A Proofs

Lemma 4. Let $g(S) = \sum_{x \in Q(S)} f(x)$, where $Q(S)$ is defined in Eq. [\(3.3\)](#page-0-0). If $\forall x, f(x) \ge 0$, then g is monotone *supermodular.*

Proof. Let $\ell \in [L]$, and $j \in \mathcal{C}^{(\ell)}$ be any constraint at site ℓ . For $\mathcal{S} \subseteq \mathcal{C} \setminus \{j\}$, define $\Delta_g(j \mid \mathcal{S}) = \sum_{x \in Q(\mathcal{S} \cup \{j\})} f(x) - \sum_{x \in Q(\mathcal{S} \cup \{j\})} f(x)$ $\sum_{x \in Q(\mathcal{S})} f(x)$ to be the gain of adding *j* to the set *S*.

By definition of $Q(S)$, we have $Q(S) = \prod_{k=1}^{L} S^{(k)}$, and

$$
Q(\mathcal{S} \cup \{j\}) = \left(\mathcal{S}^{(\ell)} \cup \{j\}\right) \times \prod_{k \neq \ell} \mathcal{S}^{(k)}
$$

$$
= \left(\{j\} \times \prod_{k \neq \ell} \mathcal{S}^{(k)}\right) \bigcup \left(\mathcal{S}^{(\ell)} \times \prod_{k \neq \ell} \mathcal{S}^{(k)}\right)
$$

$$
= \left(\{j\} \times \prod_{k \neq \ell} \mathcal{S}^{(k)}\right) \bigcup \left(\prod_{k=1}^{L} \mathcal{S}^{(k)}\right)
$$
(A.1)

Then,

$$
\Delta_g(j \mid \mathcal{S}) = \sum_{x \in Q(\mathcal{S} \cup \{j\})} f(x) - \sum_{x \in Q(\mathcal{S})} f(x) \stackrel{Eq. (A.1)}{=} \sum_{x \in \{j\} \times \prod_{k \neq \ell} \mathcal{S}^{(k)}} f(x)
$$

Now let us consider S' such that $S \subseteq S' \subseteq C \setminus \{j\}$. Clearly $\forall k \in [L], S^{(k)} \subseteq S'^{(k)}$. Therefore, $\Delta_g(j \mid S') - \Delta_g(j \mid S')$ $S) = \sum_{x \in \{j\} \times \prod_{k \neq \ell} (\mathcal{S}^{\prime(k)} \setminus \mathcal{S}^{(k)})} f(x) \ge 0$ and hence *g* is supermodular.

A.1 Proof of Lemma [2](#page-0-2)

We now show that Algorithm [3](#page-0-3) leads to a polynomial algorithm for constructing a lower bound on Eq. (4.2) , and hence on constructing a DS-decomposition of the surrogate objective function \hat{F} (Eq. [\(3.2\)](#page-0-5)).

Proof of Lemma [2.](#page-0-2) Let $g(\mathcal{S}) = \sum_{x \in Q(\mathcal{S})} f(x)$. By definition we have

$$
\hat{F}(\mathcal{S}) = g(\mathcal{S}) \left(1 - \left(1 - \frac{1}{|Q(\mathcal{S})|} \right)^n \right) = \underbrace{g(\mathcal{S})}_{\hat{F}_1(\mathcal{S})} - \underbrace{g(\mathcal{S}) \left(1 - \frac{1}{|Q(\mathcal{S})|} \right)^n}_{\hat{F}_2(\mathcal{S})} = \hat{F}_1(\mathcal{S}) - \hat{F}_2(\mathcal{S})
$$

We know from Lemma [4](#page-0-6) that \hat{F}_1 is supermodular. Let $j \in \mathcal{C}$ and $\mathcal{S} \subseteq \mathcal{C} \setminus \{j\}$. The gain of *j* on \hat{F}_1 , denote by $\Delta_1(j \mid \mathcal{S})$, is monotone decreasing.

Let $\Delta_2(j \mid \mathcal{S}) = \hat{F}_2(\mathcal{S} \cup \{j\}) - \hat{F}_2(\mathcal{S})$. Our goal is to find a lower bound on

$$
\beta = \min_{\mathcal{S} \subseteq \mathcal{S}' \subseteq \mathcal{C} \setminus j} (\Delta_{\hat{F}}(j \mid \mathcal{S}) - \Delta_{\hat{F}}(j \mid \mathcal{S}'))
$$

=
$$
\min_{\mathcal{S} \subseteq \mathcal{S}' \subseteq \mathcal{C} \setminus j} \left(\underbrace{\Delta_1(j \mid \mathcal{S}) - \Delta_1(j \mid \mathcal{S}')}_{\geq 0} + \Delta_2(j \mid \mathcal{S}) - \Delta_2(j \mid \mathcal{S}') \right)
$$
(A.2)

Therefore, it suffices to find a lower bound $\Delta_2(j \mid S) - \Delta_2(j \mid S')$. The gain of *j* on \hat{F}_2 is

$$
\Delta_2(j \mid \mathcal{S}) = \hat{F}_2(\mathcal{S} \cup \{j\}) - \hat{F}_2(\mathcal{S})
$$
\n
$$
= \sum_{x \in Q(\mathcal{S} \cup \{j\})} f(x) \left(1 - \frac{1}{|Q(\mathcal{S} \cup \{j\})|}\right)^n - \sum_{x \in Q(\mathcal{S})} f(x) \left(1 - \frac{1}{|Q(\mathcal{S})|}\right)^n
$$
\n
$$
= \sum_{x \in Q(\mathcal{S} \cup \{j\}) \setminus Q(\mathcal{S})} f(x) \left(1 - \frac{1}{|Q(\mathcal{S} \cup \{j\})|}\right)^n + \sum_{x \in Q(\mathcal{S})} f(x) \left(\left(1 - \frac{1}{|Q(\mathcal{S} \cup \{j\})|}\right)^n - \left(1 - \frac{1}{|Q(\mathcal{S})|}\right)^n\right)
$$

Let $r(S) = \left(1 - \frac{1}{|Q(S)|}\right)$ $nⁿ$. Then, the above equation can be simplified as

$$
\Delta_2(j \mid \mathcal{S}) = \hat{F}_2(\mathcal{S} \cup \{j\}) - \hat{F}_2(\mathcal{S})
$$
\n
$$
= \sum_{\substack{x \in Q(\mathcal{S} \cup \{j\}) \setminus Q(\mathcal{S})}} f(x)r(\mathcal{S} \cup \{j\}) + \sum_{\substack{x \in Q(\mathcal{S})}} f(x)\left(r(\mathcal{S} \cup \{j\}) - r(\mathcal{S})\right)
$$

It is easy to verify that $T_1(S)$ is monotone increasing function of *S*. Let us consider S' such that $S \subseteq S' \subseteq C \setminus \{j\}$. We have

$$
\Delta_2(j \mid \mathcal{S}') - \Delta_2(j \mid \mathcal{S}) \geq T_2(\mathcal{S}') - T_2(\mathcal{S})
$$

$$
\geq T_2 \geq 0
$$

$$
\geq -g(\mathcal{S})(r(\mathcal{S} \cup \{j\}) - r(\mathcal{S}))
$$

Therefore, it suffices to find a lower bound on $-g(\mathcal{S})(r(\mathcal{S} \cup \{j\}) - r(\mathcal{S}))$. Further notice that

$$
0 \le g(\mathcal{S}) \le \max_{\mathcal{T}: |\mathcal{T}| \le |Q(\mathcal{S})|} \sum_{x \in \mathcal{T}} f(x) \tag{A.3}
$$

and it is not hard to verify that

$$
0 \le r(\mathcal{S} \cup \{j\}) - r(\mathcal{S}) \le \left(1 - \frac{1}{|Q(\mathcal{S})|}\right)^n - \left(1 - \frac{1}{2|Q(\mathcal{S})|}\right)^n \tag{A.4}
$$

Therefore, combining term $(A.3)$ with $(A.4)$, we get a lower bound on β :

$$
\beta \ge - \max_{s \in \{1, \dots, |Q(C)|\}} \left(\left(\left(1 - \frac{1}{s} \right)^n - \left(1 - \frac{1}{2s} \right)^n \right) \underbrace{\max_{\mathcal{T}: |\mathcal{T}| \le s} \sum_{x \in \mathcal{T}} f(x)}_{\text{Term 2}} \right) \tag{A.5}
$$

Note that term 2 is a modular function and can be optimized greedily. Therefore, computing the RHS of Eq. [A.5](#page-1-2) can be efficiently done in polynomial time w.r.t. $|Q(C)|$. \Box

A.2 Proof of Lemma [3:](#page-0-7) Difference of Convex Construction of DS Decomposition

Lemma 5. Let $g: 2^c \to \mathbb{R}_{\geq 0}$ be a non-negative, non-decreasing supermodular function, and $u: \mathbb{R} \to \mathbb{R}$ be a *non-decreasing convex function. For* $S \subseteq C$, define $h(S) = g(S) \cdot u(|S|)$. Then *h* is supermodular.

Proof. Let $j \in \mathcal{C}$ and $\mathcal{S} \subseteq \mathcal{C} \setminus \{j\}$. The gain of *j* is

$$
\Delta_h(j \mid \mathcal{S}) = h(\mathcal{S} \cup \{j\}) - h(\mathcal{S})
$$

= $g(\mathcal{S} \cup \{j\}) \cdot u(|\mathcal{S} \cup \{j\}|) - g(\mathcal{S}) \cdot u(|\mathcal{S}|)$
= $(g(\mathcal{S} \cup \{j\}) - g(\mathcal{S})) \cdot u(|\mathcal{S} \cup \{j\}|) + g(\mathcal{S}) (u(|\mathcal{S} \cup \{j\}|) - u(|\mathcal{S}|))$

Let us consider *S'* such that $S \subseteq S' \subseteq C \setminus \{j\}$. We have

$$
\Delta_h(j \mid \mathcal{S}) = (g(\mathcal{S} \cup \{j\}) - g(\mathcal{S})) \cdot u(|\mathcal{S} \cup \{j\}|) + g(\mathcal{S}) (u(|\mathcal{S} \cup \{j\}|) - u(|\mathcal{S}|))
$$

\n
$$
\stackrel{(a)}{\leq} (g(\mathcal{S}' \cup \{j\}) - g(\mathcal{S}')) \cdot u(|\mathcal{S}' \cup \{j\}|) + g(\mathcal{S}) (u(|\mathcal{S} \cup \{j\}|) - u(|\mathcal{S}|))
$$

\n
$$
\stackrel{(b)}{\leq} (g(\mathcal{S}' \cup \{j\}) - g(\mathcal{S}')) \cdot u(|\mathcal{S}' \cup \{j\}|) + g(\mathcal{S}') (u(|\mathcal{S}' \cup \{j\}|) - u(|\mathcal{S}'|))
$$

\n
$$
= \Delta_h(j \mid \mathcal{S}')
$$

where step (a) is due to *g* being monotone supermodular (i.e., $g(S' \cup \{j\}) - g(S') \ge g(S \cup \{j\}) - g(S) \ge 0$) and *u* being monotone (i.e., $u(|S' \cup \{j\}|) \geq u(|S \cup \{j\}|)$); step (b) is due to *g* being non-negative monotone (i.e., $g(S') \ge g(S) \ge 0$) and u being convex (i.e., $u(|S' \cup \{j\}|) - u(|S'|) \ge u(|S \cup \{j\}|) - u(|S|)$). Therefore h is supermodular.

Lemma 6. Let $w : \mathbb{R} \to \mathbb{R}$ be a convex function and $u : \mathbb{R} \to \mathbb{R}$ a convex non-decreasing function, then $u \circ w$ is *convex. Furthermore, if w is non-decreasing, then the composition is also non-decreasing.*

Proof. By convexity of *w*:

$$
w(\alpha x + (1 - \alpha)y) \le \alpha w(x) + (1 - \alpha)w(y).
$$

Therefore, we get

$$
u(w(\alpha x + (1 - \alpha)y)) \stackrel{(a)}{\leq} u(\alpha w(x) + (1 - \alpha)w(y))
$$

$$
\stackrel{(b)}{\leq} \alpha u(w(x)) + (1 - \alpha)u(w(y)).
$$

Here, step (a) is due to the fact that u is non-decreasing, and step (b) is due to the convexity of u . Therefore $u \circ w$ is convex. If *w* is non-decreasing, it is clear that $u \circ w$ is also non-decreasing, hence completes the proof. \square

Lemma 7 [\(Horst & Thoai](#page-0-9) [\(1999\)](#page-0-9)). Let $r : \mathbb{R} \to \mathbb{R}$ be a non-decreasing, twice continuously differentiable function. *Then r* can be represented as the difference between two non-decreasing convex functions.

Proof. Let $u : \mathbb{R} \to \mathbb{R}$ be a non-decreasing, strictly convex function, and $\alpha = \min_x u''(x)$; clearly, $\alpha > 0$. Let $\beta = \lim_{x} r''(x)$. Define

$$
v(x) = r(x) + \frac{\beta}{\alpha}u(x)
$$
\n(A.6)

It is easy to verify that

$$
v''(x) = r''(x) + \frac{\beta}{\alpha}u''(x) \ge r''(x) + \beta \ge 0.
$$

Hence, $v(x)$ is convex. Furthermore, since both r and u are non-decreasing, v is also non-decreasing. Therefore, $r(x) = v(x) - \frac{\beta}{\alpha}u(x)$ is the difference between two non-decreasing convex functions. □

Lemma 8. Let $r : \mathbb{R} \to \mathbb{R}$ be a non-decreasing, twice continuously differentiable function, and $w : \mathbb{R} \to \mathbb{R}$ a *convex non-decreasing function, then* $r \circ w$ *can be represented as the difference between two non-decreasing convex functions.*

Proof. By Lemma [7,](#page-2-0) we can represent $r(x) = v(x) - \frac{\beta}{\alpha}u(x)$, where *u, v* are non-decreasing convex functions, and α, β are as defined in Eq. [\(A.6\)](#page-2-1). Therefore,

$$
r \circ w(x) = v \circ w(x) - \frac{\beta}{\alpha} \cdot u \circ w(x)
$$

By Lemma $6, v \circ w$ $6, v \circ w$ and $u \circ w$ are both non-decreasing convex, which completes the proof.

Now we are ready to prove Lemma [3.](#page-0-7)

Proof of Lemma [3.](#page-0-7) Let $g(\mathcal{S}) = \sum_{x \in Q(\mathcal{S})} f(x)$. By definition we have

$$
\hat{F}(\mathcal{S}) = g(\mathcal{S}) \left(1 - \left(1 - \frac{1}{|Q(\mathcal{S})|} \right)^n \right) = g(\mathcal{S}) - g(\mathcal{S}) \left(1 - \frac{1}{|Q(\mathcal{S})|} \right)^n
$$

Let $r(x) = (1 - \frac{1}{x})^n$, and $w : \mathbb{R} \to \mathbb{R}$ be a convex function, such that $w(|S|) = |Q(S)|$. Note that such function *w* exists, because the set function $h(S) := |Q(S)|$ is supermodular. Therefore, we have

$$
\hat{F}(\mathcal{S}) = g(\mathcal{S}) - g(\mathcal{S}) \cdot r \circ w(|\mathcal{S}|)
$$

Furthermore, note that r is non-decreasing, twice continuously differentiable at $[1,\infty)$. By Lemma [8,](#page-2-3) we get

$$
\hat{F}(\mathcal{S}) = g(\mathcal{S}) - g(\mathcal{S}) \cdot \left(v \circ w(|\mathcal{S}|) - \frac{\beta}{\alpha} \cdot u \circ w(|\mathcal{S}|) \right)
$$

= $g(\mathcal{S}) \left(1 + \frac{\beta}{\alpha} \cdot u \circ w(|\mathcal{S}|) \right) - g(\mathcal{S}) \cdot (v \circ w(|\mathcal{S}|)),$ (A.7)

where $u : \mathbb{R} \to \mathbb{R}$ can be any non-decreasing, strictly convex function, $\alpha = \min_x u''(x)$, $\beta = |\min_{x \geq 1} r''(x)|$, and $v(x) = r(x) + \frac{\beta}{\alpha}u(x).$

We know from Lemma [4](#page-0-6) that *g* is supermodular. Since both $1 + \frac{\beta}{\alpha} \cdot u \circ w(x)$ and $v \circ w(x)$ are convex, then by Lemma [5,](#page-1-3) we know that both terms on the R.H.S. of Eq. [\(A.7\)](#page-3-0) are supermodular, and hence we obtain a DS decomposition of function *F*ˆ. \Box

B Supplemental Figures

Figure S1: The cell values for the synthetic dataset with $L = 2$ and $|\mathcal{C}^{(\ell)}| = 26 \ \forall \ell \in \{1, 2\}.$

Figure S2: Comparing \hat{F} (Eq. (3.2)) against the Monte Carlo estimates of F (Eq. (3.1)). Error bars are standard errors for the Monte Carlo estimates. The approximate objective correlates well with Monte Carlo estimates of the exact objective.