
Revisiting Adversarial Risk

A Proof of Theorem 1

A.1 Intermediate Results

Before we present the proof of the Theorem, we present useful intermediate results which we require in our proof.
The following Lemmas present some monotonicity properties of the logistic loss.
Lemma 1. Let y be a discrete random variable such that

y =

(
1, with probability � 1

2 + �

�1, with probability  1
2 � �

,

for some � > 0. Let ⇠ = log 1+2�
1�2� and let z < ⇠ be a constant. Define h(u) as follows

h(u) = Ey[log(1 + e�y((1�u)z+u⇠))].

Then h(u) is a strictly decreasing function over the domain [0, 1).

Proof. Let p = P (y = 1). The derviative of h(u), w.r.t u is given by

h0(u) = p⇥ (z � ⇠)

1 + e(1�u)z+u⇠
+ (1� p)⇥ (⇠ � z)e(1�u)z+u⇠

1 + e(1�u)z+u⇠
.

We will now show that h0(u) < 0. Suppose p < 1 (otherwise it is easy to see that h0(u) < 0). Then
⇣

1+e(1�u)z+u⇠

⇠�z

⌘
⇥ h0(u) = �p+ (1� p)e(1�u)z+u⇠

= (1� p)
⇣
e(1�u)z+u⇠ � p

1�p

⌘

 (1� p)
�
e(1�u)z+u⇠ � e⇠

�

= (1� p)e⇠
�
e(1�u)(z�⇠) � 1

�

< 0.

Lemma 2. Let u, ⇠ be such that ⇠ > 0, u 2 [0, 1). Define functions h1(z), h2(z) as follows

h1(z) = log(1 + e�(1�u)z�u⇠)� log(1 + e�z).

h2(z) = log(1 + e+(1�u)z+u⇠)� log(1 + ez).

Then h1(z) is an increasing function over the domain (�1, ⇠) and h2(z) is a decreasing function over (�1, ⇠).

Proof. The derivative of h1(z) w.r.t z is given by

h0
1(z) = � 1� u

1 + e(1�u)z+u⇠
+

1

1 + ez
.

We will now show that h0
1(z) � 0.

h0
1(z) = � 1�u

1+e(1�u)z+u⇠ + 1
1+ez

� � 1
1+e(1�u)z+u⇠ + 1

1+ez

� � 1
1+ez + 1

1+ez

= 0

,

where the first inequality follows from the fact that u 2 [0, 1) and the second inequality follows from the fact
that z < ⇠. This shows that h1 is increasing over (�1, ⇠).

We use a similar argument to show that h0
2(z) is a decreasing function. Consider the derivative of h2(z) w.r.t z

h0
2(z) =

1� u

1 + e�(1�u)z�u⇠
� 1

1 + e�z
.
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We will now show that h0
2(z)  0.

h0
2(z) = 1�u

1+e�(1�u)z�u⇠ � 1
1+e�z

 1
1+e�(1�u)z�u⇠ � 1

1+e�z

 1
1+e�z � 1

1+e�z

= 0

,

This shows that h2 is decreasing over (�1, ⇠).

A.2 Main Argument

0/1 loss. We first prove the Theorem for 0/1 loss; that is, we show that any minimizer of R0�1(f)+�Radv,0�1(f)
is a Bayes optimal classifier. We prove the result by contradiction. Let f⇤ be a Bayes optimal classifier such that
sign(f⇤(x)) = g(x) a.e. Suppose f̂ is a minimizer of the joint objective. Let sign(f̂(x)) disagree with sign(f⇤(x))
over a set X of non-zero measure. We show that the joint risk of f̂ is strictly larger than f⇤.

First, we show that the standard risk of f̂ is strictly larger than f⇤:

R0�1(f̂)�R0�1(f⇤) = E(x,y)

h
`0�1(f̂(x), y)� `0�1(f⇤(x), y)

i

= Pr(x 2 X)⇥ E(x,y)

h
`0�1(f̂(x), y)� `0�1(f⇤(x), y)

���x 2 X
i

= Pr(x 2 X)⇥ Ex

h
Ey

h
`0�1(f̂(x), y)� `0�1(f⇤(x), y)

���x
i ���x 2 X

i

= Pr(x 2 X)⇥ Ex

h
P (y 6= sign(f̂(x))|x)� P (y 6= sign(f⇤(x))|x)

���x 2 X
i

> 0,

where the last inequality follows from the definition of Bayes optimal decision rule.

We now show that the adversarial risk of f̂ is larger than f⇤. Since the base classifier g agrees with f⇤ a.e. we
have

Radv,0�1(f
⇤) = E

2

64 max
k�k✏

g(x)=g(x+�)

`0�1 (f
⇤(x+ �), g(x))� `0�1 (f

⇤(x), g(x))

3

75 = 0.

Since Radv,0�1 of any classifier is always non-negative, this shows that Radv,0�1(f̂) � Radv,0�1(f⇤). Combining
this with the above result on classification risk we get

R0�1(f̂) + �Radv,0�1(f̂) > R0�1(f
⇤) + �Radv,0�1(f

⇤).

This shows that f̂ can’t be a minimizer of the joint objective and minimizer of joint objective should be a Bayes
optimal classifier.

Logistic Loss. We now consider the logistic loss and show that any minimizer of R(f) + �Radv(f) is a Bayes
optimal classifier. We again prove the result by contradiction. Let ⇠ = log 1+2�

1�2� . Suppose f̂ is a minimizer of
the joint objective and is not Bayes optimal. Define set X as

X = {x : f̂(x)g(x) < ⇠}.

Note that, since f̂ is not Bayes optimal, X is a set with non-zero measure. Construct a new classifier f̄ as follows

f̄(x) =

(
f̂(x), if x 62 X

f̂(x) + ⌧
⇣
⇠ � f̂(x)g(x)

⌘
g(x), otherwise

,

where ⌧ 2 (0, 1) is a constant. We now show that f̄ has a strictly lower joint risk than f̂ . This will then
contradict our assumption that f̂ is a minimizer of the joint objective.
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Let `adv(f, g,x) be the adversarial risk at point x, computed w.r.t base classifier g

`adv(f, g,x) = max
k�k✏

g(x)=g(x+�)

` (f(x+ �), g(x))� ` (f(x), g(x)) .

Define the conditional risk of f at x as

C(f,x) = Ey

h
`(f(x), y)

���x
i
+ �`adv(f, g,x).

Note that Ex [C(f,x)] is equal to the joint risk R(f) + �Radv(f). We now show that C(f̄ ,x)� C(f̂ ,x)  0, 8x.

Case 1. Let x 62 X. Then f̂(x) = f̄(x). So we have

C(f̄ ,x)� C(f̂ ,x) = �
⇣
`adv(f̄ , g,x)� `adv(f̂ , g,x)

⌘

 �

0

B@ max
k�k✏

g(x)=g(x+�)

`
�
f̄(x+ �), g(x)

�
� `

⇣
f̂(x+ �), g(x)

⌘
1

CA

= �max

8
><

>:
0, max

k�k✏,x+�2X
g(x)=g(x+�)

`
�
f̄(x+ �), g(x)

�
� `

⇣
f̂(x+ �), g(x)

⌘
9
>=

>;
= 0,

where the last equality follows from the observation that g(x)f̄(x+ �) � g(x)f̂(x+ �) and the logistic function
`(z) = log(1 + e�z) is a monotonically decreasing function.

Case 2. Let x 2 X. Then f̂(x) 6= f̄(x). Now, consider the difference C(f̄ ,x)� C(f̂ ,x):

C(f̄ ,x)� C(f̂ ,x) = Ey

h
`(f̄(x), y)� `(f̂(x), y)

���x
i

| {z }
T1

+�
⇣
`adv(f̄ , g,x)� `adv(f̂ , g,x)

⌘

| {z }
T2

.

We show that both T1, T2 are non-positive. Using the monotonicity property of logistic loss in Lemma 1, it is
easy to verify that T1 < 0. We now bound T2. First, observe that based on our construction of f̄(x) and our
definition of set X, we have

inf
x 62X

f̄(x)g(x) � sup
x2X

f̄(x)g(x), inf
x 62X

f̂(x)g(x) � sup
x2X

f̂(x)g(x).

Since the logistic loss `(z) = log(1+e�z) is monotonically decreasing in z, this shows that both the inner maxima
in T2 are achieved at �’s such that x+ � 2 X. Using this observation, T2 can be rewritten as

�

0

B@ max
k�k✏,x+�2X
g(x)=g(x+�)

`
�
f̄(x+ �), g(x)

�
� `

�
f̄(x), g(x)

�
1

CA� �

0

B@ max
k�k✏,x+�2X
g(x)=g(x+�)

`(f̂(x+ �), g(x))� `(f̂(x), g(x))

1

CA .

The above expression can be rewritten as

�

0

B@ max
k�k✏,x+�2X
g(x)=g(x+�)

`
�
f̄(x+ �), g(x)

�
� max

k�k✏,x+�2X
g(x)=g(x+�)

`(f̂(x+ �), g(x))

1

CA� �
⇣
`
�
f̄(x), g(x)

�
� `(f̂(x), g(x))

⌘
.

Note that `
�
f̄(x+ �), g(x)

�
in the above expression can equivalently be written as

`
⇣
(1� ⌧)f̂(x+ �) + ⌧⇠g(x), g(x)

⌘
. This shows that both `

�
f̄(x+ �), g(x)

�
and `(f̂(x + �), g(x)) in the

above expression are monotonically decreasing in g(x)f̂(x + �) and as a result the maximum of both the inner
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objectives is achieved at a � which minimizes g(x)f̂(x + �). Let �x be the point at which the maxima is
achieved. Then the above expression can be written as

T2 = �
⇣
`
�
f̄(x+ �x), g(x)

�
� `(f̂(x+ �x), g(x))

⌘
� �

⇣
`
�
f̄(x), g(x)

�
� `(f̂(x), g(x))

⌘
.

From Lemma 2 we know that `
�
f̄(x), g(x)

�
�`(f̂(x), g(x)) is an increasing function in f̂(x)g(x). Since f̂(x)g(x) �

f̂(x+ �x), g(x+ �x), we have
T2  0.

Combining the bounds for T1 and T2 we obtain C(f̄ ,x)�C(f̂ ,x) < 0, for any x 2 X. This shows that f̄(x) has a
strictly lower joint risk than f̂ . So f̂ can’t be a minimizer of the joint risk. This finishes the proof of Theorem 1.

B Proof of Theorem 2

The proof follows from the proof of Theorem 3, because under the margin condition Hadv,0�1(f) is equivalent to
Gadv,0�1(f) when the label y is a deterministic function of x.

C Proof of Theorem 3

0/1 loss. We first prove the Theorem for 0/1 loss. We use a similar proof strategy as Theorem 1 and prove
the result by contradiction. Let ⌘(x) be a Bayes decision rule which satisfies the margin condition. Let f⇤ be a
Bayes optimal classifier such that sign(f⇤(x)) = ⌘(x) a.e. Suppose f̂ is a minimizer of the joint objective. Let
sign(f̂(x)) disagree with sign(f⇤(x)) over a set X of non-zero measure. From the proof of Theorem 1 we know
that R0�1(f̂)�R0�1(f⇤) > 0.

We now show that f̂ has a larger adversarial risk than f⇤. From the definition of Gadv,0�1(f⇤) we have

Gadv,0�1(f⇤) = E(x,y)


max
k�k✏

`0�1 (f
⇤(x+ �), y)� `0�1 (f

⇤(x), y)

�
.

From margin condition in Equation (5) we know that 8x, k�k  ✏, sign(f⇤(x + �)) = ⌘(x + �) = ⌘(x). So
Gadv,0�1(f⇤) = 0.

Since Gadv,0�1 of any classifier is always non-negative, this shows that Gadv,0�1(f̂) � Gadv,0�1(f⇤). Combining
this with the above result on classification risk we get

R0�1(f̂) + �Gadv,0�1(f̂) > R0�1(f
⇤) + �Gadv,0�1(f

⇤).

This shows that f̂ can’t be a minimizer of the joint objective. This shows that any minimizer of Equation (7) is
a Bayes optimal classifier.

Logistic loss. To prove the Theorem for logistic loss, we heavily rely on some of the intermediate results we
proved for Theorem 1. Let ⇠ = log 1+2�

1�2� . Suppose f̂ is a minimizer of the joint objective and is not Bayes
optimal. Define set X as

X = {x : f̂(x)⌘(x) < ⇠}.
Note that X is a set with non-zero measure. Construct f̄ as follows

f̄(x) =

(
f̂(x), if x 62 X

f̂(x) +
⇣
⇠ � f̂(x)⌘(x)

⌘
⌧⌘(x), otherwise

,

where ⌧ 2 (0, 1) is a constant. We now show that f̄ has a strictly lower joint risk than f̂ .

Define the conditional risk of f at x as

C(f,x) = Ey

h
`(f(x), y)

���x
i
+ �Ey


max
k�k✏

` (f(x+ �), y)� ` (f(x), y)
���x
�
.

We consider two cases, x 2 X and x 62 X, and show that in both the cases f̄ has a lower conditional risk than f̂ .
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Case 1. Let x 62 X. Then f̂(x) = f̄(x). So we have

C(f̄ ,x)� C(f̂ ,x) = �E

max
k�k✏

`
�
f̄(x+ �), y

�
� max

k�k✏
`
⇣
f̂(x+ �), y

⌘ ���x
�

= �P (y = ⌘(x)|x)

max
k�k✏

`
�
f̄(x+ �), ⌘(x)

�
� max

k�k✏
`
⇣
f̂(x+ �), ⌘(x)

⌘�

| {z }
T1

+�P (y = �⌘(x)|x)

max
k�k✏

`
�
f̄(x+ �),�⌘(x)

�
� max

k�k✏
`
⇣
f̂(x+ �),�⌘(x)

⌘�

| {z }
T2

Using the margin condition on ⌘(x), and using the same technique as in proof of Case 1 of Theorem 1, we can
show that T1  0. Since both the inner maxima in T2 are achieved at x+ � 62 X, it is easy to verify that T2 = 0.
This shows that 8x 62 X,C(f̄ ,x)� C(f̂ ,x)  0.

Case 2. Let x 2 X. Let `adv(f,x, y) be the adversarial risk at point (x, y)

`adv(f,x, y) = max
k�k✏

` (f(x+ �), y)� ` (f(x), y) .

We have

C(f̄ ,x)� C(f̂ ,x) = E
h
`(f̄(x), y)� `(f̂(x), y)

���x
i

| {z }
T3

+�Ey

h
`adv(f̄ ,x, y)� `adv(f̂ ,x, y)

i

| {z }
T4

.

From the proof of Case 2 of Theorem 1 we know that T3 < 0. We now show that T4  0. Let px = P (y = ⌘(x)|x).
T4 can be decomposed as follows

px
⇣
`adv(f̄ ,x, ⌘(x))� `adv(f̂ ,x, ⌘(x))

⌘

| {z }
T5

+(1� px)
⇣
`adv(f̄ ,x,�⌘(x))� `adv(f̂ ,x,�⌘(x))

⌘

| {z }
T6

.

Following the proof of Case 2 of Theorem 1 and using the margin condition we can show that T5  0. We now
show that T6  0. First observe that both the suprema in T6 either occur at the same point. Suppose both the
suprema in T6 occur outside X. Then T6 is given by

T6 = `(f̂(x),�⌘(x))� `(f̄(x),�⌘(x))  0.

Suppose both the suprema occur inside X. Then using the observation that `(f̄(x),�⌘(x)) � `(f̂(x),�⌘(x)) is
a decreasing function of f̂(x)⌘(x) (see Lemma 2), we get T6  0.

D Proof of Theorem 4

For any Bayes decision rule ⌘(x), let X⌘ be the set of points which violate the margin condition

X⌘ = {x : 9x̃, kx̃� xk  ✏ and ⌘(x̃) 6= ⌘(x)} .

Since no Bayes decision rule satisfies the margin condition, we have Pr(x 2 X⌘) > 0, 8⌘. Let p = inf⌘ Pr(x 2 X⌘).

We first consider the joint risk R0�1(f)+�Gadv,0�1(f). To prove the Theorem we show that there exist classifiers
which obtain strictly lower joint risk than any Bayes optimal classifier. Let f⇤ : Rd ! R be any Bayes optimal
classifier, with the corresponding Bayes decision rule ⌘(x) = sign(f⇤(x)). We first obtain a lower bound on
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Gadv,0�1(f⇤). Consider the following

Gadv,0�1(f⇤) � Pr(x 2 X⌘)⇥ E(x,y)

"
sup

k�k✏
`0�1 (f

⇤(x+ �), y)� `0�1 (f
⇤(x), y)

���x 2 X⌘

#

� Pr(x 2 X⌘)⇥ Ex

"
P (y = ⌘(x)|x)

 
sup

k�k✏
`0�1 (f

⇤(x+ �), ⌘(x))� `0�1 (f
⇤(x), ⌘(x))

!���x 2 X⌘

#

� Pr(x 2 X⌘)

2
Ex

"
sup

k�k✏
`0�1 (f

⇤(x+ �), ⌘(x))� `0�1 (f
⇤(x), ⌘(x))

���x 2 X⌘

#

� Pr(x 2 X⌘)

2
� p

2

where the third inequality follows from the fact that P (y = ⌘(x)|x) � 1
2 and the fourth inequality follows from

the observation that any x 2 X⌘ violates the margin condition. This gives us the following lower bound on the
joint risk of f⇤

R0�1(f
⇤) + �Gadv,0�1(f

⇤) � �p

2
. (9)

Now consider the “constant” classifier f�1 which assigns all the points to the negative class. This classifier has 0
adversarial risk. So its joint risk can be upper bounded as follows

R0�1(f�1) + �Gadv,0�1(f�1)  1. (10)

Equations (9), (10) show that 8� > 2
p , there exist classifiers with strictly lower joint risk than any Bayes

optimal classifier. Using the same argument we can show that similar results hold for the other joint risk
R0�1(f) + �Hadv,0�1(f).

E Proofs of Section 6

Here we present the proofs of Section 6. To begin with, we first present a result which characterizes the standard
and adversarial risk for the mixture model.
Theorem 10. Suppose the perturbations are measured w.r.t L1 norm. Let w 2 Rp

be a linear separator and

moreover suppose the base classifier g(x) is the Bayes optimal decision rule. Then, for any linear classifier

fw(x) = wTx, we have that

1. R0�1(fw) = �
⇣
�wTw⇤

�||w||2

⌘
,

2. Gadv,0�1(fw) = �
⇣

||w||1✏�wTw⇤

�||w||2

⌘
,

3. Radv,0�1(fw)  �
⇣

||w�w⇤||1✏�(w�w⇤)Tw⇤

�||w�w⇤||2

⌘
,

where �(·) is the CDF of the standard normal distribution.

Proof. To see the first part, we begin by observing that wTx is a univariate normal random variable when
conditioned on the label y, one can derive the 0-1 error for the classifier in closed form. In particular,

R0�1(fw) = 1� 1

2
�

✓
wTw⇤

� ||w||2

◆
� 1

2
�

✓
wTw⇤

� ||w||2

◆
= 1� �

✓
wTw⇤

� ||w||2

◆
= �

✓
�wTw⇤

� ||w||2

◆

Following the existing definition of adversarial risk, we see that

Gadv,0�1(f) = E


max
�:||�||1✏

`0�1(f(x+ �), y)

�
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We consider the case of y = 1. We know that x|y = 1 ⇠ N (w⇤,�2Id). So, x = w⇤ + z, where z ⇠ N (0,�2Id).
Now, for any z, we incur a loss of 1, whenever there exists a � such that ||�||1  ✏ and,

wT (x+ �) = wT (w⇤) +wT (z) +wT �  0,

As long as z is such that, wT z  ||w||1 ✏ �wTw⇤, we will always incur a penalty. Now, wT z ⇠ N (0,�2 ||w||22),
therefore, Pr(wT z  ||w||1 ✏�wTw⇤) = �(

||w||1✏�wTw⇤

||w||2�
). Symmetric argument holds for y = �1. Hence, we get

that,

Gadv,0�1(fw) = �

✓
||w||1 ✏�wTw⇤

||w||2 �

◆

Now to prove the third claim, we have that

• Suppose y = 1, then x = w⇤ + z where z ⇠ N (0,�2Id). Suppose w⇤Tx > 0.

• Then, for a given z, we will incur a penalty if z satisfies the following constraints:

– We have that wTx = wTw⇤ +w⇤T z > 0.
– There exists a � s.t. ||�||1  ✏, such that,

w⇤T (x+ �) > 0 and wT (x+ �) < 0

– Note that whenever the above event happens, the following also happens:

(w �w⇤)T (x+ �) = (w �w⇤)T (z) + (w �w⇤)T (w⇤) + (w �w⇤)T � < 0

Now, for a given z, (w�w⇤)T (z) ⇠ N (0, ||w �w⇤||22)�2. Also, as long as z is such that (w�w⇤)T (z) 
||w �w⇤||1 ✏� (w �w⇤)Tw⇤, we will incur a penalty. This event happens with probability,

�

✓
||w �w⇤||1 ✏� (w �w⇤)Tw⇤

� ||w �w⇤||2

◆

This establishes the upper bound.

E.1 Proof of Theorem 5

We use the same notation as in the proof of Theorem 10. Let R⇤ = R0�1(fw⇤). Using Theorem 10, we can write
the excess 0-1 risk of w as:

R0�1(fw)�R⇤ = �

0

BB@�
||w⇤||22

�

✓q
||w⇤||22 + 1

◆
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Next, we lower bound the adversarial risk. Suppose that y = 1, then we have that x = w⇤ + zS + zSc . Similarly,
let w = wS + wSc . In our case, wS = w⇤ and wSc = ↵ = [ ±1p

d�k
, ±1p

d�k
, . . . , ±1p

d�k
]T . Then, we have that

wTx = w⇤Tw⇤ +w⇤T zS +↵T zSc .

• Consider the Event ↵T zSc > �w⇤Tw⇤ �w⇤T zS This is the event that w,w⇤ agree before perturbation.
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• Consider the Event B,
↵T zSc < ||↵||1 ✏�w⇤Tw⇤ �w⇤T zS

This is the event that there exists a perturbation restricted to the subspace Sc such that, wT (x + �) < 0.
Note that since the perturbation is restricted to Sc, w⇤’s prediction doesn’t change.

• Now for the probability that both events happen:

– Observe that A = (↵T zSc +w⇤T z) ⇠ N (0,�2(||↵||22 + ||w⇤||22)).
– So, the probability of both events happening is that the random variable �w⇤Tw⇤  A  ||↵||1 ✏ �
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– Now, for ✏ = 2 ||w⇤||22 /
p
d� k, we get that the probability that both events happens is:
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– Now, for w⇤Tw⇤

�
p

(||↵||22+||w⇤||22)
= 2, Radv,0�1(f) > 0.95

– Note that ||↵||22 = 1. Therefore for � = 1, we get that ||w⇤||22 = 2 + 2 ⇤
p
2.

– At this value, we have that excess 0-1 risk < 0.02, which completes the proof.

E.2 Proof of Theorem 6

We know that w⇤ = [1/
p
d/2, 1/

p
d/2, . . . , 1/

p
d/2] 2 Rp. When restricted to only top half co-ordinates, it is

easy to see that w = [1/
p
d/2, . . . , 1/

p
d/2| {z }

d/2

, 0, . . . , 0] is the optimizer of the standard risk. For this setting, from

Theorem 10, we get that,

R0�1(fw⇤) = �(�
p
2) = 0.07, R0�1(fw) = �(�1) = 0.16

Hence, we have that R0�1(fw) � R0�1(fw⇤) < 0.1. Now, to get a lower bound on the adversarial risk of w,
consider the perturbations of the form � = [�✏,�✏, . . . ,�✏| {z }

d/2

, ✏, ✏, . . . , ✏]. Note that for such a perturbation �, we

have that,

w⇤Tx = w⇤T (x+ �) and wT (x+ �) = wTx� ✏

r
d

2

Now, suppose y = 1. Then, x = w⇤ + z, where z ⇠ N (0, Id). For this, we have that,

w⇤T (x) = w⇤Tw⇤ +w⇤T z = 2 +wT
1:d/2z1:d/2| {z }

A

+wT
1:d/2zd/2:d| {z }

B

,

On the other hand, wTx = wTw⇤ +wT z = 1 +wT
1:d/2z1:d/2| {z }

A

. Consider the event such that

w⇤Tx > 0 & wTx > 0 & wT (x+ �) < 0.

This is the event that x is such that both of w and w⇤ agree before, but after adding the perturbation � the
prediction of w changes. Following the form of �, this event can be rewritten as:

w⇤Tx > 0 & wTx > 0 & wT (x) < ✏
p
d/2
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Rewriting this event in terms of the random variables A and B, we get the equivalent event,

2 +A+B > 0 & A+ 1 > 0 & A+ 1 < ✏
p
d/2,

where A and B are independent and zero-mean unit variance gaussians, i.e. A,B ⇠ N (0, 1). We just need to
lower bound the probability of this event. Consider the distribution of A conditioned on A + B > �2, suppose
its CDF is F , then the probability of the event above is F (✏

p
d/2 � 1) � F (�1). Now, to derive an expression

for F ,

F (a) = P (A  a|(A+B) > �2) =
P (A  a & ((A+B) > �2))

P ((A+B) > �2)
,

Using that A+B ⇠ N (0, 2), we get

F (a) = (1� �(�
p
2)))

Z a

�1
P (B > �2� u)�(u)du

where �(·) and �(·) are the cdf and pdf of standard normal. Hence, we get that for a suitable constant ✏ � C/
p
d

the probability of this event is lower bounded by 0.95.

E.3 Proof of Theorem 7

Suppose gradient descent is initialized at w0. Let wt be the tth iterate of GD. Note that the gradients of
the loss function are always in the span of the covariates xi. Hence, any iterate of gradient descent lies in
w0 + span({xi}ni=1). Let S be the indices corresponding to the non-zero entries in w⇤. Since the covariates lie
in a low dimensional subspace and are 0 outside the subspace, the co-ordinates of wt satisfy the invariant,

wt
Sc = w0

Sc .

Moreover, since we initialized w0 using a random gaussian initialization with covariance 1p
d�k

Id, we know that
with high probability, ����w0

Sc

����
1
=

p
d� k and

����w0
Sc

����
2
= O(1)

Next, we lower bound the adversarial risk. Suppose we fix y = 1, then we have that for any x = w⇤ + zS . Note
that zcS = 0.

We can rewrite the ŵGD = w = wS +wSc|{z}
=↵

where wS is the component in the low dimensional mixture subspace,

and ↵ is the component in the complementary subspace Sc. As stated above, since the covariates lie in a low
dimensional subspace, hence, the component in the complementary subspace doesn’t get updated. Therefore,
↵ = w0

Sc .

Now, for any x, we have that

ŵT
GDx = wTx

= wT (w⇤ + zS + zSc|{z}
=0

)

= wT
Sw

⇤ +wT
S zS

• Consider the event wT
S zS > �wT

Sw
⇤. This is the event that w,w⇤ agree before perturbation.

• Consider the event B such that,
wT

S zS < ||↵||1 ✏�wT
Sw

⇤

This is the event that there exists a perturbation restricted to the subspace Sc such that, the prediction of
ŵGD changes, i.e. wT (x+ �) < 0. Note that since the perturbation is restricted to Sc, the prediction of w⇤

doesn’t change.

• Hence, both events happen if
�wT

Sw
⇤  wT

S zS  ||↵||1 ✏�wT
Sw

⇤
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• To bound this probability, observe that wT
S zS ⇠ N (0,�2 ||wS ||22). Hence,

Pr
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• We know that from our initialization, ||↵||1 =
����w0
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1
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d� k. Hence, for ✏ = 2wT

Sw
⇤/(
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d� k), we get

that both the events happen with probability,
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• Since as gradient descent progresses, wS ! w⇤, this implies that for � = 1, and ||wS ||2 = 2, we have that
Radv,0�1(wS) > 0.95 for a very small ✏ such that ✏ = Cp

d�k
, where C > 0 is a small constant.

Plugging this into Theorem 10, we recover the result.

F Proof of Theorem 8

1. First note that f(x+ �) can be written as

f(x+ �) = f(x) +

Z 1

t=0
rf(x+ t�)T �dt.

Rearranging the terms gives us:

|f(x+ �)� f(x)| 
����
Z 1

t=0
rf(x+ t�)T �dt

����  ✏ sup
k�k✏

krf(x+ �)k⇤.

Let u(x) = ✏ supk�k✏ krf(x+ �)k⇤. Since the loss ` is 1-Lipschitz, we can upper bound `(f(x+ �), y) as

`(f(x+ �), g(x))� `(f(x), g(x))  |f(x+ �)� f(x)|  ✏ sup
k�k✏

krf(x+ �)k⇤.

So we have the following upper bound for the objective in Equation (4)

R(f) + �Radv(f)  R(f) + ✏�E
"
sup

k�k✏
krf(x+ �)k⇤

#
. (11)

2. We now get a different upper bound for |`(f(x+ �), g(x+ �))� `(f(x), g(x))| in terms of kf � gk1. Since
` is 1-Lipschitz we have

|`(f(x+ �), g(x+ �))� `(f(x), g(x))|  |f(x+ �)g(x+ �)� f(x)g(x)|.

Note that |f(x)g(x)| can be upper bounded by |f(x)� g(x)|. This gives us the following bound

|`(f(x+ �), g(x+ �))� `(f(x), g(x))|  |f(x)� g(x)|+ |f(x+ �)� g(x+ �)|

Substituting this in the definition of Radv(f) gives us the following upper bound for the objective in Equation (4)

R(f) + �Radv(f)  R(f) + 2�kf � gk1. (12)

Combining Equations (11), (12) gives us the required result.
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G Proof of Theorem 9

The proof of part (a) and upper bound of part (b) of the Theorem follow from the proof of Theorem 8. Here,
we focus on proving the lower bound of part (b). The adversarial risk used in Equation (7) can be rewritten as

Gadv(fw) = E
"
sup

k�k✏
`
�
wT (x+ �), y

�
� `

�
wTx, y

�
#
.

Since `
�
wT (x+ �), y

�
is maximized at a point where ywT (x+ �) is minimized, we get the following expression

for Gadv(fw)
Gadv(fw) = E

⇥
`
�
wTx� y✏kwk⇤, y

�
� `

�
wTx, y

�⇤
.

We now obtain a lower bound for Gadv(fw)

Gadv(fw) = P (ywTx  0)⇥ E
h
`
�
wTx� y✏kwk⇤, y

�
� `

�
wTx, y

� ���ywTx  0
i
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h
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�
� `

�
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i

� P (ywTx  0)⇥ E
h
`
�
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�
� `

�
wTx, y

� ���ywTx  0
i
.

(13)

Consider the logistic loss `(z) = log 1 + e�z. For z < 0, the absolute value of derivative of logistic loss is greater
than 1

2 . This shows that for (x, y) such that ywTx  0, we have

`
�
wTx� y✏kwk⇤, y

�
� `

�
wTx, y

�
� 1

2
✏kwk⇤.

This completes the proof of the Theorem. Substituting this in the above lower bound for the adversarial risk
Gadv(fw), we get

Gadv(fw) � 1

2
✏R0�1(fw)kwk⇤.

H Experimental Settings

In all our experiments we use the following network architectures:

MNIST. For all our experiments on MNIST, we use 1 hidden layer neural network with ReLU activations. To
control the capacity of the network we vary the number of hidden units.

CIFAR10. For all our experiments on CIFAR10, we use VGG11 network. To control the capacity of the
network we scale the number of units in each layer. By a capacity scale of ↵, we mean that we use ↵ times the
number of units in each layer of original VGG network.

PGD Training. In all our experiments we measure adversarial perturbations w.r.t L1 norm and use projected
gradient descent as our adversary. For PGD training on MNIST, we optimize the inner maximization problem for
50 iterations with step size 0.01. For PGD training on CIFAR10, we optimize the inner maximization problem
for 15 iterations with step size 0.005. The outer minimization is run for 40 epochs for MNIST and 50 epochs for
CIFAR10 and we use SGD+momentum with learning rate 0.01 and batch size 128.

Computation of adversarial risk. We use adversarial examples generated by PGD to compute the adver-
sarial risk of a classifier. The hyper-parameter settings are the same as the one used for PGD training.


