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A Proofs

A.1 Proof of Lemma 1

Proof.

Iq(x; z|u) = Eqφ(x,z,u)[log qφ(x, z|u)− log q(x|u)− log qφ(z|u)]

= Eqφ(x,z,u)[log qφ(x, z|u)− log qφ(z|u)] + Eqφ(z,u)[− log q(x|u)]

= Eqφ(x,z,u)[log qφ(x|z,u)] +Hq(x|u)

= Eqφ(x,z,u)[log qφ(x|z,u) + log p(x|z,u)− log p(x|z,u)] +Hq(x|u)

= Eqφ(x,z,u)[log p(x|z,u)] +Hq(x|u) + Eqφ(z,u)DKL(qφ(x|z,u)‖p(x|z,u))

≥ Eqφ(x,z,u)[log p(x|z,u)] +Hq(x|u)

where the last inequality holds because KL divergence is non-negative.

A.2 Proof of Lemma 2

Proof.

Iq(z;u) ≤ Iq(z;x,u)

= Eqφ(x,z,u)[log qφ(z|x,u)− log qφ(z)]

= Eqφ(x,z,u)[log qφ(z|x,u)− log p(z)− log qφ(z) + log p(z)]

= Eq(x,u)DKL(qφ(z|x,u)‖p(z))−DKL(qφ(z)‖p(z))

A.3 Proof of Lemma 3

Proof.

Iq(z;u) = Eqφ(z,u)[log qφ(u|z)− log q(u)]

= Eqφ(z,u)[log qφ(u|z)− log p(u)− log q(u) + log p(u)]

= Eqφ(z)DKL(qφ(u|z)‖p(u))−DKL(q(u)‖p(u))

≤ Eqφ(z)DKL(qφ(u|z)‖p(u))

Again, the last inequality holds because KL divergence is non-negative.

A.4 Proof of Theorem 5

Proof. Let us first verify that this problem is convex.

• Primal: −Eqφ(x,z,u)[log pθ(x|z,u)] is affine in qφ(z|x,u), convex in pθ(x|z,u) due to the concavity of log, and
independent of pθ(z).

• First condition: Eq(u)DKL(qφ(z|x,u)‖pθ(z)) is convex in qφ(z|x,u) and pθ(z) (because of convexity of
KL-divergence), and independent of pθ(x|z,u).

• Second condition: since Eqφ(z)DKL(qφ(u|z)‖p(u))−DKL(q(u)‖p(u)) = Iq(z;u) and

Iq(z;u) = DKL(qφ(z,u)‖q(u)qφ(z)) (15)

= DKL(
∑

x

qφ(z|x,u)q(x,u)‖q(u)
∑

x,u

qφ(z|x,u)q(x,u)) (16)
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Let q = βq1 + (1− β)q2, ∀β ∈ [0, 1], q1, q2. We have

Iq(z;u) = DKL(
∑

x

q(z|x,u)q(x,u)‖q(u)
∑

x,u

q(z|x,u)q(x,u))

≥ βDKL(
∑

x

q1(z|x,u)q(x,u)‖q(u)
∑

x,u

q1(z|x,u)q(x,u))

+ (1− β)DKL(
∑

x

q2(z|x,u)q(x,u)‖q(u)
∑

x,u

q2(z|x,u)q(x,u))

= βIq1(z;u) + (1− β)Iq2(z;u)

where we use the convexity of KL divergence in the inequality. Since DKL(q(u)‖p(u)) is independent of
qφ(z|x,u), both Iq(z;u) and Eqφ(z)DKL(qφ(u|z)‖p(u)) are convex in qφ(z|x,u).

Then we show that the problem has a feasible solution by construction. In fact, we can simply let qφ(z|x,u) = pθ(z)
be some fixed distribution over z, and pθ(x|z,u) = qφ(x|z,u) for all x,u. In this case, z and u are independent,
so DKL(qφ(z|x,u)‖pθ(z)) = 0 < ǫ1, DKL(qφ(u|z)‖p(u)) = 0 < ǫ2. This corresponds to the case where z is simply
random noise that does not capture anything in u.

Hence, Slater’s condition holds, which is a sufficient condition for strong duality.

B Experimental Setup Details

We consider the following setup for our experiments.

• For MIFR, we modify the weight for reconstruction error α = 1, as well as λ1 ∈ {0.0, 0.1, 0.2, 1.0, 2.0} and
λ2 ∈ {0.1, 0.2, 1.0, 2.0, 5.0} for the constraints, which creates a total of 52 = 25 configurations; λ1 values
smaller since high values of λ1 prefers solutions with low Iq(x; z|u).

• For L-MIFR, we modify ǫ1 and ǫ2 according to the estimated values for each dataset. This allows us to claim
results that holds for a certain hyperparameter in general (even as other hyperparameter change).

• We use the Adam optimizer with initial learning rate 1e−3 and β1 = 0.5 where the learning rate is multiplied
by 0.98 every 1000 optimization iterations, following common settings for adversarial training (Gulrajani
et al., 2017).

• For L-MIFR, we initialize the λi parameters to 1.0, and allow for a range of (0.01, 100).

• Unless otherwise specified, we update pψ(u|z) 10 times per update of qφ(z|x,u) and pθ(x|z,u).

• For Adult and Health we optimize for 2000 epochs; for German we optimize for 10000 epochs (since there are
only 1000 low dimensional data points).

• For both cases, we consider qφ(z|x,u), pθ(x|z,u), pψ(u|z) as a two layer neural networks with a hidden layer
of 50 neurons with softplus activations, and use z of dimension 10 for German and Adult, and 30 for Health.
For the joint of two variables (i.e. (x,u)) we simply concatenate them at the input layer. We find that our
conclusions are insensitive to a reasonable change in architectures (e.g. reduce number of neurons to 50 and
z to 25 dimensions).

C Comparison with LAFTR

Our work have several notable differences from prior methods (such as LAFTR (Madras et al., 2018)) that
make it hard to compare them directly. First, we do not assume access to the prediction task while learning the
representation, thus our method does not directly include the “classification error” objective. Second, our method
is able to deal with any type of sensitive attributes, as opposed to binary ones.

Nevertheless, we compare the performance of MIFR and LAFTR (Madras et al.) with the demographic parity
notion of fairness (measured by DeltaDP , lower is better). To make a fair comparison, we add a classification
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error to MIFR during training. MIFR achieves an accuracy of 0.829 and ∆DP of 0.037, whereas LAFTR achieves
an accuracy of 0.821 and ∆DP of 0.029. This shows that MIFR and LAFTR are comparable in terms of the
accuracy / fairness trade-off. MIFR is still useful for sensitive attributes that are not binary, such as Health,
which LAFTR cannot handle.

We further show a comparison of ∆DP , ∆EO, ∆EOpp between L-MIFR and LAFTR (Madras et al., 2018) on the
Adult dataset in Table 4, where L-MIFR is trained with the procedure in Section 5.6. While LAFTR achieves
better fairness on each notion if it is specifically trained for that notion, it often achieves worse performance on
other notions of fairness. We note that L-MIFR uses a logistic regression classifier, whereas LAFTR uses a one
layer MLP. Moreover, these measurements are also task-specific as opposed to mutual information criterions.

∆DP ∆EO ∆EOpp

L-MIFR 0.057 0.123 0.026
LAFTR-DP 0.029 0.244 0.027
LAFTR-EO 0.125 0.074 0.037

LAFTR-EOpp 0.098 0.154 0.022

Table 4: Comparison between L-MIFR and LAFTR on ∆DP , ∆EO, ∆EOpp metrics from (Madras et al., 2018).
While LAFTR achieves better fairness on individual notions if it is trained for that notion, it often trades that
with other notions of fairness.

D Extension to Equalized Odds and Equalized Opportunity

If we are also provided labels y for a particular task, in the form of Dl = {(xi,ui, yi)}
M
i=1, we can also use the

representations to predict y, which leads to a third condition:

3. Classification z can be used to classify y with high accuracy.

We can either add this condition to the primal objective in Equation 1, or add an additional constraint that we
wish to have accuracy that is no less than a certain threshold.

With access to binary labels, we can also consider information-theoretic approaches to equalized odds and equalized
opportunity (Hardt et al., 2016). Recall that equalized odds requires that the predictor and sensitive attribute are
independent conditioned on the label, whereas equalized opportunity requires that the predictor and sensitive
attribute are independent conditioned on the label being positive. In the case of learning representations for
downstream tasks, our notions should consider any classifier over z.

For equalized odds, we require that z and u have low mutual information conditioned on the label, which is
Iq(z,u|y). For equalized opportunity, we require that z and u have low mutual information conditioned on the
label y = 1, which is Iq(z,u)|y=1.

We can still apply the upper bounds similar to the case in C2. For equalized opportunity we have

Iq(z;u)|y=1 ≤ Eqφ(z,u,y|y=1)[DKL(qφ(u|z, y)‖p(u))]−DKL(q(u)‖p(u)) := IEO

≤ Eqφ(z,u,y|y=1)[DKL(qφ(u|z, y)‖p(u))]

For equalized odds we have

Iq(z;u|y) = q(1)Iq(z;u)|y=1 + q(0)Iq(z;u)|y=0 := IEOpp

≤ q(1)Eqφ(z,u,y|y=1)[DKL(qφ(u|z, y)‖p(u))] + q(0)Eqφ(z,u,y|y=0)[DKL(qφ(u|z, y)‖p(u))]

which can be implemented by using a separate classifier for each y or using y as input. If y is an input to the
classifier, our mutual information formulation of equalized odds does not have to be restricted to the case where y
is binary.


