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Abstract

Stochastic optimization techniques are stan-
dard in variational inference algorithms.
These methods estimate gradients by ap-
proximating expectations with independent
Monte Carlo samples. In this paper, we ex-
plore a technique that uses correlated, but
more representative, samples to reduce vari-
ance. Specifically, we show how to generate
antithetic samples with sample moments that
match the population moments of an under-
lying proposal distribution. Combining a dif-
ferentiable antithetic sampler with modern
stochastic variational inference, we showcase
the effectiveness of this approach for learning
a deep generative model. An implementation
is available at https://github.com/mhw32/

antithetic-vae-public.

1 Introduction

A wide class of problems in science and engineering can
be solved by gradient-based optimization of function
expectations. This is especially prevalent in machine
learning (Schulman et al., 2015), including variational
inference (Ranganath et al., 2014; Rezende et al., 2014)
and reinforcement learning (Silver et al., 2014). On the
face of it, problems of this nature require solving an in-
tractable integral. Most practical approaches instead
use Monte Carlo estimates of expectations and their
gradients. These techniques are unbiased but can suf-
fer from high variance when sample size is small—one
unlikely sample in the tail of a distribution can heav-
ily skew the final estimate. A simple way to reduce
variance is to increase the number of samples; how-
ever the computational cost grows quickly. We would
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like to reap the positive benefits of a larger sample size
using as few samples as possible. With a fixed compu-
tational budget, how do we choose samples?

A large body of work has been dedicated to reduc-
ing variance in sampling, with the most popular in
machine learning being reparameterizations for some
continuous distributions (Kingma and Welling, 2013;
Jang et al., 2016) and control variates to adjust for esti-
mated error (Mnih and Gregor, 2014; Weaver and Tao,
2001). These techniques sample i.i.d. but perhaps it
is possible to choose correlated samples that are more
representative of their underlying distribution? Sev-
eral such non-independent sampling approaches have
been proposed in statistics. In this work we investi-
gate antithetics, where for every sample we draw, we
include a negatively correlated sample to minimize the
distance between sample and population moments.

The key challenges in applying antithetic sampling to
modern machine learning are (1) ensuring that anti-
thetic samples are correctly distributed such that they
provide unbiased estimators for Monte Carlo simula-
tion, and (2) ensuring that sampling is differentiable
to permit gradient-based optimization. We focus on
stochastic variational inference and explore using an-
tithetics for learning the parameters for a deep gen-
erative model. Critically, our method of antithetic
sampling is differentiable and can be composed with
reparametrizations of the underlying distributions to
provide a fully differentiable sampling process. This
yields a simple and low variance way to optimize the
parameters of the variational posterior.

Concisely, our contributions are as follows:

• We review a method to to generate Gaussian vari-
ates with known sample moments, then apply it
to antithetics, and generalize it to other families
using deterministic transformations.

• We show that differentiating through the sam-
pling computation improves variational inference.

• We show that training VAEs with antithetic sam-
ples improves learning across objectives, posterior
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families, and datasets.

2 Background

2.1 Variational Inference and Learning

Consider a generative model that specifies a joint
distribution pθ(x, z) over a set of observed variables
x ∈ Rm and stochastic variables z ∈ Rd parameter-
ized by θ. We are interested in the posterior distri-

bution pθ(z|x) = pθ(x|z)p(z)
p(x) , which is intractable since

p(x) =
∫
z
p(x, z)dz. Instead, we introduce a varia-

tional posterior, qφ(z|x) that approximates pθ(z|x) but
is easy to sample from and to evaluate.

Our objective is to maximize the likelihood of the data
(the “evidence”), log pθ(x). This is intractable so we
optimize the evidence lower bound (ELBO) instead:

log pθ(x) ≥ Eqφ(z|x)[log
pθ(x, z)

qφ(z|x)
] (1)

The VAE (Kingma and Welling, 2013; Rezende et al.,
2014) is an example of one such generative model
where pθ(x|z) and qφ(z|x) are both deep neural net-
works used to parameterize a simple likelihood (e.g.,
Bernoulli or Gaussian).

Stochastic Gradient Estimation Since φ can im-
pact the ELBO (though not the true marginal likeli-
hood it lower bounds), we jointly optimize over θ and
φ. The gradients of the ELBO objective are:

∇θELBO = Eqφ(z|x)[∇θ log pθ(x, z)] (2)

∇φELBO = ∇φEqφ(z|x)[log
pθ(x, z)

qφ(z|x)
] (3)

Eqn. 2 can be directly estimated using Monte Carlo
techniques. However, as it stands, Eqn. 3 is difficult
to approximate as we cannot distribute the gradient
inside the expectation. Luckily, if we constrain qφ(z|x)
to certain families, we can reparameterize.

Reparameterization Estimators Reparameteri-
zation refers to isolating sampling from the gradi-
ent computation graph (Kingma and Welling, 2013;
Rezende et al., 2014). If we can sample z ∼ qφ(z|x)
by applying a deterministic function z = gφ(ε) : Rd →
Rd to sampling from an unparametrized distribution,
ε ∼ R, then we can rewrite Eqn. 3 as:

∇φELBO = Eε∈R[∇z log
pθ(x, z(ε))

qφ(z(ε)|x)
∇φgφ(ε)] (4)

which can now be estimated in the usual manner. As
an example, if qφ(z|x) is a Gaussian, N (µ, σ2) and we
choose R to be N (0, 1), then g(ε) = ε ∗ σ + µ.

constraint 1
(hyperplane)

solution space
(perimeter of circle)

solution
(uniform sample)

constraint 2
(2d sphere surface)

Figure 1: An illustration of Marsaglia’s solution to
the constrained sampling problem in two dimensions:
build a (k−1)-dimensional sphere by intersecting a hy-
perplane and a k-dimensional sphere (each represent-
ing a contraint). Generating k samples is equivalent to
uniformly sampling from the perimeter of the circle.

2.2 Antithetic Sampling

Normally, we sample i.i.d. from qφ(z|x) and R to
approximate Eqns. 2 and 4, respectively. However,
drawing correlated samples could reduce variance in
our estimation. Suppose we are given k samples
z1, z2, ..., zk ∼ qφ(z|x). We could choose a second set
of samples zk+1, zk+2, ..., z2k ∼ qφ(z|x, z1, ..., zk) such
that zi+k is somehow the “opposite” of zi. Then, we
can write down a new estimator using both sample
sets. For example, Eqn. 2 can be approximated by:

1

2k

k∑
i=1

∇θ log pθ(x, zi) +∇θ log pθ(x, zi+k) (5)

Assuming zk+1, ..., z2k is marginally distributed ac-
cording to qφ(z|x), Eqn. 5 is unbiased. Moreover, if
qφ(z|x) is near symmetric, the variance of this new
estimator will be cut significantly. But what does “op-
posite” mean? One idea is to define “opposite” as
choosing zk+i such that the moments of the combined
sample set z1, ..., z2k match the moments of qφ(z|x).
Intuitively, if zi is too large, then choosing zk+i to
be too small can help rebalance the sample mean, re-
ducing first order errors. Similarly, if our first set of
samples is too condensed at the mode, then choosing
antithetic samples with higher spread can stabilize the
variance closer to its expectation. However, sampling
zk+1, ..., z2k with particular sample statistics in mind
is a difficult challenge. To solve this, we first narrow
our scope to Gaussian distributions, and later extend
to other distribution families.

3 Generating Gaussian Variates with
Given Sample Mean and Variance

We present the constrained sampling problem: given
a Gaussian distribution with population mean µ and
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population variance σ2, we wish to generate k samples
x1, ..., xk ∼ N (µ, σ2) subject to the conditions:

1

k

k∑
i=1

xi = η (6)

1

k

k∑
i=1

(xi − η)2 = δ2 (7)

where the constants η and δ2 are given and represent
the sample mean and sample variance. In other words,
how can we draw samples from the correct marginal
distribution conditioned on matching desired sample
moments? For example, we might wish to match sam-
ple and population moments: η = µ and δ = σ.

Over forty years, there have been a handful of so-
lutions. We review the algorithm introduced by
(Marsaglia and Good, 1980). In our experiments, we
reference a second algorithm by (Pullin, 1979; Cheng,
1984), which is detailed in the supplement. We chose
(Marsaglia and Good, 1980) due its simplicity, low
computational overhead, and the fact that it makes
the fewest random choices of proposed solutions.

Intuition Since x1, ..., xk are independent, we can
write the joint density function as follows:

p(x1, ..., xk) = (2πσ2)−
k
2 e−

1
2σ2

∑
i(xi−µ)

2

(8)

We can interpret Eqn. 6 as a hyperplane and Eqn. 7 as
the surface of a sphere in k dimensions. Let X be the
set of all points (x1, ..., xk) ∈ Rk that satisfy the above
constraints. Geometrically, we can view X as the in-
tersection between the hyperplane and k-dimensional
sphere, i.e., the surface of a (k−1) dimensional sphere
(e.g. a circle if k = 2).

We make the following important observation: the
joint density (Eqn. 8) is constant for all points in X .
To see this, we can write the following:∑

i

(xi − µ)2 =
∑
i

(xi − η)2

+ 2(η − µ)
∑
i

(xi − η) + k(η − µ)2

=
∑
i

(xi − η)2 + k(η − µ)2

= kδ2 + k(η − µ)2

where
∑
i(xi− η) =

∑
i(xi)−kη = 0 by Eqn. 6. Plug-

ging this into the density function, rewrite Eqn. 8 as:

p(x1, ..., xk) = (2πσ2)−
k
2 e−

1
2σ2

(kδ2+k(η−µ)2) (9)

Critically, Eqn. 9 is independent of x1, ..., xk. For any
(η, δ, µ, σ), the density for every x ∈ X is constant. In

other words, the conditional distribution of x1, ..., xk
given that x1, ..., xk ∈ X is the uniform distribution
over X . Surprisingly, it does not depend on µ or σ.

Therefore, to solve the constrained sampling problem,
we need only be able to sample uniformly from the
surface of a (k − 1) dimensional sphere.

Marsaglia’s Solution More precisely, we can gen-
erate the required samples x = (x1, ..., xk) from a point
z = (z1, ..., zk−1) uniformly distributed on the unit
sphere in Rk−1 centered at the origin by solving the
linear system:

x = k
1
2 δzB + ηv (10)

where v = (1, 1, ..., 1) is a k dimensional vector of ones
and B is a (k − 1) by k matrix such that the rows of
B form an orthonormal basis with the null space of v
i.e. we choose B where BBt = I and Bvt = 0, which
happens to satisfy our constraints:

xvt = kη (11)

(x− ηv)(x− ηv)t = kδ2zBBtzt = kδ2 (12)

As z is uniformly distributed over the unit (k − 1)
sphere, Eqn. 11 and 12 guarantee that x is uniformly
distributed in X . We can generate z by sampling
(ε1, ..., εk−1) ∼ N (0, 1) and setting zi = εi/

∑
i ε

2
i . As

in (Marsaglia and Good, 1980), we set B to RowNor-
malize(A) where A is defined as



1 − k 1 1 . . . 1 1 1
0 2 − k 1 . . . 1 1 1
0 0 3 − k . . . 1 1 1
. .
. .
. .
0 0 0 . . . −2 1 1
0 0 0 . . . 0 −1 1



and RowNormalize divides each row vector in A
by the sum of the elements in that row. We sum-
marize the procedure in Alg. 1 and the properties of
MarsagliaSample in Prop. 1.

Proposition 1. For any k > 2, µ ∈ R and σ2 >

0, if η ∼ N (µ, σ
2

k ) and (k−1)δ2
σ2 ∼ χ2

k−1 and ε =
ε1, ..., εk−1 ∼ N (0, 1) i.i.d., then the generated samples
x1, ..., xk = MarsagliaSample(ε, η, δ2, k) are inde-
pendent normal variates sampled from N (µ, σ2) such
that 1

k

∑
i xi = η and 1

k

∑
i(xi − η)2 = δ2.

Proof Sketch. We provide a full proof in the supple-
ment. For a sketch, let x = (x1, ..., xk) such that
xi ∼ N (µ, σ2) i.i.d. Compute sample statistics η, δ2

from x as defined in Eqn. 13. Consider the joint dis-
tribution over samples and sample moments:

p(x, η, δ2) = p(η, δ2)p(x|η, δ2)

. We make two observations: first, η, δ2, as defined,
are drawn from p(η, δ2). Second, as hinted above,
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Algorithm 1: MarsagliaSample

Data: i.i.d. samples ε1, ..., εk−1 ∼ N (0, 1);
Desired sample mean η and variance δ2;
Number of samples k ∈ N.

Result: A set of k samples x1, x2, ..., xk
marginally distributed as N (µ, σ2)
with sample mean η and sample
variance δ2.

γ =
√
nδ;

s =
∑
i ε

2
i ;

for i← 1 to k do
zi = εi[(k − i)(k − i+ 1)s]−1/2;

end
x1 = (1− k)γz1 + η;

xk = γ
∑k−1
i=1 zi + η;

for i← 2 to k − 1 do

xi = (
∑i−1
i=1 +(i− k)zi)γ + η;

end
Return x1, ..., xk;

p(x|η, δ2) is the uniform distribution over a (k − 1)-
sphere, which Marsaglia shows us how to sample from.
Thus, any samples x′ ∼ p(x|η = η, δ2 = δ2) will be
distributed as x is (marginally), in other words i.i.d.
Gaussian.

As implied in Prop. 1, if we happen to know the popu-
lation mean µ and variance σ2 (as we do in variational
inference), we could generate k i.i.d. Gaussian vari-

ates by sampling η ∼ N (µ, σ
2

k ) and (k−1)δ2
σ2 ∼ χ2

k−1,
and passing η, δ2 to MarsagliaSample.

4 Constrained Antithetic Sampling

We might be inclined to use MarsagliaSample to
directly generate samples with some fixed determinis-
tic η = µ and δ = σ. However, Prop. 1 holds only
if the desired sample moments η, δ are random vari-
ables. If we choose them deterministically, we can no
longer guarantee the correct marginal distribution for
the samples, thus precluding their use for Monte Carlo
estimates. Instead, what we can do is compute η and
δ2 from i.i.d. samples from N (µ, σ2), derive antithetic
sample moments, and use MarsagliaSample to gen-
erate a second set of samples distributed accordingly.

More precisely, given a set of k independent normal
variates (x1, ..., xk) ∼ N (µ, σ2), we would like to gen-
erate a new set of k normal variates (xk+1, ..., x2k) such
that the combined sample moments match the popula-
tion moments, 1

2k

∑2k
i=1 xi = µ and 1

2k

∑2k
i=1(xi−µ)2 =

σ2. We call the second set of samples (xk+1, ..., x2k)
antithetic to the first set.

We compute sample statistics from the first set:

η =
1

k

k∑
i=1

xi δ2 =
1

k

k∑
i=1

(xi − µ)2 (13)

Note that η, δ are random variables, satisfying η ∼
N (µ, σ

2

k ) and (k−1)δ2
σ2 ∼ χ2

k−1. Ideally, we would
want the second set to come from an “opposing” η′

and δ′. To choose η′ and δ′, we leverage the in-
verse CDF transform: given the cumulative distribu-
tion function (CDF) for a random variable X, denoted
FX , we can define a uniform variate Y = FX(X).
The antithetic uniform variable is then Y ′ = 1 − Y ,
which upon application of the inverse CDF function,
is mapped back to a properly distributed antithetic
variate X ′ = F−1X (Y ′). Crucially, X and X ′ have the
same marginal distribution, but are not independent.

Let Fη represent a Gaussian CDF and Fδ represent a
Chi-squared CDF. We can derive η′ and δ′ as:

η′ = F−1η (1− Fη(η)) (14)

(k − 1)(δ′)2

σ2
= F−1δ

(
1− Fδ

(
(k − 1)δ2

σ2

))
(15)

Crucially, η′, δ′ chosen this way are random variables
with the correct marginal distributions, i.e., η′ ∼
N (µ, σ

2

k ) and (k−1)(δ′)2
σ2 ∼ χ2

k−1. knowing η′, δ′, it
is straightforward to generate antithetic samples with
MarsagliaSample. We summarize the algorithm in
Alg. 2 and its properties in Prop. 2.

Algorithm 2: AntitheticSample

Data: i.i.d. samples (x1, ..., xk) ∼ N (µ, σ2);
i.i.d. samples ε = (ε1, ..., εk−1) ∼ N (0, 1);
Population mean µ and variance σ2;
Number of samples k ∈ N.

Result: A set of k samples (xk+1, xk+2, ..., x2k)
marginally distributed as N (µ, σ2)
with sample mean η′ and sample
standard deviation δ′.

v = k − 1;

η = 1
k

∑k
i=1 xi;

δ2 = 1
k

∑k
i=1(xi − η)2;

η′ = F−1η (1− Fη(η));

λ = vδ2/σ2;

λ′ = F−1δ (1− Fδ(λ));
(δ′)2 = λ′σ2/v;
(xk+1, ..., x2k) =
MarsagliaSample(ε, η′, (δ′)2, k);

Return (xk+1, ..., x2k);

Proposition 2. Given k − 1 i.i.d samples ε =
(ε1, ..., εk−1) ∼ N (0, 1), k i.i.d. samples x =
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(x1, ..., xk) ∼ N (µ, σ2), let (xk+1, ..., x2k) =
AntitheticSample(x, ε, µ, σ2, k) be the generated
antithetic samples. Then:

1. xk+1, ..., x2k are independent normal variates
sampled from N (µ, σ2).

2. The combined sample mean 1
2k

∑2k
i=1 xi is equal to

the population mean µ.

3. The sample variance of xk+1, ..., x2k is anticorre-
lated with the sample variance of x1, ..., xk.

Proof. The first property follows immediately from
Prop. 1, as by construction η′, δ′ have the correct
marginal distribution. Simple algebra shows that the
inverse Gaussian CDF transform simplifies to η′ =
2∗µ−η, giving the desired relationship η/2+η′/2 = µ.
The third property follows from Eq. 15.

Since both sets of samples share the same (correct)
marginal distribution, x1, ..., x2k can be used to obtain
unbiased Monte Carlo estimates.

Proposition 3. Given k − 1 i.i.d samples ε =
(ε1, ..., εk−1) ∼ N (0, 1), k i.i.d. samples x =
(x1, ..., xk) ∼ N (µ, σ2), let (xk+1, ..., x2k) =
AntitheticSample(x, ε, µ, σ2, k) be the generated

antithetic samples. Then 1
2k

∑2k
i=1 f(xi) is an unbiased

estimator of Ex∼N (µ,σ2)[f(x)].

Proof. Let q(x1, · · · , xk, xk+1, · · · , x2k) denote the
joint distribution of the 2k samples. Note the two
groups of samples (x1, ..., xk) and (xk+1, ..., x2k) are
not independent. However,

E(x1,··· ,xk,xk+1,··· ,x2k)∼q

[
1

2k

2k∑
i=1

f(xi)

]
=

1

2k

2k∑
i=1

Exi∼qi(xi) [f(xi)] = Ex∼N (µ,σ2)[f(x)]

because by assumption and Prop. 2, each xi is
marginally distributed as N (µ, σ2).

4.1 Approximate Antithetic Sampling

If Fη and Fδ were well-defined and invertible, we could
use Alg. 2 as is, with its good guarantees. On one
hand, since η is normally distributed, the inverse CDF
transform simplifies to:

η′ = 2 ∗ µ− η (16)

However, there is no general closed form expression for
F−1δ . Our options are then to either use a discretized
table of probabilities or approximate the inverse CDF.
Because we desire differentiability, we choose to use a
normal approximation to Fδ.

Antithetic Hawkins-Wixley Canal (2005) sur-
veys a variety of normal approximations, all of which
are a linear combination of χ2 variates to a power
root. We choose to use (Hawkins and Wixley, 1986)
as (P1) it is an even power, (P2) it contains only 1
term involving a random variate, and (P3) is shown
to work better for smaller degrees of freedom (smaller
sample sizes). We derive a closed form for comput-
ing δ′ from δ by combining the normal approximation
with Eqn. 16. We denote this final transform as the
antithetic Hawkins-Wixley transform:

λ′ = v(2(1− 3

16v
− 7

512v2
+

231

8192v3
)− (

λ

v
)1/4)4 (17)

where λ ∼ χ2
v with v being the degree of freedom.

Therefore, if we set λ = (k − 1)δ2/σ2 ∼ χ2
k−1 and

v = k − 1, then we can derive (δ′)2 = λ′σ2/(k − 1)
where λ′ is computed as in Eqn. 17, whose derivation
can be found in the supplementary material.

P1 is important as odd degree approximations e.g.
(Wilson and Hilferty, 1931) can result in a negative
value for λ′ under small k. P2 is required to derive a
closed form as most linear combinations do not factor.
P3 is desirable for variational inference.

To update Alg. 2, we swap the fourth line with Eqn. 16
and the sixth line with Eqn. 17. The first property in
Prop. 2 and therefore also Prop. 3 do not hold any-
more: the approximate AntitheticSample has bias
that depends on the approximation error in Eqn. 17.
In practice, we find the approximate Antithetic-
Sample to be effective. From now on, when we refer
to AntitheticSample, we refer to the approximate
version. See supplement for a written algorithm. We
refer to Fig. 2 for an illustration of the impact of anti-
thetics: sampling i.i.d. could result in skewed sample
distributions that over-emphasize the mode or tails,
especially when drawing very few samples. Including
antithetic samples helps to “stabilize” the sample dis-
tribution to be closer to the true distribution.

5 Generalization to Other Families

Marsaglia and Good (1980)’s algorithm is restricted
to distribution families that can be transformed to a
unit sphere (primarily Gaussians), as are many simi-
lar algorithms (Cheng, 1984; Pullin, 1979). However,
we can explore “generalizing” AntitheticSample to
a wider class of families by first antithetically sam-
pling in a Gaussian distribution, then transforming its
samples to samples from another family using a deter-
ministic function, g : Rd → Rd. Although we are not
explicitly matching the moments of the derived distri-
butions, we expect that transformations of more rep-
resentative samples in an initial distribution may be
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true distribution  antithetic KDE i.i.d. KDE

i.i.d. samplesantithetic samples i.i.d. samples

(a) k = 8 (b) k = 10 (c) k = 20 (d) k = 50

Figure 2: The effect of AntitheticSample in 1 di-
mension. We vary the number of samples k, and plot
the true distribution (solid black line), a kernel density
estimate (KDE) of the empirical distribution (dotted
blue line) of 2k i.i.d. samples (blue), and a KDE of
the empirical distribution (dashed red line) of k i.i.d.
samples (red) pooled with k antithetic samples (or-
ange). This snapshot was taken from the first epoch
of training an AntiVAE on dynamic MNIST.

more representative in the transformed distribution.
We now discuss a few candidates for g(·).

5.1 One-Liners

Devroye (1996) presents a large suite of “one line”
transformations between distributions. We focus on
three examples starting from a Gaussian to (1) Log
Normal, (2) Exponential, and (3) Cauchy. Many
additional transformations (e.g. to Pareto, Gumbel,
Weibull, etc.) can be used in a similar fashion. Let
Fx refer to the CDF of a random variable x. See sup-
plementary material for derivations.

Log Normal g(z) = ez where z ∼ N (µ, σ2).

Exponential Let Fx(x) = 1 − expλx where λ ∈ Rd
is a learnable parameter. Then F−1x (y) = − 1

λ log y.
Thus, g(u, λ) = − 1

λ log u where u ∈ U(0, 1).

Cauchy Let Fx(x) = 1
2 + 1

π arctan(x−x0

γ ) where

x0 ∈ Rd, γ ∈ Rd are learnable parameters. Then
F−1x (y) = γ(tan(πy) + x0). Given u ∈ U(0, 1), we
define g(u, x0, γ) = γ(tan(πu) + x0).

5.2 Deeper Flows

One liners are an example of a simple flow where we
know how to score the transformed sample. If we
want more flexible distributions, we can apply nor-
malizing flows (NF). A normalizing flow (Rezende and
Mohamed, 2015) applies T invertible transformations
h(t), t = 1, ..., T to samples z(0) from a simple dis-
tribution, leaving z(T ) as a sample from a complex
distribution. A common normalizing flow is a linear-
time transformation: g(z) = z + u(h(wT z + b)) where

w ∈ Rd, u ∈ Rd, b ∈ R are learnable parameters, and h
is a non-linearity. In variational inference, flows enable
us to parameterize a wider set of posterior families.

We can also achieve flexible posteriors using volume-
preserving flows (VPF), of which Tomczak and Welling
(2016) introduced the Householder transformation:

g(z) = (I − 2 v·v
T

‖v‖2 )z where v ∈ Rd is a trainable pa-

rameter. Critically, the Jacobian-determinant is 1.

Algorithm 3: AntiVAE Inference

Data: A observation x; number of samples
k ≥ 6; a variational posterior q(z|x) e.g.
a d-dimensional Gaussian, N d(µ, σ2).

Result: Samples zd1 , ..., z
d
k ∼ qµ,σ(z|x) that

match moments.
µd, σd =InferenceNetwork(x);

µ = Flatten(µd);

σ = Flatten(σd);
ε1, ..., εkd/2 ∼ N (0, 1);
ξ = ξ1, ..., ξ kd

2 −1
∼ N (0, 1);

for i← 1 to kd/2 do
yi = εi ∗ σ + µ;

end
y = (y1, ..., ykd/2);
y kd

2 +1, ..., ykd =AntitheticSample(y, ξ, µ, σ);

z = (y1, ..., ykd);

zd1 , ..., z
d
k = UnFlatten(z);

Return zd1 , ..., z
d
k ;

6 Differentiable Antithetic Sampling

Finally, we can use AntitheticSample to approxi-
mate the ELBO for variational inference.

For a given observation x ∈ pdata(x) from an empirical
dataset, we write the antithetic gradient estimators as:

∇θELBO ≈ 1

2k

k∑
i=1

[∇θ log pθ(x, zi)

+∇θ log pθ(x, zi+k)]

(18)

∇φELBO ≈ 1

2k

k∑
i=1

[∇z log
pθ(x, zi(ε))

qφ(zi(ε)|x)
∇φgφ(εi)

+∇z log
pθ(x, zi+k(ε))

qφ(zi+k(ε)|x)
∇φgφ(εi+k)]

(19)

where (ε1, ..., εk) ∼ N (0, 1), ξ = (ξ1, ..., ξk−1),
z = (z1, ..., zk) ∼ qφ(z|x), and (zk+1, ..., z2k) =
AntitheticSample(z, ξ, µ, σ2, k). Optionally, z =
Transform(z, α) where Transform denotes any
sample transformation(s) with parameters α.
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Alternative variational bounds have been considered
recently, including an importance-weighted estimator
of the ELBO, or IWAE (Burda et al., 2015). Antithetic
sampling can be applied in a similar fashion, as also
shown in (Shu et al., 2019).

Importantly, AntitheticSample is a special instance
of a reparameterization estimator. Aside from sam-
ples from a parameter-less distribution (unit Gaus-
sian), AntitheticSample is completely determinis-
tic, meaning that it is differentiable with respect to
the population moments µ and σ2 by any modern
auto-differentiation library. Allowing backpropagation
through AntitheticSample means that any free pa-
rameters are aware of the sampling strategy. Thus, in-
cluding antithetics will change the optimization trajec-
tory, resulting in a different variational posterior than
if we had used i.i.d samples alone. In Sec. 8, we show
experimentally that most of the benefit of differentiable
antithetic sampling comes from being differentiable.

Alg. 3 summarizes inference in a VAE using differ-
entiable antithetic sampling (denoted by AntiVAE1).
To the best of our knowledge, the application of anti-
thetic sampling to stochastic optimization, especially
variational inference is novel. Both the application
of (Marsaglia and Good, 1980) to drawing antithet-
ics and the extension of AntitheticSample to other
distribution families by transformation is novel. This
is also the first instance of differentiating through an
antithetic sample generator.

7 Experiments

We compare performance of the VAE and AntiVAE on
seven image datasets: static MNIST (Larochelle and
Murray, 2011), dynamic MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), OMNIGLOT (Lake
et al., 2015), Caltech 101 Silhouettes (Marlin et al.,
2010), Frey Faces2, and Histopathology patches (Tom-
czak and Welling, 2016). See supplement for details.

In both VAE and AntiVAE, qφ(z|x) and pθ(x|z) are
two-layer MLPs with 300 hidden units, Xavier ini-
tialization (Glorot and Bengio, 2010), and ReLU. By
default, we set d = 40 and k = 8 (i.e. 4 antithetic
samples) and optimize either the ELBO or IWAE. For
grayscale images, pθ(x|z) parameterize a discretized lo-
gistic distribution as in (Kingma et al., 2016; Tomczak
and Welling, 2017). The log variance from pθ(x|z) is
clamped between -4.5 and 0.0 (Tomczak and Welling,
2017). We use Adam (Kingma and Ba, 2014) with
a fixed learning rate of 3 · 10−4 and a mini-batch of

1For some experiments, we use Cheng’s algorithm in-
stead of Marsaglia’s. We refer to this as AntiVAE (Cheng).

2https://cs.nyu.edu/ roweis/data.html

128. We train for 500 epochs. Test marginal log like-
lihoods are estimated via importance sampling using
100 i.i.d. samples. See supplement for additional ex-
periments where we vary architectures, measure run-
times, report variance over many runs, and more.

8 Results

Fig. 3 and Table 1 show test log likelihoods (over 5
runs). We summarize findings below:

VAE vs AntiVAE AntiVAE consistently achieves
higher log likelihoods, usually by a margin of 2 to 5
log units. With FashionMNIST/Histopathology, the
margin grows to as much as 30 log units. In the 3
cases that AntiVAE performs worse than VAE, the log-
likelihoods are almost equal (≤ 1 log unit). In Fig. 3b,
we see a case where, even when the final performance
is equivalent, AntiVAE learns faster. We find similar
behavior using a tighter IWAE bound or other poste-
rior families defined by one liners and flows. With the
latter, we see improvements of up to 25 log units. A
better sampling strategy is effective regardless of the
choice of objective and distributional family.

As k increases, the effect of antithetic sampling
diminishes. Fig. 4a illustrates that as the number of
samples k →∞, posterior samples will match the true
moments of qφ(z|x) regardless of the sampling strat-
egy. But as k → 0, the effectiveness grows quickly. We
expect best performance at small (but not too small)
k where the normal approximation (Eqn. 17) is decent
and the value of antithetics is high.

As d increases, the effect of antithetic sam-
pling grows. Fig. 4b illustrates that the importance
of sampling strategy increases as the dimensionality
grows due to an exponential explosion in the volume
of the sample space. With higher dimensionality, we
find antithetic sampling to be more effective.

Backpropagating through antithetic sampling
greatly improves performance. From Fig. 4c, 4d,
we see that most of the improvement from antithetics
relies on differentiating through AntitheticSample.
This is sensible as the model can adjust parameters
if it is aware of the sampling strategy, leading to bet-
ter optima. Even if we do not backpropagate through
sampling (draw antithetic samples from N (0, 1) fol-
lowed by standard reparameterization), we will still
find modest improvement over i.i.d. sampling.

We believe differentiability encourages initial samples
to be more diverse. To test this, we measure the vari-
ance of the first k/2 samples (1) without antithetics,
(2) with non-differentiable antithetics, and (3) with
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Figure 3: A comparison of test log likelihoods over 500 epochs between VAE and AntiVAE. Transforming samples
to match moments seems to have different degrees of effectiveness depending on the data domain. However, we
find that the test ELBO with AntiVAE is almost always greater or equal to that of the VAE. This behavior is not
sensitive to hyperparameters e.g. learning rate or MLP hidden dimension. For each subplot, we start plotting
from epoch 20 to 500. We cannot resample observations in Caltech101, leading to overfitting.

Model stat. MNIST dyn. MNIST FashionMNIST Omniglot Caltech Frey Hist.

VAE -90.44 -86.96 -2819.13 -110.65 -127.26 -1778.78 -3320.37
AntiVAE -89.74 -86.94 -2807.06 -110.13 -124.87 -1758.66 -3293.01

AntiVAE (Cheng) -89.70 -86.93 -2806.71 -110.39 -125.19 -1758.29 -3292.72
VAE+IWAE -89.78 -86.71 -2797.02 -109.32 -123.99 -1772.06 -3311.23

AntiVAE+IWAE -89.71 -86.62 -2793.01 -109.48 -123.35 -1771.47 -3305.91
VAE (logN ) -149.47 -145.13 -2891.75 -164.01 -269.51 -1910.11 -3460.18

AntiVAE (logN ) -149.78 -141.76 -2882.11 -163.55 -266.82 -1895.15 -3454.54
VAE (Exp.) 141.95 -140.91 -2971.00 -159.92 -200.14 -2176.83 -3776.48

AntiVAE (Exp.) 141.98 -140.58 -2970.12 -158.15 -197.47 -2156.93 -3770.33
VAE (Cauchy) -217.69 -217.53 -3570.53 -187.34 -419.78 -2404.24 -3930.40

AntiVAE (Cauchy) -215.89 -217.12 -3564.80 -186.02 -417.0 -2395.07 -3926.95
VAE+10-NF -90.07 -86.93 -2803.98 -110.03 -128.62 -1780.61 -3328.68

AntiVAE+10-NF -89.77 -86.57 -2801.90 -109.43 -127.23 -1777.26 -3303.00
VAE+10-VPF -90.59 -86.99 -2802.65 -110.19 -128.87 -1789.18 -3312.30

AntiVAE+10-VPF -90.00 -86.59 -2797.05 -109.04 126.72 -1787.18 -3305.42

Table 1: Test log likelihoods between the VAE and AntiVAE under different objectives and posterior families
(a higher number is better). Architecture and hyperparameters are consistent across models. AntiVAE (Cheng)
refers to drawing antithetic sampling using an alternative algorithm to Marsaglia (see supplement). Results show
the average over 5 independent runs with different random seeds. For measurements of variance, see supplement.
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Figure 4: (a) With more samples, the difference in log p(x) between AntiVAE and VAE approaches 0. (b) The
benefit of antithetics varies directly with dimensionality. (c) Backpropagating through AntitheticSample is
responsible for most of the improvement over i.i.d. sampling. However, even without it, antithetics outperforms
VAE. (d) Similar observation in Histopathology. (e) Differentiable antithetics encourages sample diversity.

differentiable antithetics. Fig. 4e shows that samples
in (3) have consistently higher variance than (1) or (2).

AntiVAE runtimes are comparable. We mea-
sure an average 0.004 sec. increase in wallclock time
per step when adding in antithetics.

9 Conclusion

We present a differentiable antithetic sampler for vari-
ance reduction. We show its benefits for a family of
VAEs. We hope to apply it to reinforcement learning
using pathwise derivatives (Levy and Ermon, 2018).
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