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Abstract
Semi-supervised learning on graph structured
data has received significant attention with
the recent introduction of Graph Convolu-
tion Networks (GCN). While traditional meth-
ods have focused on optimizing a loss aug-
mented with Laplacian regularization frame-
work, GCNs perform an implicit Laplacian
type regularization to capture local graph
structure. In this work, we propose Lovász
Convolutional Network (LCNs) which are ca-
pable of incorporating global graph proper-
ties. LCNs achieve this by utilizing Lovász’s
orthonormal embeddings of the nodes. We
analyse local and global properties of graphs
and demonstrate settings where LCNs tend
to work better than GCNs. We validate
the proposed method on standard random
graph models such as stochastic block mod-
els (SBM) and certain community structure
based graphs where LCNs outperform GCNs
and learn more intuitive embeddings. We also
perform extensive binary and multi-class clas-
sification experiments on real world datasets
to demonstrate LCN’s effectiveness. In addi-
tion to simple graphs, we also demonstrate
the use of LCNs on hyper-graphs by identify-
ing settings where they are expected to work
better than GCNs.

1 Introduction
Learning on structured data has received significant
interest in recent years (Getoor and Taskar, 2007; Sub-
ramanya and Talukdar, 2014). Graphs are ubiquitous,
several real world data-sets can be naturally repre-
sented as graphs; knowledge graphs (Suchanek et al.,
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2007; Auer et al., 2007; Bollacker et al., 2008), protein
interaction graphs (Zitnik and Leskovec, 2017), social
network graphs (Leskovec et al., 2010b,a; McAuley and
Leskovec, 2012), citation networks (Giles et al., 1998;
Lu and Getoor, 2003; Sen et al., 2008) to name a few.
These graphs typically have a large number of nodes
and manually labeling them as belonging to a certain
class is often prohibitive in terms of resources needed.
A common approach is to pose the classification prob-
lem as a semi-supervised graph transduction problem
where one wishes to label all the nodes of a graph using
the labels of a small subset of nodes.

Recent approaches to the graph transduction problem
rely on the assumption that the labels of nodes are
related to the structure of the graph. A common ap-
proach is to use the Laplacian matrix associated with a
graph as form of a structural regularizer for the learning
problem. While the Laplacian regularization is done
explicitly in (Agarwal, 2006; Zhu et al., 2003; Zhou
et al., 2004; Belkin et al., 2006; Yang et al., 2016),
more recent deep learning based Graph Convolution
Network (GCN) approaches do an implicit Laplacian
type regularization (Atwood and Towsley, 2016; Kipf
and Welling, 2017; Li et al., 2018; Zhuang and Ma,
2018). While these traditional methods work reason-
ably well for several real world problems, our extensive
experiments show that they may not be the best meth-
ods for tasks involving communities and there is a scope
for significant improvement in such cases.

In this work, we propose a graph convolutional network
based approach to solve the semi-supervised learning
problem on graphs that typically have a community
structure. An extensively studied model for commu-
nities is the Stochastic block model (SBM) which is
a random graph model where the nodes of a graph
exhibit community structure i.e., the nodes belong-
ing to same community have a larger probability of
having an edge between them than those in different
communities. In this work, we propose the Lovász
Convolutional Network (LCN) which, instead of the
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Figure 1: Node embeddings for SBM Experiments. Note that these figures are obtained by projecting higher-dimensional
embeddings to lower-dimensional space using t-sne (van der Maaten and Hinton, 2008).

traditional Laplacian, uses the embeddings of nodes
that arise from Lovász’s orthogonal representations as
an implicit regularizer. The Lovász regularization, as
we will see, is tightly coupled to the coloring of the
complement graph of a given graph and hence often
produce remarkably superior embeddings than those
obtained using the Laplacian regularization for graphs
which have a community structure. Intuitively, the
optimal coloring of the complement of a graph can be
viewed as a way to associate same color to nodes belong-
ing to a same community. As Lovász embeddings also
tend to embed nodes with same colors to similar points
in Euclidean space, the proposed model performs much
well in practice. Figure 1a and Figure 1b illustrate this
phenomenon using examples for a binary and a three
class classification problem where the graph is gener-
ated using a stochastic block model. As can be seen,
the average distance between embeddings learnt using
the LCN is much better than using traditional graph
based convolution networks. We make the following
contributions in this work:
• We propose the Lovász Convolutional Network
(LCN) for the problem of semi-supervised learning
on graphs. LCN combines the power of using the
Lovász embeddings with GCNs.

• We analyze various types of graphs and identify
the classes of graphs where LCN performs much
better than existing methods. In particular, we
demonstrate that by keeping the optimal coloring,
a global property of the graph, fixed and increasing
the number edges to the graph, LCNs outperforms
traditional GCNs.

• We carry out extensive experiments on both syn-
thetic and real world datasets and show significant
improvement using LCNs than state of the art al-
gorithms for semi-supervised graph transduction.

The Source code for our model can be found at
https://github.com/malllabiisc/lcn.

2 Related Work
The work that is most closely related to ours is (Shiv-
anna et al., 2015) which proposes a spectral regularized
orthogonal embedding method for graph transduction
(SPORE). While they use a Lovász embedding based
kernel for explicit regularization, the focus is on comput-
ing the embedding efficiently using a special purpose
optimization routine. Our work on the other hand
proposes a deep learning based Lovász convolutional
network which differs from the traditional loss plus
explicit regularizer approach of (Shivanna et al., 2015)
and our experimental results confirm that the pro-
posed LCN approach performs significantly better than
SPORE. The use of explicit Laplacian regularizer for
semi-supervised learning problems on graphs has been
explored in (Ando and Zhang, 2007; Agarwal, 2006),
where the focus is to derive generalization bounds for
learning on graphs. However, as we will discuss in the
sequel, there are settings where Lovász embeddings are
more natural in capturing the global property of graphs
than the Laplacian embeddings and this reflects in our
experimental results as well. More recently (Zhuang
and Ma, 2018) propose a dual convolution approach
to capture global graph property using positive point-
wise mutual information (PPMI). We differ from this
approach in defining global property in terms of color-
ing of the complement graph as opposed to computing
semantic similarity using random walks on the graph
as done in (Zhuang and Ma, 2018). Lovász based ker-
nels for graphs have been explored in the context of
other machine learning problems such as clustering in
(Johansson et al., 2014). Jethava et al. (2013) show an
interesting connection between Lovász ϑ function and
one class SVMs.
There has been considerable amount of work in ex-
tending well established deep learning architectures
for graphs. Bruna et al. (2014); Henaff et al. (2015);
Duvenaud et al. (2015); Defferrard et al. (2016) ex-
tend Convolutional Neural Networks (CNN) for graphs,
while Jain et al. (2016) propose Recurrent Neural Net-
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works (RNN) for graphs. Kipf and Welling (2017)
propose Graph Convolutional Networks which achieve
promising results for the problem of semi-supervised
classification on graphs. Most recently, a faster version
of GCN, for inductive learning on graphs, has been
proposed by (Chen et al., 2018). An extension to GCNs
based on graph partition is proposed recently by (Liao
et al., 2018). Recently, GCNs with confidence scores
for embeddings has been proposed by (Vashishth et al.,
2019). GCNs have been shown to be effective for sev-
eral tasks Marcheggiani and Titov (2017); Vashishth
et al. (2018a,b,c); Ray et al. (2018). However, as we
show in our experiments, there are several natural set-
tings where the proposed LCN performs much better
than the state of the art GCNs in various problems of
interest.

3 Problem Setting and Preliminaries
We work in the semi-supervised graph transduction
setting where we are given a graph G(V,E), where V
denotes the set of vertices with cardinality n and E is
the edge set. We are given the labels ({0, 1} in the case
of binary classification) of a subset of nodes (m < n) of
V and the goal is to predict the labels of the remaining
nodes as accurately as possible. Given a graph G(V,E),
α(G) denotes the maximum independence number of
the graph i.e., the size of the set containing the maxi-
mum number of non-adjacent nodes in G. A coloring
of G corresponds to an assignment of colors to nodes
of the graph such that no two nodes with the same
color have an edge between them. χ(G) denotes the
chromatic number of G which is the minimum number
of colors needed to color G. We denote the complement
of a graph by Ḡ(V, Ē). An edge (u, v) is present in Ḡ
if and only if it is not present in G. It is easily seen
that for any graph G, α(G) ≤ χ(Ḡ). A clique is a fully
connected graph which has edges between all pairs of
nodes. We assume that there is a natural underlying
manner in which the graph structure is related to the
class labels. In what follows, we recall certain classes
of graphs and a certain type of graph embedding which
will be of interest in the rest of the paper.
SBM Graphs: The Stochastic Block Model (SBM)
(Holland et al., 1983; Condon and Karp, 1999) is a
generative model for random graphs. They are a gen-
eralization of the Erdos-Renyi graphs where the edges
between nodes of the same community are chosen with
a certain probability (p) while the edges across com-
munities are chosen with a certain other probability (q
where q < p). SBMs tend to have community struc-
ture and hence are used to model several applications
including protein interactions, social network analysis
and have been extensively studied in machine learning,
statistics, theoretical computer science and network
science literature.

0
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1

Figure 2: Lovász embeddings for a graph consisting of set
cliques are mapped orthogonal dimensions. Refer Section 3
for more details.

Perfect Graphs: Perfect graphs are a class of graphs
whose chromatic number χ(G) equals the size of the
largest clique for every induced subgraph. Several
important class of graphs including bipartite graphs,
interval graphs, chordal graphs, caveman graphs etc.
are all perfect graphs. We refer to (Ramírez-Alfonsín
and Reed, 2001) for graph theoretical analysis of per-
fect graphs. Our interest in these graphs is due to the
fact that the the chromatic number of these graphs can
be computed in polynomial time (Lovász, 2009) and
they coincide with the Lovász ϑ number of the graph
which we discuss next.
Lovász Embeddings: Lovász (Lovász, 1979) intro-
duced the concept of orthogonal embedding in the con-
text of the problem of embedding a graph G = (V,E)
on a unit sphere Sd−1.
Definition 3.1 (Orthogonal embedding (Lovász, 1979;
Lovász and Vesztergombi, 1999)). An orthogonal em-
bedding of a graph G(V,E) with |V | = n, is a matrix
U = [u1, . . . ,un] ∈ Rd×n such that u>i uj = 0 when-
ever (i, j) /∈ E and ui ∈ Sd−1 ∀i ∈ [n].

Let Lab(G) denote the set of all possible orthogo-
nal embeddings of the graph G, given by Lab(G) =
{U|U is an orthogonal embedding}. The Lovász theta
function is defined as:

ϑ(G) = min
U∈Lab(G)

min
c∈Sd−1

max
i

(c>ui)−2.

The famous sandwich theorem of Lovász (Lovász, 1979)
states that α(G) ≤ ϑ(G) ≤ χ(Ḡ), where α(G) is the
independence number of the graph and χ(Ḡ) is the
chromatic number of the complement of G. Perfect
graphs are of interest to us as both the above inequali-
ties are equalities for them (Lovász, 2009).
A few examples are helpful to gain intuition about the
relation of Lovász embeddings to community structures.
For a complete graph, the complement can be colored
using just one color, the Lovász embeddings of all the
nodes are trivial and in 1-dimension. These embed-
dings are exactly the same as there are no orthogonal
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Figure 3: Variation of test accuracy (higher is better)
for GCN and LCN- with variation in the graph structure.
GCN fails to perform as the number color fraction increases.
Refer Section 4 for more details.

constraints imposed by the edges. As a generalization
of this example (Figure 2), for a graph that is a dis-
joint union of k cliques of possible variable number of
nodes in each clique, the complement is a complete k
partite graph and hence can be colored using k colors
where each partition corresponds to a single color. It
turns out the Lovász embeddings for this graph are
a set of orthonormal vectors in Rk. In practice, the
communities that occur are not exactly cliques i.e., not
all edges in a community are connected to each other.
However, the Lovász embeddings still capture the nec-
essary structure as we will see in our experiments.
Graph convolutional networks (GCN): GCNs
(Kipf and Welling, 2017) extend the idea of Convo-
lutional Neural Networks (CNNs) for graphs. Let
G(V,E) be an undirected graph with adjacency ma-
trix A and let Ã = A + I be the adjacency with
added self-connections and D̃ii =

∑
j Ãij . Let

X ∈ Rn×d represent the input feature matrix of
the nodes. A simple two-layer GCN for the prob-
lem of semi-supervised node classification assumes the
form : f(X,A) = softmax(Â ReLU(ÂXW(0))W(1)).
Where, Â = D̃

− 1
2 ÃD̃

− 1
2 , W(0) ∈ Rd×h is an input-

to-hidden weight matrix for a hidden layer with h
units and W(1) ∈ Rh×F is hidden-to-output weight
matrix. The softmax activation function, defined as
softmax(xi) = 1

Z exp(xi) with Z =
∑
i exp(xi) is ap-

plied row-wise.

For semi-supervised multi-class classification, cross-
entropy loss over the labeled examples is given by

L =
∑
l∈YL

F∑
f=1

Ylf ln Zlf , (1)

where, YL is the set of labeled nodes. The weights
W(0) and W(1) are learnt using gradient descent.

4 Motivating Example
In this section we present a motivating example to
demonstrate the use of the Lovász orthogonal embed-
dings in the semi-supervised graph transduction task.
In particular, we want to show how the embeddings
learnt using the Lovász kernel results in improved ac-
curacy as a parameter called coloring fraction, which
we define below, varies. To illustrate our hypothesis,
we consider a bipartite graph as input to the problem.
The reason for this choice is that bipartite graphs are
perfect and hence optimal coloring of both the graph
G and its complement Ḡ (which is also perfect by the
perfect graph theorem (Chudnovsky et al., 2006)) are
easy to compute in polynomial time. Before explaining
the experiment, we start with the following definition.
Coloring Fraction: Given a graph G = (V,E), con-
sider the optimal coloring of the complement graph Ḡ.
According to this coloring scheme of the nodes, let nd
represent the number of edges in G such that the pair
of nodes each edge connects have different colors. And
let nt represent the total number of pairs of nodes in G
such that the nodes in each pair have different colors.
Then the coloring fraction is defined as nd/nt.
As an example, for a complete bipartite graph G =
K(n, n) on 2n nodes, the complement graph is the
union of 2 disjoint cliques of n nodes each and hence the
graph can be colored using n colors. The coloring frac-
tion is then n(n−1)

2(n−1)(n) = 0.5. The following proposition
establishes how coloring fraction varies with removal
of edges from a graph.
Proposition 1. Let G(V,E) be a graph where χ(Ḡ)
is the chromatic number of the complement of G. Let
β(G) be the coloring fraction of G. Let G′ be the graph
obtained from G by removing a set of edges whose nodes
have different colors with respect to the optimal coloring
of Ḡ. Then χ(Ḡ′) = χ(Ḡ) whereas β(G′) < β(G).

Proof. It should be observed that the optimal coloring
for Ḡ is also a valid coloring of Ḡ′ as the edges removed
from G are only from nodes with different colors with
respect to coloring of Ḡ. To see why it is also an
optimal coloring, we use contradiction. If there exists
a coloring of Ḡ′ with strictly smaller number of colors
than χ(Ḡ), then we can remove edges to form Ḡ′ to
obtain Ḡ such that it is also a valid coloring of Ḡ as
removing edges does not affect the validity of a coloring.
However, this contradicts the optimality of the original
coloring for Ḡ. Thus χ(Ḡ) = χ(Ḡ′). Moreover, since
we are removing edges from G, the coloring fraction
increases by definition and hence β(G′) < β(G).
The above proposition says that by removing edges
carefully, a local property of the graph (coloring frac-
tion) changes whereas a global property (chromatic
number of complement graph) does not change. If the
labels of nodes depends on the global property of the
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Algorithm 1: Lovasz Kernel Matrix Computation
Input: A, Adjacency matrix of Graph G
Output: K: Lovasz Kernel
[SDP ]Y←minimize t, subject to:

Y � 0, Yij = −1, ∀(i, j) /∈ E, Yii = t− 1
P ∈ Rn×n ← Cholesky(Y);
if rank(P) < n then

c← random basis element from Null(P);
ui = c+pi√

t
where pi is ith column of P;

end
if rank(P) = n then

pi = [pi 0] ∈ Rn+1 ∀ i ∈ {1, 2, . . . , n};
ui = en+1+pi√

t
where en+1 ∈ Rn+1 is the

standard basis element;
end
U = [u1u2 . . . un];
K = U>U;

graph, then a natural question of interest is to study
the sensitivity of algorithms to change in the local prop-
erty while keeping the global property fixed. This is
precisely what we do as we explain below.
We begin with a complete bipartite graph K(n, n)
whose coloring fraction as computed above is 0.5. We re-
move m edges in each step where the nodes of removed
edges have different colors (w.r.t optimal coloring of Ḡ).
In each case, the labels are assigned such that nodes
with half the colors are assigned to class 0 and remain-
ing to class 1. We compute the accuracy of a Laplacian
based GCN model vs the proposed LCN model. In our
experiment we set n = 50 and m = 250. The results
averaged over 10 random splits of 20% − 20% − 60%
train-validation-test are presented in Figure 3. It is
clear that as the color fraction increases, the accuracy
of the standard GCN drops while that of Lovász does
not. This is because the standard GCN depends on
local connectivity property of the graph whereas the
orthogonal labeling is done in accordance to the global
coloring of the complement graph and is better cap-
tured by the proposed LCN.
The above example motivates our study of Lovász based
embeddings in cases where the global structure of the
graph is related to the class labels. With this motiva-
tion, we propose the Lovász convolution network in the
following section.

5 LCN: Proposed Model
In this section, we present our proposed method,
the Lovász Convolution Network (LCN), for semi-
supervised graph transduction. As motivated in the
previous section, when the class labels depend on the
coloring (a global property) of the given graph, it is
natural to start training a graph based convolution
network which incorporates this property into learning.
Let Lab(G), as defined in Section 3, represent the set of

all possible orthonormal embeddings for a given graph
G. The set of graph kernel matrices is defined as

K(G) := {K ∈ S+
n |Kii = 1,∀i ∈ [n];Kij = 0.∀(i, j) /∈ E},

where S+
n is the set of all positive semidefinite matrices.

Jethava et al. (2013) showed the equivalence between
Lab(G) and K(G). Since K ∈ K(G) is positive semidef-
inite, there exists a U ∈ Rd×n such that K = U>U.
It should be noted that Kij = u>i uj , where ui is
the i-th column of U, which implies U ∈ Lab(G).
Similarly, it can be shown that for any U ∈ Lab(G),
K = U>U ∈ K(G). Given a graph G, we follow the
procedure described in (Lovász and Vesztergombi, 1999,
Proposition 9.2.9) for computing the Lovász orthonor-
mal embedding U and the associated kernel matrix K
optimally. The procedure is summarized in Algorithm
1. Similar to the normalized Laplacian of a graph, the
kernel matrix is also positive semidefinite.

The kernel computation explained in Algorithm 1 re-
quires solving a Semi Definite Program (SDP), the com-
putational complexity of which is O(n6). This becomes
a huge bottle-neck for large scale datasets. Therefore,
for large scale datasets, we exploit the following char-
acterization of ϑ(G) given by Luz and Schrijver (2005):
Theorem 5.1 (Luz and Schrijver (2005)). For a graph
G = (V,E) with |V | = n, and let C ∈ Rn×n be any
non-null symmetric matrix with Cij = 0 whenever
(i, j) /∈ E. Then,

ϑ(G) = min
C

ν(G,C), where

ν(G,C) = maxx≥0
2x>e− x>( C

−λmin(C) + I)x,

where e = [1, 1, . . . , 1]> and λmin(C) is the minimum
eigen value of C.

Note that the matrix KLS = A
−λmin(A)

+ I obtained
by fixing C = A in Theorem 5.1 is positive semidefi-
nite. Therefore, there exists a labeling U ∈ Rd×n such
that U>U = KLS , which is referred to as LS labeling
(Jethava et al., 2013). From Theorem 5.1, for any graph
G, we have

ϑ(G) ≤ ν(G,A),

an upper bound on ϑ(G), and the equality holds for a
class of graphs called Q graphs (Luz, 1995). Computa-
tion of KLS has a complexity of only O(n3), hence for
large scale datasets we approximate the Lovász kernel
by K = KLS .

We propose to use the following two layered architecture
for the problem of semi-supervised classification,

f(X,K) = softmax(K ReLU(KXW(0))W(1)). (2)
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Figure 4: Test accuracy plots for various synthetically generated graphs from stochastic block model. The matrix in plot
denotes the connection probabilities between classes.

Similar to GCN, we minimize the cross-entropy loss
given in Equation (1) for semi-supervised multi-class
classification. We use batch gradient descent for learn-
ing the weights W(0) and W(1).
We note that when the class labels are a non-linear
mapping of the optimal coloring of Ḡ, LCN with Lovász
kernel K(G) tunes the weights of the network to learn
the mapping.

6 Experimental Results
In this section, we report the results of our experiments
on several synthetic and real world datasets. We demon-
strate the usefulness of the embeddings learnt using the
Lovász convolution networks over several state of the
art methods including GCNs, SPORE, normalized and
unnormalized laplacian based regularization along with
other embeddings such as KS labelings that are de-
scribed in (Shivanna et al., 2015). We demonstrate our
results on Stochastic block models, real world MNIST
datasets (binary and multiclass) and several real world
UCI datasets. We also run experiments on large scale
real world datasets Citeseer, Cora and Pubmed which
are standard in GCN literature. In addition to this,
we test the goodness of Lovász based embeddings in
certain perfect graphs called caveman graphs which
have been used to model simple social network commu-
nities. In addition to simple graphs, we also experiment
with hypergraphs with clique expansion to see how the
proposed method performs.

Stochastic Block Model: Synthetic Data Exper-
iments: We start by describing our experiments on
synthetically generated stochastic block model graphs.
We perform the experiment on binary as well as three
class classification problem. We report several settings
of inter cluster and intra cluster probabilities in Fig-
ure 4 and corresponding embeddings in Figure 5. In
each of the experiments, the input features are fixed to

identity. We varied the number of nodes from 100 to
1000 and used a 20%− 10%− 70% train-validation-test
split where we use early stopping during training (Kipf
and Welling, 2017). The test accuracy is compared
against the standard GCNs (denoted by Kipf-GCN).
We make several observations from the results in Figure
4. Firstly, as the inter and intra cluster probabilities
get closer, it becomes much harder for GCN to classify
well whereas LCN outperforms GCN by a significant
margin. Secondly, as the size of the graph increases,
the differences in connections become more critical and
this is reflected in the increased accuracy with increase
in nodes for LCN, whereas accuracy of GCN is almost
agnostic to the number of nodes. Finally, as the graph
becomes denser i.e., as connection probabilities tend
towards 1, LCN performs much better than GCN in the
three class setting. These results demonstrate the ad-
vantage of using LCNs over GCNs for semi-supervised
classification tasks for SBM models.

Real World Data Experiments: We run several
experiments on real world datasets including MNIST
and UCI datasets. To make a fair comparison with
state of the art, we first run the same set of binary clas-
sification experiments as in (Shivanna et al., 2015) and
compare it with GCNs (Kipf and Welling, 2017), Graph
Partition Neural Networks (GPNN) (Liao et al., 2018)
and our proposed LCNs. These include experiments
on 6 UCI datasets (breast-cancer n = 683, diabetes
n = 768, fourclass n = 862, heart n = 270, ionosphere
n = 351 and sonar n = 208) and experiments on certain
pair of classes from a subsampled set of images from
the MNIST datasets. For both the UCI and MNIST
datasets features and labels are available, we used an
RBF kernel on features to construct the graph. Table
1 reports the results for these experiments with various
input embeddings including Laplacian (normalized, un-
normalized), KS embedding and others as considered
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Kipf-GCN Embeddings LCN Embeddings

(b)

Kipf-GCN Embeddings LCN Embeddings

(c)
Kipf-GCN Embeddings LCN Embeddings

(e)

Kipf-GCN Embeddings LCN Embeddings

(f)

Figure 5: Embeddings learnt for settings corresponding to Figure 4 (b), (c), (e), (f) for n=1000

in (Shivanna et al., 2015). For MNIST datasets, the
results are averaged over five randomly sampled graphs
and for UCI datasets, the results are averaged over five
random splits. As can be seen, LCN performs signifi-
cantly better than SPORE and performs much better
than GCNs in all datasets except two. In addition to
the binary classification experiment, we also conducted
three class classification on 500 and 2000 images from
MNIST (randomly subsampled from classes 1, 2 and
7) and also 10 class classification where we randomly
subsample 2000 images from all classes. The results
are reported in Table 2 As the classes increase, LCN
significantly outperforms other GCN baselines.

To be consistent with the GCN literature, we also
run experiments on large scale datasets Citeseer, Cora
and Pubmed. All these datasets are citation networks,
where each document is represented as a node in the
graph with an edge between nodes indicating the cita-
tion relation. The aim is to classify the documents into
one of the predefined classes. We use the same splits
as in (Yang et al., 2016). Table 3 shows the results
on these large scale datasets, as explained in Section 5
we use the approximate KLS kernel for these datasets
and LCN (LS) refers to this setting. LCN outperforms
other state-of-the-art baselines on all three datasets,
Citeseer, Cora and Pubmed. Node2vec (Grover and
Leskovec, 2016) is an unsupervised method for learning
node representations for a given graph using just the
structure of the graph. In table 3, Node2vec refers to
the model when the kernel is obtained from normalized
Node2vec embeddings, which achieves a significantly
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Figure 6: (c) Behavior of test accuracy with increase in
the heterogeneous edges in the hypergraph.

poor performance.

Caveman graph: Goodness of Embeddings Ex-
periment: A connected caveman graph of size (n, k)
is formed by modifying a set of isolated k-cliques (or
caves) by removing one edge from each clique and using
it to connect to a neighboring clique along a central
cycle such that all n cliques form a single unbroken
loop (Watts, 1999). Caveman graphs are perfect graphs
and are used for modeling simple communities in so-
cial networks (Kang and Faloutsos, 2011). We run our
experiments on various synthetic caveman graphs. For
every caveman graph, we compute the optimal color-
ing of the complement graph. We consider a binary
classification setting and randomly assign nodes corre-
sponding to half of the colors to class 0 and the other
half to the class 1. We set initial features to be identity
and we work with a 20%− 20%− 60% train-validation-
test splits, for every graph we run the experiments on
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Dataset Un-Lap N-Lap KS SPORE Kipf-GCN GPNN LCN
breast-cancer 88.2 93.3 92.8 96.7 97.6 95.5 97.2
diabetes 68.9 69.3 69.4 73.3 71.4 68.0 76.3
fourclass 70.0 70.0 70.4 78.0 80.5 73.9 81.7
heart 72.0 75.6 76.4 82.0 85.1 81.1 82.5
ionosphere 67.8 68.0 68.1 76.1 76.1 70.0 87.9
sonar 58.8 59.0 59.3 63.9 71.4 64.8 73.2
mnist-500 1 vs 2 75.6 80.6 79.7 85.8 98.0 96.2 99.0
mnist-500 3 vs 8 76.9 81.9 83.3 86.1 92.3 83.1 93.7
mnist-500 4 vs 9 68.4 72.0 72.2 74.9 89.4 88.5 83.3
mnist-2000 1 vs 2 83.8 96.2 95.0 96.7 99.0 97.5 99.2
mnist-2000 3 vs 8 55.2 87.4 87.4 91.4 94.7 89.6 95.7
mnist-2000 1 vs 7 90.7 96.8 96.6 97.3 98.8 96.4 98.7

Table 1: Binary Classification with Random label-to-color assignment in UCI and MNIST datasets.

Dataset Kipf-GCN GPNN LCN
mnist 500 127 96.1 93.8 97.5
mnist 2000 127 97.2 94.4 97.4
mnist all 2000 84.4 56.9 85.1

Table 2: Multi class Classification in MNIST dataset

Dataset Node2vec Kipf-GCN GPNN LCN
Citeseer 23.1 70.3 69.7 73.5
Cora 31.9 81.5 81.8 82.6
Pubmed 42.3 79 79.3 79.7

Table 3: Performance for semi-supervised on Citeseer,
Cora, Pubmed datasets

10 random splits. Table 4 shows the test accuracy of
Kipf-GCN and LCN. In Table 4, Avg_same stands
for average inner product of the representations of the
nodes with same color and Avg_diff stands for that
of the nodes with different colors. As we see, LCN
performs better on all cases considered. Also, the aver-
age dot products of nodes with same color is high and
those with different colors is close to zero showing that
the representations are as well separated as possible
for nodes with different colors.

Hypergraphs: Homogeneous vs Heterogeneous
Edges Experiment: Though our main focus is on
simple graphs, we also experiment with synthetic hy-
pergraphs. A hypergraph is a generalized version of

(n, k) Kipf-GCN LCN Avg_same Avg_diff
(50, 10) 0.92 0.93 0.83 -0.008
(75, 6) 0.77 0.80 0.80 -0.005
(100, 5) 0.71 0.73 0.79 -0.003
(100, 7) 0.81 0.81 0.80 -0.003

Table 4: Caveman graph experiment: Average test
accuracy of Kipf-GCN and LCN on caveman graphs.

a graph where a hyper edge consists of a set of nodes.
However, for hypergraphs, to the best of our knowledge,
orthogonal embeddings and Lovász theta function are
not defined. Therefore, we consider the clique expan-
sion of the hypergraphs (Zhou et al., 2006). Clique
expansion creates a simple graph from a hypergraph
by replacing every hyperedge with a clique. In our
experiments, we generated a hypergraph of 100 nodes
with every hyperedge containing 35 nodes. We consider
a binary classification setting and assign randomly 50
nodes to one class and the other 50 to a different class.
We randomly create 20 hyperedges such that all the
nodes in the hyperedge belong to same class, we call
these edges homogeneous edges. We also create m
random hyperedges such that the label distribution
of the nodes in the hyperedge is 2:3, we call these
edges heterogeneous. We vary m between 10 and 30
and create multiple hypergraphs. We set the initial
features to identity and work with a 20%-20%-60%
train-validation-test split and average across ten runs
per each hypergraph. Figure 6 shows the behavior of
test accuracy with increase in the number of heteroge-
neous edges. As one can see LCN performs much better
than GCN when the number of heterogeneous edges are
small (and hence the clique expansion has a community-
like structure) whereas GCNs tend to perform better
with increase in the number of heterogeneous edges.

7 Conclusion
We propose Lovász Convolution Networks for the prob-
lem of semi supervised learning on graphs. Our analysis
shows settings where LCNs perform much better than
GCNs. Our results on real world and synthetic datasets
demonstrate the superior embeddings learnt by LCNs
and show that they significantly outperform GCNs.
Future work includes detailed analysis of Lovász em-
beddings for hypergraphs, use of LCNs for community
detection and clustering.
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