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Abstract

Learning a set of weights to combine views
linearly forms a series of popular schemes in
multi-view learning. Three weight learning
paradigms, i.e., Norm Regularization (NR),
Exponential Decay (ED), and p-th Root Loss
(pRL), are widely used in the literature, while
the relations between them and the limiting
behaviors of them are not well understood
yet. In this paper, we present a Unified
Paradigm (UP) that contains the aforemen-
tioned three popular paradigms as special
cases. Specifically, we extend the domain of
hyper-parameters of NR from positive to real
numbers and show this extension bridges NR,
ED, and pRL. Besides, we provide detailed
discussion on the weights sparsity, hyper-
parameter setting, and counterintuitive lim-
iting behavior of these paradigms. Further-
more, we show the generality of our technique
with examples in Multi-Task Learning and
Fuzzy Clustering. Our results may provide in-
sights to understand existing algorithms bet-
ter and inspire research on new weight learn-
ing schemes. Numerical results support our
theoretical analysis.

1 Introduction

In recent years, several methods to analyze multi-view
data have been proposed. These methods learn from
data by considering the diversity and complementary
of different views. We can easily obtain data with mul-
tiple views from multiple sources or from different fea-
ture subsets [XTX13]. For example, we can identify a
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person by face, fingerprint, signature or iris with infor-
mation obtained from multiple sources and we can rep-
resent an image by its color or texture features, which
can be seen as different feature subsets of the image.

A direct way to integrate multi-view data is to con-
catenate all the feature vectors into a long one and
perform single view algorithm on the long vectors.
But this concatenation causes overfitting in the case
of a small size of training sample and is not physi-
cally meaningful since each view has a specific statis-
tical property [XTX13]. Smarter strategies should be
considered to fully exploit the multiple views of multi-
view data. Several works have been done and many
of them prefer to construct a similarity graph for ev-
ery view and then linearly combine these graphs to
build a unified one [KM13, CNCH13, NCL17]. For in-
stance, we use linear combination S =

∑n
i=1 αiA

(i) to
learn the new similarity graph S ∈ Rn×n from {A(i)},
where A(i) ∈ Rn×n is the affinity graph built from the
i-th view [NLL16]. Recently, some work on multi-view
learning under the PAC-Bayes framework has been
done [GMA18, Goy18, GMGA17, SSTM17], in which
the normalized combination weights are supposed to
be the posterior distribution.

Since the weights {αi}ni=1 in above settings dominate
the performance of algorithms, better and smarter
strategy to set these weights is of cardinal significance.
Due to predetermined and fixed weights are hard to
tune, not adaptive to data, and often have unsatisfied
performance, we often prefer to learn these weights
out directly from data. There are several paradigms
in the literature to learn these weights and detailed
discussions are provided in the next subsection.

1.1 Problem Statement

The basic weight learning framework for linear combi-
nation of views considered in this paper is that

min
x∈S,α

n∑
i=1

αifi(x) s.t.

n∑
i=1

αi = 1, αi ≥ 0
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where fi(x) is a problem specific function and S
is the domain of x. In multi-view learning, fi(x)
should be the loss function for the i-th view, e.g.,
the quadratic smoothness penalty Tr(F⊤L(i)F) and
x should be the task dependent variable, e.g., spec-
tral embedding F ∈ Rn×k, where L(i) is the Graph
Laplacian [Chu97] of the i-th view and k is the num-
ber of clusters. Often, a probability simplex constraint∑n

i=1 αi = 1, αi ≥ 0 is applied to the weights {αi}ni=1

to make them normalized and have somewhat prob-
ability meaning. Sometimes one may concern the ob-
jective function with additional regularization term for
x, e.g.,

∑n
i=1 αifi(x) + λR(x). In that case, use the

new domain set S ′ := {x|x ∈ S,R(x) ≤ µ} and the
regularization term vanishes.

However, above basic framework has a trivial solution
with respect to {αi}ni=1 [KM13], that is αi = 1 if i =
argmink fk(x) and it is 0 otherwise (to see it, note
that the objective function is linear with respect to
{αi}ni=1 and use the Proposition B.19 of [Ber99]). This
trivial solution makes the basic framework inapplicable
in practice, since the learned weights is too sparse to
make full use of the multi-view information contained
in {fi(x)}ni=1.

To overcome this over-sparse problem, several ap-
proaches were proposed:

Exponential Decay. It has been widely used
[HYZ+18, LJL+15, LJW+17, WCLC15, XWL16,
ZHWZ16, XLW+15, TL12, TL10, XTMZ10] to obtain
dense solution by an additional exponential decay fac-
tor γ.

min
x∈S,α

n∑
i=1

αγ
i fi(x) s.t.

n∑
i=1

αi = 1, αi ≥ 0,

where γ ≥ 1 is the decay hyper-parameter to tune.
Note that when γ = 1, the exponential decay reduces
to the over-sparse problem.
Example 1. The following problem is a multi-view
embedding model, termed Multiview Spectral Embed-
ding (MSE) [XTMZ10], which is not recently proposed
but simple enough to demonstrate the Exponential De-
cay paradigm:

min
F⊤F=I

α≽0,α⊤1=1

c∑
i=1

αγ
i Tr

(
F⊤L(i)F

)
,

where c is the number of views, L(i) ∈ Rn×n is the
Laplacian of the i-th view and F ∈ Rn×k (k is the
number of clusters) is the learned spectral embedding.
This embedding F is a new representation of original
data and can be used for clustering or retrieval.

Norm Regularization. Another popular sparse re-
straining technique is to regularize the linear combi-

nation with a ℓ2 norm. This paradigm is also quite
popular among researchers [KM13, ZNHY17, ZHJ+17,
CRNA14, XWL16, KR15]. While the ℓ2 norm is
widely used, it can be generalized to ℓq norm with
q ≥ 1:

min
x∈S,α

n∑
i=1

αifi(x) + λαq
i s.t.

n∑
i=1

αi = 1, αi ≥ 0,

where λ ≥ 0 controls the sparsity of the solution
{αi}ni=1. Note that when q = 1, the norm regular-
ization reduces to the over-sparse problem.
Example 2. A semi-supervised Learning method for
multi-view data, named Sparse Multiple Graph Inte-
gration (SMGI) [KM13], fits into the Norm Regular-
ization paradigm. SMGI learns weighs to linearly com-
bine multiple graphs from given labels. The objective
of SMGI is

min
F,α≽0

α⊤1=1

c∑
i=1

(
αi

Zi
Tr
(
F⊤L(i)F

)
+ λ1α

2
i

)
+λ2∥F−Y∥2F ,

where Y ∈ Rn×k is the given labels. The “sparse” in
the name of SMGI refers to the sparsity of optimal
weights {αi}ci=1, which will be discussed in Section 4.1.

p-th Root Loss. A relatively new weight learn-
ing paradigm [NLL16, NCL17, SWF+17, XNL+17,
NTL18] considers the p-th root of {fi(x)}ni=1, where
the weights {αi}ni=1 are implicitly and adaptively de-
fined. Formally, the p-th Root Loss paradigm solves
minx

∑n
i=1

√
fi(x), or more generally, for 0 < p ≤ 1,

min
x

n∑
i=1

fi(x)
p.

It is shown in [NLL16] that above optimization prob-
lem can be viewed as an adaptively weighted problem,
minx∈S,α

∑n
i=1 αifi(x) with αi =

p
fi(x)1−p .

Example 3. The framework Auto-weighted Multiple
Graph Learning (AMGL) proposed in [NLL16] is aim
for both multi-view clustering and multi-view semi-
supervised learning. For simplicity, we only present
the optimization problem for clustering, that is

min
F⊤F=I

c∑
i=1

√
Tr
(
F⊤L(i)F

)
.

In the analysis of [NLL16], the authors introduce dy-
namical and implicit weights {αi}ni=1, which are de-
fined by αi := 1/

(
2
√
F⊤L(i)F

)
. With these implicit

weights, the authors show the objective function of
AMGL can be reformulated as

∑n
i=1 αiTr

(
F⊤L(i)F

)
.

But it is somewhat unnatural and vague to analyze with
such implicit weights. It is of interest to seek an ex-
plicit linear combination expression for it.
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While these three weight learning paradigms are
widely used in the literature and have shown their
effectiveness on multi-view learning, it is of interest
to ask following questions:

1. Are there any connections between these three
paradigms?

2. Do we really need three, rather than one, distinct
paradigms to learn these weights?

1.2 Contributions and Paper Outline

In this paper, we address these questions by estab-
lishing the connections between aforementioned three
weight learning schemes and presenting a unified
weights learning paradigm for multi-view learning. In
the new paradigm, the above three schemes, ED, NR,
and pRL, are framed as special cases. The main con-
tributions and paper outline are listed as follows:

• We present a Unified Paradigm (UP) contains NR,
ED, and pRL as special cases and show connec-
tions between them in Section 2.

• We provide some interesting observations concern-
ing the relation of weights sparsity and the hyper-
parameter, the counterintuitive limiting behav-
ior of ED, and some interesting reformulations of
Fuzzy C-Means in Section 4.

• We show the generality of our technique by pro-
viding Multi-Task Learning example that can be
fitted into the proposed paradigm in Section 4.4.

• Numerical results are given to validate our theo-
retical results in Section 5.

Notations. Most of the notations used in this paper
are standard. We use ∥x∥p = (

∑n
i=1 x

p
i )

1/p for ℓp norm
and omit the subscript p when p = 2. Set of indexed
elements is denoted by {xi}ni=1. The trace of a matrix
is denoted by Tr(X) =

∑n
i=1 xii. In the whole paper,

we will assume fi(x) ≥ 0,∀x, which is often the case
in the multi-view learning literature.

2 The Unified Paradigm

In this section, we first introduce some useful notions
and then present the newly proposed paradigm.

2.1 Preliminaries

We first introduce some notions.
Definition 1 (x-partial equivalence). We write

min
x,α

f1(x, α) ≃x min
x,α

f2(x, α)

if and only if

argx min
x,α

f1(x, α) = argx min
x,α

f2(x, α).

Remark 1. It is easy to see that the partial equiv-
alence is transitive with respect to x, which means
that we can say minx,α f1(x, α) ≃x minx,α f3(x, α),
if we have minx,α f1(x, α) ≃x minx,α f2(x, α) and
minx,α f2(x, α) ≃x minx,α f3(x, α).
Remark 2. The motivation for us to use the par-
tial equivalence is that sometimes we actually do not
care about the exact value of learned weights, since the
learned x rather than {αi}ni=1 is the final learning re-
sult. Suppose two multi-view learning algorithms get
the same linear combined Laplacian L =

∑n
i=1 αiL

(i)

with different {αi}ni=1. It is difficult to tell which one
learns better. Thus, partial equivalence is quite suitable
for such situations.
Definition 2 (Power mean). Denote the order p gen-
eralized mean of set {xi}ni=1 by

Mp({xi}) := p

√√√√ 1

n

n∑
i=1

xp
i .

The family of power means (a.k.a. generalized means)
include the classical Pythagorean means, i.e., Arith-
metic (p = 1), Geometric (p = 0), and Harmonic
means (p = −1), as special cases. The Power mean
inequality, which also contains the Pythagorean means
inequality, is as follows.
Lemma 1 (Power mean inequality [Bul13]). Given
p < q, we have

p

√√√√ 1

n

n∑
i=1

xp
i = Mp({xi}) ≤ Mq({xi}) = q

√√√√ 1

n

n∑
i=1

xq
i .

Specially,

M−∞({xi}) = min
i
{xi}, M+∞({xi}) = max

i
{xi},

M0({xi}) =
n∏

i=1

n
√
xi.

2.2 The Unified Paradigm

Given λ, q ∈ R, the new unified paradigms for multi-
view learning is

min
x∈S,α≽0

α⊤1=1

n∑
i=1

αifi(x) + λαq
i .

It seems that our new unified paradigm has no differ-
ence from the NR. But note that in the new model,
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the hyper-parameters q and λ take values from the
whole set of real numbers, which means that one can
set λ < 0 or q < 0. This may seem weird at the first
glance, since it is unusual to set the hyper-parameter
λ to be negative. It will be clear in the next subsec-
tion that this domain extension of hyper-parameters
bridges NR, ED, and pRL.

Though λ and q can be chosen as arbitrary real num-
bers, we will not consider the situations that make
the optimization problem non-convex with respect to
{αi}ni=1, e.g., λ > 0 and 0 < q < 1. The reader may
have concerns here since regularization with ∥ · ∥q, 0 <
q < 1 is widely used in the literature. But note that
such kind of regularization is often named sparsity-
inducing penalty [BJM+12], whose main purpose is to
promote the sparsity of the weights {αi}ni=1. On the
contrary, over-sparse is the main obstacle to be over-
come in our problem setting. Therefore, we use the
opposite, i.e., λ < 0 and 0 < q < 1, which leads to a
convex optimization problem with respect to {αi}ni=1

and has the density-inducing effect.

2.3 Main Theory

In this subsection, we establish connections between
NR, ED, pRL, and the newly proposed unified
paradigm, that is, different hyper-parameter regions
make UP become NR, ED, or pRL. Our main results
can be framed into Table 1 and summarized into fol-
lowing theorem:
Theorem 1. It holds that

1. If γ > 1, q = 1
γ , then there exists λ < 0 such that

min
x∈S,α≽0

α⊤1=1

n∑
i=1

αifi(x)+λαq
i ≃x min

x∈S,α≽0

α⊤1=1

n∑
i=1

αγ
i fi(x).

2. If 0 < p < 1, 1
p + 1

q = 1, then there exists λ > 0
such that q < 0 and

min
x∈S,α≽0

α⊤1=1

n∑
i=1

αifi(x) + λαq
i ≃x min

x∈S

n∑
i=1

fi(x)
p.

3. Given q ̸= 0, there exists λ with q < 0 < λ or
λ < 0 < q < 1 such that

min
x∈S,α≽0

α⊤1=1

n∑
i=1

αifi(x) + λαq
i ≃x min

x∈S
M q

q−1
({fi(x)}).

Remark 3. Several remarks can be made.

• The point 1 in Theorem 1 establishes connections
between ED and UP, which indicates that an ED-
type model can be rewritten as its equivalent reg-
ularization form. To the best of our knowledge,

this regularization-type equivalence is previously
unknown and lots of existing ED model [HYZ+18,
LJL+15, LJW+17, WCLC15, XWL16, ZHWZ16,
XLW+15, TL12, TL10] can be framed into the
regularization framework accordingly. Meanwhile,
this connection reveals that some not well-known
regularization term, e.g, −√

αi has been widely
used implicitly, e.g., in the form of ED with γ = 2.

• The connection between pRL and UP is revealed
in the point 2 of Theorem 1, which indicates
that the composition of the p-th root and original
loss, i.e.,

∑n
i=1 fi(x)

p, has an equivalent regular-
ization form, that is, the linear combination of
original loss and an additional special regulariza-
tion term, e.g.,

∑n
i=1

√
fi(x) ≃x

∑n
i=1 αifi(x) +

λα−1
i . Meanwhile, this equivalent regularization

form provides an explicit weight learning model
for the dynamic weight interpretation in [NLL16]
(see Example 3).

• In the point 3 of Theorem 1, it shows that when
q < 0 < λ or λ < 0 < q < 1, UP is equivalent
to a power mean minimization problem with spe-
cific order. This reformulation allows one to use
power mean inequality (Lemma 1) to investigate
the limit behavior of UP, ED, and pRL, while in
their original form the limiting behavior may not
be easy to see or even misleading. For example, a
commonly believe in the literature [TL12, ZDF17]
is that when γ → +∞, ED will become Arith-
metic Mean minimization. But in Section 4.2 we
will show it should be Geometric Mean rather than
Arithmetic Mean.

3 Proof Sketch

Theorem 4 Theorem 3

Theorem 2

Theorem 1

Theorem 5

Lemma 5
Lemma 4Lemma 3

Lemma 2

Figure 1: Flowchart of the proofs.

In this section, we present the proof sketch for the
Theorem 1. The main ideas and technical lemmas are
given while the rigorous technical proofs of them are
deferred to the appendix.
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Table 1: Summarization of relations between ED, NR, pRL, and the Unified Paradigm (UP).∑
i αifi(x) + λαq

i λ < 0 λ > 0

q > 1 Non-Convex Norm Regularization (
∑n

i=1 αifi(x) + λαq
i )

0 < q < 1 Exponential Decay (
∑n

i=1 α
γ
i fi(x)) Non-Convex

q < 0 Non-Convex p-th Root Loss (
∑n

i=1 fi(x)
p)

The main difficulty to analyze the optimization prob-
lem

min
x,α⊤1=1,α≽0

n∑
i=1

αifi(x) + λαq
i

is the probability constraint α⊤1 = 1. Our strategy is
that we first show the results hold without α⊤1 = 1,
then show that there exists λ such that putting the
constraint back does not change the results.

Instead of analyzing the unified model directly, we first
consider a less constrained version by removing the
constraint

∑n
i=1 αi = 1.

Theorem 2 (Less constrained). It holds that

• If γ > 1, q = 1
γ , and λ < 0, then 0 < q < 1 and

min
x∈S,α≽0

n∑
i=1

αifi(x)+λαq
i ≃x min

x∈S,α≽0

α⊤1=1

n∑
i=1

αγ
i fi(x).

• If 0 < p < 1, 1
p+

1
q = 1, and λ > 0, then q < 0 and

min
x∈S,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x∈S

n∑
i=1

fi(x)
p.

Theorem 2 contains two equivalence relations. One
of these relations is easy to establish while the other
needs more steps. But for both of these relations, a
reformulation of the unified model will be helpful.
Lemma 2. Let

C =

(
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

.

Then, we have

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x
C ·

n∑
i=1

fi(x)
q

q−1 .

Evaluate C in Lemma 2 with 0 < p < 1 and 1
p + 1

q =
1. One of the equivalence relation in Theorem 2 just
follows:
Theorem 3. Given 0 < p < 1, 1

p + 1
q = 1, then q <

0 < λ and

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x

n∑
i=1

fi(x)
p.

To get the other part of Theorem 2, we first establish
the connection between the unified model and power
mean.
Lemma 3. Given λ < 0 < q < 1, then

∑n
i=1 αifi(x)+

λαq
i is convex with respect to {αi}ni=1 and

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x
Mc({fi(x)}),

where c = q
q−1 .

Then, we show that ED is also partial equivalent to
the power mean minimization.
Lemma 4. Let γ > 1. Then,

min
α⊤1=1,α≽0

n∑
i=1

αγ
i fi(x) ≃x min

x
M 1

1−γ
({fi(x)}).

Combining Lemma 3 and 4 with q = 1
γ , we have

Theorem 4. Let γ > 1, q = 1
γ , λ < 0. Then,

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x,α

n∑
i=1

αifi(x) + λαq
i .

which justifies the second part of Theorem 2.

To get Theorem 1, we need to consider the effectiveness
of the constraint

∑n
i=1 αi = 1. We first make a key

observation on the ineffectiveness of |λ| in the following
lemma, which may be interesting on its own:
Lemma 5 (Ineffectiveness of |λ|). Given q < 0 < λ
or λ < 0 < q < 1, we have

min
x,α≽0

n∑
i=1

αifi(x)+λαq
i ≃x min

x,α≽0

n∑
i=1

αifi(x)+sgn(λ)·αq
i .

It seems unusual that the absolute value of hyper-
parameter λ has no effect on the optimal x. But note
that the objective function of ED or pRL has only one
hyper-parameter to tune, i.e., γ in ED or p in pRL,
while the corresponding form of the less constrained
unified model has two, i.e., λ and q. Therefore, if the
equivalence between ED, pRL, and the less constrained
unified model really holds, the ineffectiveness of |λ| is
reasonable enough.



A Unified Weight Learning Paradigm for Multi-view Learning

Finally, we complete the chain of proofs for Theorem
1 by showing that there exists λ such that the proba-
bilistic simplex constraint

∑n
i=1 αi = 1 can be safely

put back.
Theorem 5 (Ineffectiveness of α⊤1 = 1). Given q <
0 < λ or λ < 0 < q < 1, there exists λ′ such that

min
x,α≽0

n∑
i=1

αifi(x)+λαq
i ≃x min

x,α≽0,α⊤1=1

n∑
i=1

αifi(x)+λ′αq
i .

Putting all together proves Theorem 1.

4 Discussion

In this section, we provide interesting observations
on the relation of weights sparsity and the hyper-
parameter, the counterintuitive limiting behavior of
ED, and some interesting reformulations of Fuzzy C-
Means.

4.1 Sparsity in NR

Among the three components of UP, one cannot use
ED or pRL to obtain sparse {αi}ni=1. That is to say,
for ED and pRL, we always have ∀i = 1, . . . , n, αi >
0. But for NR, if we set hyper-parameters λ and q
carefully, we will have sparse {αi}ni=1 [KM13].

Thus, it is of great interest to set proper hyper-
parameters to obtain desired sparsity. For example,
if we want ∥α∥0 = k, what is the proper γ and q that
makes the optimal weights k-sparse? In this subsec-
tion, we provide a recommendation strategy on the
setting of λ and q.

For simplicity, consider following problem with fixed
constants {xi}ni=1 and assume x1 ≤ x2 ≤ · · · ≤ xn:

min
α≽0,α⊤1=1

n∑
i=1

αixi + λαq
i ,

where λ > 0 and q > 1. We have following relation
between sparsity and the hyper-parameters.
Theorem 6. If hyper-parameters λ and q satisfy

1

q

(
k∑

i=1

(xk − xi)
1

q−1

)q−1

≤ λ ≤ 1

q

(
k∑

i=1

(xk+1 − xi)
1

q−1

)q−1

,

then the optimal α∗ of above problem has ∥α∗∥0 = k.
Remark 4. Theorem 6 is a generalization of the result
in [NWH14] which is only valid for q = 2. If we set q =
2, our result is consistent with [NWH14]. It is notable
that when q = 2, the optimal Lagrange multiplier for
the equation constraint has a closed-form expression,
which was used in the proof of [NWH14]. But for the
general case q > 1 in our case, there is no closed-form
optimal multiplier expression.

Remark 5. It is notable that in practice, we cannot
know {xi}ni=1 in advance, since it usually has xi =
fi(x

∗). Therefore, one can use a heuristics to update
the hyper-parameter γ iteratively. Specifically, update
γ(t) with the x(t) from the last round.

4.2 ED and pRL Revisited

While the Exponential Decay technique has been
widely used in the literature, the limiting behavior of it
has not been well understood. Intuitively, one might
conjecture [TL12, ZDF17] that the learned {αγ

i }ni=1

tends to be asymptoticly equal when γ → +∞ and ED
solves the Arithmetic Mean, i.e., minx

1
n

∑n
i=1 fi(x) in

that case. In this subsection, we show that this con-
jecture is false. Counterintuitively, when γ → +∞,
solving ED is equivalent to solve the Geometric Mean
of {fi(x)}ni=1 rather than Arithmetic Mean. Formally,
we have:
Corollary 1. Given γ → +∞, we have

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x

n∏
i=1

n
√

fi(x).

Proof. From Lemma 4, we know

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x
M 1

1−γ
({fi(x)}).

When γ → +∞, we have 1
1−γ → 0−, which indicates

that

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x
M0({fi(x)}).

Using the power mean inequality in Lemma 1, we
get M0({fi(x)}) =

∏n
i=1

n
√

fi(x), which completes the
proof.

It is easy to see from Corollary 1 that when γ → ∞,
generally, the learned {αγ

i }ni=1 are not asymptoticly
equal. Similarly, one can get the limiting behavior of
pRL when p → 0 as follows:
Corollary 2. Given p → 0, we have

min
x,α

n∑
i=1

fi(x)
p ≃x min

x

n∏
i=1

n
√

fi(x).

Proof. When 0 < p < 1, it is easy to see

min
x,α

n∑
i=1

fi(x)
p≃xmin

x,α

(
1

n

n∑
i=1

fi(x)
p

)1
p

≃xmin
x

Mp({fi(x)}).

When p → 0, we have minx,α
∑n

i=1 fi(x)
p ≃x

minx M0({fi(x)}). Using the power mean inequality in
Lemma 1, we get M0({fi(x)}) =

∏n
i=1

n
√
fi(x), which

completes the proof.
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From above two corollaries, we know when γ →
+∞, p → 0, ED and pRL solve the Geometric Mean
of {fi(x)}ni=1. But sometimes minimizing the Geomet-
ric Mean is inconvenient. Following corollary shows
the equivalence of the additional logarithmic loss and
limiting ED and pRL.

Corollary 3. Given γ → +∞, p → 0, we have

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x

n∑
i=1

log fi(x) ≃x min
x,α

n∑
i=1

fi(x)
p.

Proof. When γ → +∞, p → 0, from Corollary 2 and
1, we know

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x
M0({fi(x)}) ≃x min

x,α

n∑
i=1

fi(x)
p.

Notice that

minx M0({fi(x)}) ≃x minx
∑n

i=1 log fi(x),

which completes the proof.

Remark 6. Note that in the Corollary 3 the logarithm
of
∑n

i=1 log fi(x) is written without base. Actually, us-
ing the logarithmic identity loga b = logc b

logc a to change
the base, one can easily validate that any base for the
logarithm makes Corollary 3 hold.

4.3 K-Means and Fuzzy C-Means

K-Means [FHT01] and Fuzzy C-Means [BEF84] are
popular models for clustering analysis. They both aim
to partition n observations into k clusters. The differ-
ence between them is that Fuzzy C-Means performs
soft clustering, in which each data point can belong to
multiple clusters, while K-Means performs hard clus-
tering. The optimization objective of K-Means and
Fuzzy C-Means can be written as [BEF84]:

(K-Means): min
m,α≽0

α⊤1=1

n∑
i=1

k∑
j=1

αij ∥xi −mj∥2 ,

(Fuzzy C-Means): min
m,α≽0

α⊤1=1

n∑
i=1

k∑
j=1

α2
ij ∥xi −mj∥2 .

Using the relation between ED and the power mean in
Lemma 4, the objective of K-Means (γ = 1 in ED) and
Fuzzy C-Means (γ = 2 in ED) can be reformulated as

(K-Means): min
m

n∑
i=1

M−∞

({
∥xi −mj∥2

}k

j=1

)

≃x min
m

n∑
i=1

min
{
∥xi −mj∥2

}k

j=1
,

(Fuzzy C-Means): min
m

n∑
i=1

M−1

({
∥xi −mj∥2

}k

j=1

)

≃x min
m

n∑
i=1

(
1∑k

j=1 1/∥xi −mj∥2

)
.

It is easy to see that K-Means minimizes the minimal
squared distance between every data point xi and all
k prototypes, while Fuzzy C-Means minimizes the har-
monic mean of these distances. That is to say, Fuzzy
C-Means is equivalent to K-Harmonic Means [ZHD99].
Remark 7. It is notable that the equivalence between
Fuzzy C-Means and K-Harmonic Means has been dis-
covered in [ZF10]. But our results is more general and
can provide more equivalent forms. For example, sim-
ply using the point 1 in Theorem 2, one can get a reg-
ularization form Fuzzy C-Means, which is previously
unknown. Specifically, following problem is equivalent
to Fuzzy C-Means:

(RegFCM): min
m,α≽0

n∑
i=1

k∑
j=1

αij ∥xi −mj∥2 −
√
αij

where −√
αij is the regularization term and we use

Lemma 5 to eliminate the hyper-parameter λ. Gener-
ally, for objective function with form

∑n
i=1 α

γ
i fi(x), its

regularization form is
∑n

i=1 αifi(x)− q
√
αi with q = 1

γ .

4.4 Further Applications

As you may see in Section 4.3, our results are not lim-
ited in multi-view learning and they can be used in
many topics whose objectives are linear combination
of fixed functions over the space of inputs and weights.
In this subsection, we provide example in multi-task
learning [NHL18] that can be framed with the Unified
Paradigm.
Example 4 (Multi-Task Feature Learning). Inspired
by the Calibrated Multivariate Regression (CMR)
[LWZ14], a multi-task feature learning method with cal-
ibration was proposed in [GZFY14], which calibrates
each task by considering the different noise levels of
all tasks. The objective is given by

min
W∈Rd×c

c∑
i=1

∥Xiwi − yi∥+
(
λ1∥W∥1,2 +

λ2

2
∥W∥2F

)
,

where Xi ∈ Rni×d is the data matrix and yi ∈ Rni

is the response vector for the i-th task, W ∈ Rd×c is
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Table 2: Experimental results of UP on MSRCv1.
Unified Paradigm

λ 0.6000 1.0000 3.0000 9.0000 26.6313 -27.4316 -10.0000 -4.0000 -3.0000 -30.0000
q -0.8100 -0.6100 -0.4100 -0.2100 -0.0100 0.0100 0.2100 0.4100 0.6100 0.8100

NMI 0.7561 0.7521 0.7561 0.7561 0.7544 0.7544 0.7612 0.7539 0.7544 0.7612

Table 3: Experimental results of AMGL and MSE on MSRCv1.
AMGL (q = p/(p− 1)) MSE (q = 1/γ)

λ′ 0.0958 0.1740 0.3531 0.9377 26.6313 -27.4316 -1.7225 -1.0514 -0.7921 -0.6252
q -0.8100 -0.6100 -0.4100 -0.2100 -0.0100 0.0100 0.2100 0.4100 0.6100 0.8100

NMI 0.7539 0.7478 0.7539 0.7478 0.7544 0.7544 0.7070 0.6173 0.6139 0.5485

the learned feature, and ∥W∥1,2 =
∑d

j=1 ∥wj∥ with
wj being the j-th row of W. Note that the calibration
in above multi-task model is from the use of ℓ2 norm
∥Xiwi − yi∥ rather than squared norm ∥Xiwi − yi∥2,
which fits into the p-th Root Loss paradigm. Specifi-
cally, its Unified Paradigms form (λ > 0, q = −1) is

min
W∈Rd×c

α≽0,α⊤1=1

c∑
i=1

αi∥Xiwi−yi∥2+
λ

αi
+λ1∥W∥1,2+

λ2

2
∥W∥2F .

5 Numerical Evidence

In this section, we provide numerical evidence for the
correctness of our theoretical results. In particular, we
conduct experiments on multi-view clustering task and
compare the performance of pRL, ED, and UP.

Here we provide the details on the setting of experi-
ments1. For the ED and pRL paradigms, we choose
the MSE [XTMZ10] (see Example 1) and the AMGL
[NLL16] (see Example 3), respectively. In the exper-
iments, we use the MSRCv1 dataset [WJ05] and the
experiments setting follows [NTL18]. The commonly
used Normalized Mutual Information (NMI) is chosen
as the performance measure. All models in our exper-
iments are solved with alternating minimization strat-
egy. Specifically, for the weights learning subproblem,
the ED paradigm (MSE) has a closed-form solution
(Lemma 6, see appendix); the pRL paradigm (AMGL)
is solved with the Iterative Re-weighted strategy (used
in [NLL16]); the UP paradigm is solved with the CVX
[GB14, GB08] since the subproblem is convex and has
very few variables.

The experimental results are reported in Table 2 and 3.
We use the columns with q = ±0.0100 to demonstrate
the proposed paradigm UP contains the three weight
learning paradigms as special cases. Others columns

1See https://github.com/icety3/unified-paradigm

show that UP can achieve better performance than ED
and pRL with properly chosen λ. The λ′ of ED/pRL
is computed by running ED/pRL first and recording
the optimal function objective {fi(x∗)}ni=1. From the
proof of Theorem 5, we can see

λ′ = −sgn(q)
(∑n

i=1

(
fi(x

∗)
|q|

)1/(q−1)
)q−1

.

We close this section by making several observations
from Table 2 and 3:

• UP can reproduce results from NR, ED, and pRL.
• For ED and pRL, the corresponding λ′ is not op-

timal and can be easily improved by tuning λ.
• For almost all γ in ED and p in pRL, the perfor-

mance can be improved by solving UP with proper
λ.

• When using UP in practice, the computed λ′ can
be used as an initial value for tuning.

6 Conclusion

In this paper, we present a unified paradigm for learn-
ing weights to linearly combine multiple views. The
unified paradigm contains three widely used weight
learning paradigms, i.e., ED, NR, and pRL, as spe-
cial cases. We provide interesting observations on the
setting of the hyper-parameter, the counterintuitive
limiting behavior of ED, and present some interesting
reformulations. Besides, we believe that our results
may inspire further research on new weight learning
schemes and be useful in understanding existing al-
gorithms. We conduct numerical simulation and the
results support our theoretical analysis well.
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Appendix

A Flowchart of Proofs

Theorem 4 Theorem 3

Theorem 2

Theorem 1

Theorem 5

Lemma 5
Lemma 4Lemma 3

Lemma 2

Figure 2: Flowchart of the proofs.

B Deferred Proofs

Lemma 2. Let

C =

(
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

.

Then, we have

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x
C ·

n∑
i=1

fi(x)
q

q−1 .

Proof. Fix x, set the gradient with respect to α to zero and consider the nonnegative constraint. We have

α∗
i =

(
max

{
−fi(x)

λq
, 0

}) 1
q−1

.

It follows that

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i

≃x min
x

n∑
i=1

((
max

{
−fi(x)

λq
, 0

}) 1
q−1

· fi(x) + λ

(
max

{
−fi(x)

λq
, 0

}) q
q−1

)

≃x min
x

n∑
i=1

((
max

{
−1

λq
, 0

}) 1
q−1

· fi(x)
q

q−1 + λ

(
max

{
−1

λq
, 0

}) q
q−1

· fi(x)
q

q−1

)

≃x min
x

((
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

)
·

n∑
i=1

fi(x)
q

q−1 ,

which completes the proof.

Theorem 3. Given 0 < p < 1, 1
p + 1

q = 1, then q < 0 < λ and

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x

n∑
i=1

fi(x)
p.
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Proof. Note that q = p
p−1 < 0 since 0 < p < 1. Thus, we have(

max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

=

(
−1

λq

) 1
q−1
(
1− 1

q

)
> 0.

Using Lemma 2 and p = q
q−1 , we have

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i

≃x min
x

((
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

)
·

n∑
i=1

fi(x)
q

q−1

≃x min
x

n∑
i=1

fi(x)
q

q−1 ≃x min
x

n∑
i=1

fi(x)
p,

which completes the proof.

Lemma 3. Given λ < 0 < q < 1, then
∑n

i=1 αifi(x) + λαq
i is convex with respect to {αi}ni=1 and

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x
Mc({fi(x)}),

where c = q
q−1 .

Proof. Notice that given λ < 0 < q < 1,(
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

=

(
−1

λq

) 1
q−1
(
1− 1

q

)
< 0.

Using Lemma 2 and q−1
q < 0, we have

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i

≃x min
x

((
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

)
·

n∑
i=1

fi(x)
q

q−1

≃x max
x

n∑
i=1

fi(x)
q

q−1 ≃x min
x

(
n∑

i=1

fi(x)
q

q−1

) q−1
q

≃x min
x

Mc({fi(x)}),

which completes the proof.

Lemma 4. Let γ > 1. Then,

min
α⊤1=1,α≽0

n∑
i=1

αγ
i fi(x) ≃x min

x
M 1

1−γ
({fi(x)}).

Proof. Using the inequality (1) in Lemma 6 and 1
γ + 1

s = 1, we have − s
γ = 1

1−γ and

min
x,α⊤1=1,α≽0

n∑
i=1

αγ
i fi(x) ≃x min

x

(
n∑

i=1

fi(x)
− s

γ

)− γ
s

≃x min
x

(
n∑

i=1

fi(x)
1

1−γ

)1−γ

≃x min
x

M 1
1−γ

({fi(x)}),

which completes the proof.
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Theorem 4. Let γ > 1, q = 1
γ , λ < 0. Then,

min
x,α

n∑
i=1

αγ
i fi(x) ≃x min

x,α

n∑
i=1

αifi(x) + λαq
i .

Proof. The strategy is showing that l.h.s ≃x minx Mc1({fi(x)}) with Lemma 4 and r.h.s ≃x minx Mc2({fi(x)})
with Lemma 3. Then comparing c1 with c2 gives the result.

Specifically, given γ > 1, applying Lemma 4, we have c2 = 1
1−γ . Meanwhile, we get λ < 0 < q = 1

γ < 1 from
γ > 1. Applying Lemma 3, we have c1 = q

q−1 . Comparing c1 and c2 with p = 1
γ , the result just follows.

Lemma 5 (Ineffectiveness of |λ|). Given q < 0 < λ or λ < 0 < q < 1, we have

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x,α≽0

n∑
i=1

αifi(x) + sgn(λ) · αq
i .

Proof. If q < 0 < λ or λ < 0 < q < 1, then

C1 :=

(
max

{
−1

λq
, 0

}) 1
q−1

+ λ

(
max

{
−1

λq
, 0

}) q
q−1

=

(
−1

λq

) 1
q−1
(
1− 1

q

)
C2 :=

((
max

{
−1

sgn(λ)q
, 0

}) 1
q−1

+ λ

(
max

{
−1

sgn(λ)q
, 0

}) q
q−1

)
=

(
−1

sgn(λ)q

) 1
q−1
(
1− 1

q

)
.

It is easy to see sgn(C1) = sgn(C2). Thus, applying Lemma 2, we have

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x
C1 ·

n∑
i=1

fi(x)
q

q−1 ≃x min
x

C2 ·
n∑

i=1

fi(x)
q

q−1 min
x,α≽0

n∑
i=1

αifi(x) + sgn(λ) · αq
i ,

which completes the proof.

Theorem 5 (Ineffectiveness of α⊤1 = 1). Given q < 0 < λ or λ < 0 < q < 1, there exists λ′ such that

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x,α≽0,α⊤1=1

n∑
i=1

αifi(x) + λ′αq
i .

Proof. The key idea is that we show the effect of the additional constraint α⊤1 = 1 can be cancelled by setting
a particular λ′ which satisfies sgn(λ) = sgn(λ′).

Specifically, denote by x∗ the optimal x in minx,α≽0

∑n
i=1 αifi(x)+λαq

i . Also, since q < 0 < λ or λ < 0 < q < 1,
let

C :=

n∑
i=1

(
max

{
−fi(x

∗)

λq
, 0

}) 1
q−1

=

n∑
i=1

(
−fi(x

∗)

λq

) 1
q−1

.

Then, consider a new problem

min
x,α≽0,α⊤1=C

n∑
i=1

αifi(x) + λαq
i = min

x

(
min

α≽0,α⊤1=C

n∑
i=1

αifi(x) + λαq
i

)
︸ ︷︷ ︸

g(x)

.

Now, for g(x), there will be

1. x ̸= x∗ ⇒ g(x) ≥ g(x∗) (since the constraint α⊤1 = C may be active),

2. x = x∗ ⇒ g(x) = g(x∗) (by definition).
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Therefore, if we know C in advance, we can say

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x,α≽0,α⊤1=C

n∑
i=1

αifi(x) + λαq
i .

Let βi =
αi

C , λ′ = λCq−1. Then,

min
x,α≽0

n∑
i=1

αifi(x) + λαq
i ≃x min

x,β≽0,β⊤1=1

n∑
i=1

βifi(x) + λ′βq
i ,

which indicates that the only thing left is to find the oracle C for λ′. A straightforward calculation gives

λ′ = λCq−1 = λ

(
n∑

i=1

(
−fi(x

∗)

λq

) 1
q−1

)q−1

= −sgn(q)

(
n∑

i=1

(
fi(x

∗)

|q|

)1/(q−1)
)q−1

.

Using Lemma 5, the proof completes.

Lemma 6 (Exponential Decay). Let γ > 1. Then the optimal α∗ for problem

min
α⊤1=1,α≽0

n∑
i=1

αγ
i fi(x) is α∗

i =
fi(x)

1
1−γ∑n

j=1 fj(x)
1

1−γ

.

Proof. The key idea is cancelling the αi with the Hölder’s inequality (Lemma 7).

Note that, for γ > 1 and 1
γ + 1

s = 1, we have

(
n∑

i=1

αγ
i fi(x)

) 1
γ
(

n∑
i=1

fi(x)
− s

γ

) 1
s

≥

(
n∑

i=1

αi · fi(x)
1
γ · fi(x)−

1
γ

)
=

(
n∑

i=1

αi

)
= 1,

which indicates
n∑

i=1

αγ
i fi(x) ≥

(
n∑

i=1

fi(x)
− s

γ

)− γ
s

, (1)

where the r.h.s is constant with respect to {αi}ni=1.

Thus, when αi ∝ fi(x)
1

1−γ , the equality holds. Combining with the constraint
∑n

i=1 αi = 1, we reach α∗
i =

fi(x)
1

1−γ /(
∑n

j=1 fj(x)
1

1−γ ), which completes the proof.

Theorem 6. If hyper-parameters λ and q satisfy

1

q

(
k∑

i=1

(xk − xi)
1

q−1

)q−1

≤ λ ≤ 1

q

(
k∑

i=1

(xk+1 − xi)
1

q−1

)q−1

,

then the optimal α∗ of above problem has ∥α∗∥0 = k.

Proof. Note that the objective of NR can be reformulated as

min
α≽0,α⊤1=1

1

γ

n∑
i=1

αixi + αp
i .

The Lagrangian of the reformulated NR can be written as

L(α, η, β) = 1

γ

n∑
i=1

αixi + αp
i − η

(
n∑

i=1

αi − 1

)
−

n∑
i=1

βiαi.
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Taking the gradient with respect to αi, gives

∇αi
L =

xi

γ
+ pαp−1

i − η − βi.

Setting the right-hand side to zero and using the complementary slackness condition, we get αi with

αi = p1/(1−p) max(0, η − xi/γ)
1/(p−1).

Therefore, if we want a k-sparse solution in {αi}ni=1, it should hold
xk

γ
≤ η ≤ xk+1

γ
.

Meanwhile, we would say
k∑

i=1

αi =

k∑
i=1

p1/(1−p)(η − xi/γ)
1/(p−1) = 1.

That is
k∑

i=1

(η − xi/γ)
1/(p−1) = p1/(p−1).

From the box bound for η, we have(
xk − xi

γ

)1/(p−1)

≤
(
η − xi

γ

)1/(p−1)

≤
(
xk+1 − xi

γ

)1/(p−1)

.

Summing up with i = 1 . . . k, using
∑k

i=1(η − xi/γ)
1/(p−1) = p1/(p−1), we have

n∑
i=1

(
xk − xi

γ

)1/(p−1)

≤ p1/(p−1) ≤
n∑

i=1

(
xk+1 − xi

γ

)1/(p−1)

.

With rearrangement, we obtain

1

p

(
k∑

i=1

(xk − xi)
1

p−1

)p−1

≤ γ ≤ 1

p

(
k∑

i=1

(xk+1 − xi)
1

p−1

)p−1

,

which completes the proof.

C Technical Lemmas

Lemma 1 (Power mean inequality [Bul13]). Given p < q, we have

p

√√√√ 1

n

n∑
i=1

xp
i = Mp({xi}) ≤ Mq({xi}) = q

√√√√ 1

n

n∑
i=1

xq
i .

Specially,
M−∞({xi}) = min

i
{xi}, M+∞({xi}) = max

i
{xi},

M0({xi}) =
n∏

i=1

n
√
xi.

Lemma 7 (Hölder’s inequality [HLP52]). For p > 1, q > 1 and 1
p + 1

q = 1, we have

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

,

when there exists c ̸= 0 such that |xi|p = c · |yi|q for all i = 1, . . . , n, the equality holds.
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