(j)
t ,b

(j)
t ≥ 0 (t ∈ [T ], j ∈ [n]). Therefore, b

(j)
t is valid

feedback to an algorithm for a monotone k-submodular
selection game. Since α = 1 − 1/k, we have the same
bound for the k

2k−1 -regret.

5 Applications

In this section, we briefly describe applications of on-
line k-submodular maximization.

5.1 Coupled feature selection

This application is inspired by Singh et al. (2012).
Suppose that we are to predict k variables Z1, . . . , Zk
(say, weather of k different areas) using n features
Y1, . . . , Yn. We have a communication constraints such
that each feature can be used for prediction of only
one of Zi (i ∈ [k]). Then, the problem is to find a sub-
partition (X1, . . . , Xk) of features into k groups that
maximizes the mutual information:

f(X1, . . . , Xk) = I(X1, . . . , Xk;Z)

= H(X1, . . . , Xk)−H(X1, . . . , Xk | Z),

where H(·) is the entropy function. We make
the following assumption: the features Y1, . . . , Yn

are paiwise independent given Z. Then we
obtain f(X1, . . . , Xk) = H(X1, . . . , Xk) −∑
i∈[k]

∑
j∈Xi

H(Yj |Zi). One can show that this

function is indeed k-submodular (see Appendix A).

Online setting naturally corresponds the following sce-
nario: we repeatedly predict weather over T days and
we want to minimize the approximate regret.

5.2 Sensor placement with k different sensors

This applications is inspired by Singh et al. (2012);
Ohsaka and Yoshida (2015); Iwata et al. (2016). Sup-
pose that we have k types of sensors each of which
corresponds to different physical observation. We are
to place sensors to n spots but we can only place
one type of sensors in each spot. Let us assume
that a global information gain function g exists and
g is symmetric (i.e., g(X) = g(V \ X) for all X)
and submodular (see Golovin et al. (2014) for exam-
ples of such functions). Our objective is to maximize
the total information gain of k different observations:
f(X1, . . . , Xk) =

∑
i∈[k] g(Xi). One can check that f

is a k-submodular function (see Appendix A). We note
that this example does not reduce to monotone sub-
modular maximization under partition matroid con-
straint (Calinescu et al., 2011), since f is not neces-
sarily monotone. Again, online scenario naturally cor-
responds to repeated observations over T periods.

6 Conclusion

In this paper, we developed polynomial time algo-
rithms for online k-submodular maximization and on-
line monotone k-submodular maximization with the
sublinear approximate regret.

For open problems, we may consider constrained on-
line k-submodular maximization such as a size con-
straint (Ohsaka and Yoshida, 2015) and a matroid con-
straint (Sakaue, 2017) . We hope that our framework
with the Blackwell approachability theorem is useful
for these settings. Another open problem is improving
the dependence on n and k in the approximate regret
bound. Our algorithms provide the approximate re-
gret bound O(nk

√
T ), but we do not know any lower

bound on n and k.
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